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Abstract –The potential of modeling the FAO Penman-Monteith (FAO-56 PM) method for computing reference crop evapotranspiration (ETo) 
using feed-forward backpropagation artificial neural networks (FFBANN) with minimal measured climate data such as with the air temperature 
(maximum and minimum) was investigated using local climatic data from the Wa Meteorological weather station. Three FFBANN models were 
developed and trained with the Levenberg-Marquardt algorithm and the early stopping approach. These three FFBANN models are temperature-
based models and have the same input variable as the established temperature-based empirical methods; the Hargreaves, Blaney-Criddle and 
the Thornthwaite methods. A comparative study was carried to see how these FFBANN models performed relative to the other three established 
temperature-based empirical methods using the FAO-56 PM method as the benchmark. In general, the FFBANN models outperformed these 
established methods in estimating the ETo and should be preferred where only measured air temperature (maximum and minimum) is the variable 
available for estimating the reference crop evapotranspiration. 
 
Index Terms – Reference crop evapotranspiration, Feed-Forward backpropagation artificial neural network. 

———————————————————— 
 

1 INTRODUCTION 
The reference crop evapotranspiration is a component of 
the hydrological cycle and hence an important parameter in 
the field of hydrology and other disciplines. The Food and 
Agricultural Organization (FAO) defines reference crop 
evapotranspiration (ETo) as the rate of evapotranspiration 
from a hypothetic crop with an assumed crop height of 12 
cm, a fixed canopy resistance of 70 sm-1 and albedo of 
0.23, closely resembling the evapotranspiration from an 
extensive surface of green grass of uniform height, actively 
growing, completely shading the ground and not short of 
water [1, 2]. The FAO [2, 3] recommended that where 
needed climatological variables are available reference 
crop evapotranspiration should be computed using FAO-56 
Penman-Monteith (FAO-56 PM), as the calibrated empirical 
methods may still not give accurate results [4]. However, 
determining the radiation term and aerodynamic term as 
used in the FAO-56 PM is cumbersome and needs 
expertise. The FAO-56 PM also requires four measured 
climatic data; the air temperature, air relative humidity, wind 
speed and the sunshine hour or solar radiation. These data 
are not always available in most weather stations and 
where available the reliability of some of the data are 
questionable and sometimes with missing data. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Therefore, although the FAO-56 PM is the most accurate 
and accepted standard method, its application is often 
limited.  Empirical methods are often used instead, based 
on the fact that meteorological variables necessary for the 
application of the FAO-56 PM are always not available [5]. 
Empirical methods requires less measured climate data and 
are simple to use but are most suitable in the location and 
climatic conditions in which there were developed. Their 
suitability in different locations is enhanced by calibration 
using local climatological data. The calibrations of these 
empirical methods with the FAO-56 PM as the benchmark, 
may still not give accurate results [4]. Temperature-based 
empirical methods estimate the ETo using only measured 
maximum and minimum air temperatures as the minimum 
set of climate data necessary to estimate ETo and 
astronomical data which depends on the location and date 
(day and month of the year). Computer Modelling of the 
reference crop evapotranspiration using minimal climatic 
data that mimic established empirical methods are gaining 
prominence in the quest to find an accurate and suitable 
method for computing ETo with minimal climate data 
requirement. The FAO-56 PM method for computing 
reference crop evapotranspiration exhibits complex non-
linear relationship with the climate data therefore artificial 
intelligence (AI), neural computing techniques that are able 
to accurately map complex, non-linear input-output 
relationships such as the reference crop evapotranspiration 
therefore offers a useful alternative to the complex FAO-56 
PM and the established empirical methods. The main 
advantage of artificial intelligence approach over other 
traditional methods is that it does not require information 
about the complex nature of the underlying process under 
consideration to be explicitly described in mathematical 
form [6]. This paper therefore used feed-forward 
backpropagation artificial neural network (FFBANN) to 
develop temperature-based models for estimating the ETo. 
The FFBANN is a supervised artificial neural network that 
uses input-output mapping capabilities to find function 
approximation for complex nonlinear relationships. Once 
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the model learns to predict the reference crop 
evapotranspiration using the input-output exemplars, the 
model is then stored and used to predict reference 
evapotranspiration in the future using new inputs variables 
only. Comparisons are made with three established 
temperature-based empirical methods; the Hargreaves, 
Blaney-Criddle and the Thornthwaite methods using the 
FAO-56 PM as the benchmark. 
 
2 RESEARCH METHODOLOGY 
 
2.1 Artificial Neural Networks Models 
A neural network (NN) model is a mathematical construct 
whose architecture is essentially analogous to the human 
brain. The highly interconnected processing elements (PEs) 
or neurons arranged in layers are similar to the 
arrangement of the human brain [7, 8]. Haykin [7] defines 
neural network viewed as an adaptive machine as follows: 
―A neural network is a massively parallel distributed 
processor that has a natural propensity for storing 
experiential knowledge and making it available for use. It 
resembles the brain in two aspects: Knowledge is acquired 
by the network through a learning process. Interneuron 
connection strengths known as synaptic weights are used 
to store knowledge‖.  The procedure used to perform the 
learning process is called a learning algorithm. The manner 
in which the neurons of a neural network are combined is 
linked with the learning algorithm. A learning algorithm is a 
prescribed set of well-defined rules for the solution of a 
learning problem. Neural networks are trained to perform a 
particular function by adjusting the values of the 
connections (weights) between elements. The neural 
networks are adjusted or trained, so that a particular input 
leads to a specific target output. The network is adjusted 
based on a comparison of the output and the target, until 
the network output matches the target. Training is a 
procedure whereby a network is actually adjusted to do a 
particular job [9]. There are two approaches to training: 
supervised and unsupervised training. Supervised training 
involves a mechanism of providing the network with the 
desired output either manually, ―grading‖ the network’s 
performance or by providing the desired outputs with inputs 
[10]. Unsupervised (also referred to as self-organization or 
adaption) is where the networks have to make sense of the 
inputs without outside help. Majority of networks utilize 
supervised training. Neural networks have been trained to 
perform complex function in various fields of application 
including pattern recognition, identification, classification, 
speech, vision and controls systems [10].  That is basically, 
most neural networks application can be classified into five 
categories: prediction, classification, data association, data 
conceptualization, and data filtering. Today neural networks 
have been broadly used in different disciplines 
(engineering, financial and other practical application).  It 
can be trained to solve problems that are difficult for 
conventional computers or human beings. Artificial neural 
networks have been successfully used in 
evapotranspiration modelling [5, 6, 8, 11, 12, 13, 14, 15, 16, 
17, 18, 19].  Parasuraman et al. [16] observe that the input-
output functional relationship does not remain the same 
over the entire modeling domain, varying at different spatial 
and temporal scale. Therefore the need to use local data to 
model the ETo in the region. Artificial neural networks have 

input-output mapping capabilities for analyzing complex 
nonlinear relationships in many fields of study. The main 
advantage of ANNs approach over other traditional 
methods is that it does not require information about the 
complex nature of the underlying process under 
consideration to be explicitly described in mathematical 
form [6]. Evapotranspiration is a complex and nonlinear 
phenomenon because it depends on several interacting 
climatological factors such as temperature, humidity, wind 
speed, solar radiation, crop type and growth stage of the 
crop, soil moisture content, and a lot more [6, 8]. Artificial 
neural networks (ANNs) are effective tools to model 
nonlinear systems better than simple regression [20], 
numerical algorithms and other conventional statistical 
methods. 

 
2.2 Neural Network Models and Architecture 
Modelling reference crop evapotranspiration using artificial 
networks was achieved using MATLAB (Windows version 
7.5.0 (R2007b), The Mathworks Inc., Natich, MA) with 
Neural Networks Toolbox 5.1, for the models simulations. 
There are multitudes of network types available for ANN 
applications and the choice of any network application 
depends on the problem and data. A feed-forward 
backpropagation often referred to as feed-forward 
multilayer perceptron (MLP) with a single hidden layer was 
considered to be best choice for this study. Perceptron are 
fast and reliable networks for problems they can solve [9]. 
There is considerable literature evidence that 
evapotranspiration can be modelled using single-hidden 
layer network [5, 6, 8, 13, 15, 19]. Feed-forward 
backpropagation (feed-forward multilayer perceptrons 
(MLP)) have been shown to have a computational 
superiority in comparison to other paradigms [21]. Feed-
forward backpropagation networks consist of input, hidden, 
and output layers and each layer includes an array of 
processing element (neuron) as illustrated in Fig.1. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Schematic of feed-forward backpropagation ANN1 
with single hidden layer and one output layer 
 
The feed-forward backpropagation network was trained 
under supervision with the Levenberg-Marquardt (LM) 
algorithm (TRAINLM) [22, 23] and learned with adaption 
learning function ―backpropagation with momentum‖ 
(LEARNGDM) which is preferable to standard 
backpropagation algorithm [5]. Levenberg-Marquardt uses 
the Newton’s method for approaching the minimum of the 
error function. The error is the mean square error as 
express below.  
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Where iETPM o
y , is oET  estimated by the FAO-56 PM, 

iANNy ,  is ETo estimated by the ANN models, and N is 

number of observations. The use of the LM algorithm in 
network training is relatively new [24]. Coulibaly et al. [25] 
reported that about 90% of the applications of ANNs in 
hydrology over the last few years make use of multilayer 
feed-forward neural networks trained by the standard back-
propagation algorithm. However, the standard back- 
Propagation has several drawbacks, namely that the 
algorithm is very slow, requires much off-line training, 
exhibits temporal instability (can oscillate) and has a 
tendency to become stuck at local minima. On the contrary, 
the LM algorithm has been proved to have the fastest 
convergence on networks which contain up to a few 
hundred’s weights [9]. The tan-sigmoid activation function 
was chosen for the layer of hidden neurons and the output 
neurons. The tan-sigmoid function is preferred to the log-
sigmoid function because according to [7], a multilayer 
perceptron may converge faster (in terms of the number of 
epochs required) when the sigmoid function is symmetric 
than when it is asymmetric. In order to implement the LM 
algorithm, the default values of the training parameters 
were used:  the epochs was set at 100, goal at 0, max_fail 
at 5, mem_reduc 1, min_grad at 1e-010, mu at 0.001, 
mu_dec 0.1, mu_inc 10, mu_max 1010, show 25 and the 
time set at Inf. The training stops if the number of iterations 
exceeds the epochs, if the performance function drops 
below the goal, if the magnitude of the gradient is less that 
min_grad, or if the training time is longer than the set time 
seconds [9]. Also, the parameter mu is multiple with 
mu_dec whenever the performance function is reduced by 
a step and it is multiple by mu_inc whenever a step would 
increase the performance function. If the mu becomes 
larger than mu_max, the algorithm is stop. The parameter 
mem_reduc is used to control the amount of memory used 
by the algorithm. As reported by Demuth and Beale [9], the 
default parameter values normally perform adequately for 
algorithms such as the LM. One of the major advantages of 
neural networks is their ability to generalize, perceptron 
have the ability to generalized from its training vectors 
(inputs and target/output) and learn from initially randomly 
distributed connections. To improve the generalization of 
the models, the early stopping rule was used [9, 26, 27]. 
The use of early stopping rule reduced the training time 
significantly [28] and it provided better and more reliable 
generalization performance than the use of the LM 
algorithm alone. For early stopping the climatic data were 
divided into three parts: A training set (657 exemplars), 
used to determine the network parameters, weights and 
biases; validation set (219 exemplars), used to estimate the 
network and performance and decide when the training is 
stopped; and a test set (219 exemplars), used to verify the 
effectives of the stopping criterion and to estimate the 
expected performance in the future. The validation set is 
normally passed to the training function; therefore the 
validation set forms part of the network. The training using 
the LM was stopped when the mu (μ) became larger than 

0.001, when the number of epochs reaches 100 or when 
the validation performance started to decrease.  

 
2.3 Data Set for Networks 
The data for the networks consists of daily climatic data 
from the Wa Meteorological station latitude 10°.04' N and 
altitude 322.7 m from 2009-2011. A total of 1095 exemplars 
were generated for the networks training, validation and 
testing. The first 657 daily climatic data were used for the 
models training and the remaining 438 was then divided 
into two for models validation (219 exemplars) and testing 
(219 exemplars). The first network ANN1 consists of only 
measured air temperature (maximum and minimum), 
computed extraterrestrial radiation which depends on the 
position of the sun and hence is a function of location 
(latitude) and date (month) [5]. ANN1 resembles the 
combination used in Hargreaves temperature-based ETo 
approach [29]. The second network ANN2, consists of only 
measured air temperature (maximum and minimum) and 

maximum possible sunshine hours ( N ) which depends on 

the position of the sun and hence is a function of location 
(latitude) and date (month) [15]. ANN2 therefore resembles 
ETo approach by Blaney-Criddle [30] and [31], since the 
ratio of actual daytime hours to annual mean daily daytime 
hours (%) ( p ), in the Blaney-Criddle method is calculated 

from N  and the mean air temperature in both approaches 

is the mean of the maximum and minimum. The third 
network ANN3 consists of only measured air temperature 
(maximum and minimum), computed extraterrestrial 
radiation and maximum possible sunshine hours (N) which 
depends on the position of the sun and hence is a function 
of location (latitude) and date (month) [5]. ANN3 also 
resembles the combination used in Hargreaves and Samani 
[29] temperature-based ETo approach, since, N is just a 
function of location and coefficients used in Hargreaves are 
location dependent. The outputs for the three networks are 
the ETo computed using the FAO-56 PM method (PM-ETo). 
These inputs-outputs mapping were used for the networks 
training, validation and testing. The networks were trained 
in order to obtain the best minimum ANN architecture in 
terms of performance. For each ANN architecture, the 
number of nodes in the input and output layer were fixed at 
three inputs and one output for ANN1 and ANN2 and four 
inputs and one output for ANN3. The numbers of nodes 
(neurons) in the hidden layer were varied from 5-10 
neurons.  In all six models were developed for each 
network and the model architecture with the best 
performance was then chosen based on the statistical 
criterion that were used for models performance analyses. 
These statistical methods were the correlation coefficient 
(R) and the mean square error (MSE).  

 
2.4 Brief Overview of Temperature-Based Methods 
Temperature-based ETo methods employ only measured 
maximum and minimum air temperatures as the minimum 
set of climate data necessary to estimate ETo and 
astronomical data which depends on the location (latitude) 
and date (day and month of the year). Three of such 
methods – Hargreaves, Blaney-Criddle and Thornthwaite 
considered in this paper are briefly discussed below. The 
Hargreaves method [29] for estimating reference crop 
evapotranspiration is recommended by the FAO 
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consultation group, than any other temperature-based 
method for measuring reference evapotranspiration. 
Hargreaves method uses the maximum and minimum 
temperature and extraterrestrial radiation as the main data 
for computing reference crop evapotranspiration (Table 1). 
The differences in maximum and minimum temperatures 
may be successfully correlated with humidity conditions as 
well as net radiation [1] and can be used where only 
temperature data are recorded for computing reference 
crop evapotranspiration. The method is empirical and 

therefore need to be calibrated using local climatological 
data to obtain accurate and reliable result.The 

Blaney-Criddle method [30] is a simple empirical method 
that uses only temperature for estimating 
evapotranspiration. The method is inaccurate when used in 
climatic conditions other than Western United States where 
it was developed [32]; however, the method can give 
reasonable estimates when calibrated using local data. The 
Blaney-Criddle method presented in FAO-24 by Doorenbos 
and Pruitt [32] is more accurate than the original Blaney-
Criddle method of the US Soil Conservation Service [30]. 
However, the coefficients of the FAO-24 method are difficult 
to estimate using the empirical relationships developed for 
its estimation and therefore not considered in this paper. 
The original Blaney-Criddle method [30] for estimating 
reference crop evapotranspiration is presented in Table 1. 
Thornthwaite [31], and Thornthwaite and Manther’s [33] 
method is also empirical; the only factors taken into account 
for estimating potential evapotranspiration which is now 
considered as the reference crop evapotranspiration are the 
mean air temperature and hours of daylight. The estimates 
are based upon a 12-hour day (amount of daylight) and a 
30-day month. The adjusted estimates of reference crop 
evapotranspiration for any month with number of days 
different from 30 and number of sunshine hours/day 
different from 12 is presented in Table 1 and the unit is in 
mm/day. The Thornthwaite method often overestimates the 
reference crop evapotranspiration when applied outside 
East-Central USA where it was developed. 
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2.5 FAO-56 Penman-Monteith (FAO-56 PM) 
The FAO-56 PM equation for the hypothetical reference 
crop evapotranspiration is expressed as [2] below. 
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Where oETPM   ETo estimated by the FAO-56 PM 

[mm/day]; nR  net radiation at the crop surface [MJ m
2
/day]; 

G  soil heat flux density [MJ m
2
/day]; T  mean daily air 

temperature [
o
C]; 2u  daily wind speed at 2 m height [m/s]; 

se  saturation vapour pressure [kPa]; ae  actual vapour 

pressure [kPa]; as ee   vapour pressure deficit [kPa];   

slope of the saturation vapour pressure temperature curve 
[kPa/

o
C]; and   psychrometric constant [kPa/

o
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The terms in the numerator on the right-hand side of the 
expression in (2) are the energy term (radiation term) and 
the aerodynamic term respectively. This is why the method 
is called a combination method because it combines both 
the energy and aerodynamic aspect in calculating the 
reference crop evapotranspiration. The inputs measured 
climatological data for estimating the radiation term and the 
aerodynamic term where daily: air temperature (maximum 
and minimum), sunshine hours, wind speed and air relative 
humidity (maximum and minimum).  

 
2.6 Calibrations of the models 
Calibration of the empirical temperature-based ETo 
methods using the FAO-56 PM as the recommended 
standard method [34], were achieved using linear 
regression analysis as shown in the equation below: 
 

 TBoETbaEToPM ,                       (3) 

Where a andb  are parameters determined by linear 

regression [-], TBoET ,  is estimate of reference crop 

evapotranspiration by any of the temperature-based 
methods (ANN models and existing temperature-based 
models). The performance of the empirical temperature-
based methods and their calibrated versions were 
statistically analysed and evaluate against the standardized 
method (the FAO-56 PM). The performance evaluation 
involved the correlation coefficient (R) and mean sum of 
square error (MSE). The mean sum of square error (MSE) 
was the basis for evaluating their performance. The lower 
the MSE value, the better the agreement. The values of the 
MSE was compared to the ANN models and discussed. 

 
3. RESULTS AND DISCUSSIONS 
In other to select the network architecture with the best 
performance out of the six models that were developed, the 
correlation coefficient, MSE and model with minimal 
architecture during the testing set was used. The statistical 
summary of the selected models during training, validation 
and testing sets of artificial neural networks for the three 
networks models are shown in Tables 2. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Considering the correlation coefficients (R-values), R of 
close to 1 is preferred hence generally the ANN models 
performance was not the best to be desired. This shows 
that there are noises in the data sets which the ANN 

models could not best explain. This supports the work by 
Adeloye et al. [19], that when there are noises in the data 
sets, FFBANN models do not perform best and higher ANN 
models may be tested. The noise in the data sets are as 
result of the fact that only measured air temperature was 
used in all the models as input data sets whereas the target 
was computed using measured air temperature (Tmax and 
Tmin), air relative humidity (RHmax and RHmin), sunshine 
hours (n) and wind speed at 2 m height (U2). This also 
support the fact that FFBANN do not perform best when 
fewer inputs data are provided and it also explain the fact 
that the other variables such as the air relative humidity, 
sunshine hours and wind speed are important in 
determining the reference crop evapotranspiration (Table 
3).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The ANN3 model which contained four input variables 
performed better than the two other models using the MSE 
as the performance criteria during the testing since the best 
generalized models using the independent testing is 
desired for future estimations (Table 2). It must be noted 
that in determining the radiation-term in the FAO-56 PM 
method both the computed maximum possible sunshine 
hours (N) and the extraterrestrial radiation (Ra) are required 
when using measured sunshine hours instead of incident 
radiation. The combination of the N and Ra in the ANN3 
makes the model superior to the two other models showing 
that the more useful information fed into the network, the 
better the performance of the network. The ANN2 also 
performed better than the ANN1 (Table 2).  The linear 
regression models presented in the Fig. 2-4 below show the 
correlation coefficients and the models calibrations 
parameters. 
 

 
 
Fig.2. Linear regression model of ANN1 during training, 
validation and testing 

TABLE 2 
 STATISTICAL SUMMARY OF SELECTED ANN MODELS 

ARCHITECTURE DURING TRAINING, VALIDATION’ AND 

TESTING’’ 

ANN 
models 

Models 
architecture 

R MSE 
(mm/day)

2
 

 
ANN1 

 
3-5-1 
 

0.79 
0.64’ 
0.79’’ 

0.5403 
0.6120 
0.3035 

 
ANN2 

 
3-9-1 

0.80 
0.66’ 
0.80’’ 

0.5200 
0.6423 
0.3005 

 
ANN3 

 
4-7-1 

0.78 
0.71’ 
0.80’’ 

0.5717 
0.5189 
-0.3074 

 

TABLE 3 
CROSS-CORRELATION MATRIX OF THE CLIMATE VARIABLES AND THE 

PM-ETO 

 Tmax Tmin U2 RHmax RHmin     n PM 
-ETo 

Tmax 1.00       

Tmin 0.39 1.00      

U2 0.06 0.20 1.00     

RHmax -0.56 0.18 -0.06 1.00    

RHmin -0.79 0.06 -0.04 0.84 1.00   

n 0.63 0.03 0.04 -0.33 -0.58 1.00  

PM 
-ETo 

0.70 0.42 0.52 -0.33 -0.53 0.73 1.00 
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Fig.3. Linear regression model of ANN2 during training, 
validation and testing 
 

 
 
Fig.4. Linear regression model of ANN3 during training, 
validation and testing 
 
Comparing the performance of the three ANN models to 
that of the three temperature-based methods, the ANN 
models outperformed the traditional temperature-based 
models considered in this study. This is not surprising given 
what has been noted previously about ANNs which are able 
to model any complex function even when such functions 
are not specified explicitly. The results are perhaps an 
indication that the three traditional temperature-based 
models considered in this study are incomplete or relatively 
inadequate for computing the complex reference crop 
evapotranspiration process. Of the three empirical 
temperature-based methods, performance was ranked; 
Hargreaves, Thornthwaite and Blaney-Criddle.  The result 
confirms the results of many works that, the Hargreaves 
method performs better than other empirical temperature-
based methods and that good results can be obtained using 
maximum and minimum temperature as the main 
parameters for modelling reference crop evapotranspiration 
[2]. The calibrations of the Hargreaves, Thornthwaite and 
Blaney-Criddle methods are achieved using the linear 
regression results (Fig.5). The calibrated versions showed 
some improvements in the performances using the MSE 
(Table 4). The ANN models also outperformed the 
calibrated versions of the three existing temperature-based 
methods (Table 2 and Table 4).  This confirmed the fact 
that the calibrated versions still does not give an accurate 
estimation of the reference crop evapotranspiration in the 
region [4]. 
 
 

 
 
Fig.5. Linear regression model of Hargreaves, Thornthwaite 
and Blaney-Criddle 
 

 
 
 

 

 

 

 
 

4. CONCLUSIONS AND RECOMMENDATIONS 
The superiority of the ANN for modeling reference crop 
evapotranspiration using minimal data such as the air 
temperature (maximum and minimum) over the existing 
empirical temperature-based methods was confirmed. 
Although the FFBANN models employed in this paper did 
not performed as desired as a result of noise in the data 
sets, the cross correlation matrix confirms the fact that only 
air temperature (maximum and minimum) will not give an 
accurate estimation of the reference crop 
evapotranspiration in the region. The FFBANN models 
when compared with the original and calibrated versions of 
the three temperature-based (Hargreaves, Thornthwaite 
and Blaney-Criddle), the FFBANN models presented better 
performance. Therefore, where the needed climatic data 
are not available for the application of the combinations 
methods, the reference crop evapotranspiration can be 
modeled successfully with FFBANN using minimum climatic 
data, with maximum and minimum air temperature as the 
main measurable input variables.  Also other higher 
learning non-linear ANN models suitable for fewer inputs 
could be investigated, such as the radial basis ANN and 
self organizing map.  
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