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Abstract: The major interests of survival analysis are either to compare the failure time distribution function or to assess the effects of covariate on 
survival via appropriate hazards regression models. Cox’s proportional hazards model (Cox, 1972) is the most widely used framework, the model 
assumes that the effect on the hazard function of a particular factor of interest remains unchanged throughout the observation period (Proportionality 
assumption). For a continuous prognostic factor the model further assumes linear effect on the log hazard function (Linearity assumption). Assumptions 
that many authors have found to be questionable when violated since they may result to biased results and conclusions and as such non-linear risk 
functions have been suggested as the suitable models.In this paper, we propose a flexible method that models dynamic effects in survival data within 
the Cox regression framework. The method is based on penalized splines. The model offers the chance to easily verify the presenceof PH and time-
variation. We provide a detailed analysis and derivation of the penalized splines in the context of survival data. 
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1.0 Introduction 
Survival analysis entails a wide variety of methods aimed at 
analyzing the timing of events. Many researchers are able 
to model and assess why certain subjects are exposed to a 
higher risk of experiencing an event of interest such as 
death, development of an adverse reaction or relapse of a 
given disease (e.g. Cancer).  Cox proportional hazard(CPH) 
model is the most popular regression model used for the 
analysis of survival data. The model allows testing for the 
differences in survival times of more than one group of 
interest and compares the cumulative probability of the 
events, while adjusting other influential covariates. It is a 
semi-parametric model that makes fewer assumptions than 
a typical parametric method. One of the assumptions of the 
Cox model is the linearity of the covariates variables on the 
log hazard function. The non-flexibility of these methods 
subjects the model to biasness. For instance, they assume 
independence of covariates that affect the hazard rate. The 
CPH model also makes assumptions that the factors are 
linear yet findings have indicated that some prognostic 
factors (for example, body mass index) have non-linear 
effect on breast cancer survival and/or prognosis (Gray, 
1994). Based on this, cox proportional model poses a 
problem in analyzing time-to-event data; 

i) It is complex to relate the variables to the outcome. 
ii) The variables interact with each other. 
iii) It is not possible to apply the assumption of 

proportionality of the hazards to the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This could possibly lead to biased risk estimates and as 
such distorting the findings. (Hastie, T & Tibshirani, R, 
1990) have shown that a better choice is to use smoothing 
splines, where knot selection is automatic based on a mean 
squared criterion. With smoothing splines, the user only 
need to select the level of smoothness, which is done by 
selecting the degrees of freedom for each spline fit. Time-
varying effects (TVEs) of prognostic factors have been 
detected in a variety of medical fields. Gore et.al (1984) 
presents a classical example discussing this issue for 
several covariates that relate to breast cancer. In the same 
disease, the effects of oestrogen receptor and tumour size 
have been reported to change over time (Hilsenbeck, S. G., 
et.al, 1998). Other examples have been established to 
include the effects of prothrombin time in primary biliary 
cirrhosis (Abrahamowicz, M., , T. MacKenzie,, & J. M. 
Esdaile, 1996), the Karnofsky performance status in ovarian 
cancer studies (Verweij & Houwelingen, 1995) and diabetes 
on mortality after coronary artery bypass graft surgery (Gao 
C, , Yang M,, Wu Y, , & et al, 2006). 
 

2.0 Review of regression models 
 

2.1 Regression model 
A regression model is basically of the form; 
 

Y = f X1 , X2 , . . . , Xn +  ε                        (1) 
 
Where, Y is the response (dependent) variable   
X₁, X₂, . . . , Xn  are the predictor (independent) variables, ε  is 

the error or simply the difference between the model and 
the actual values. The regression model aims at minimizing 
the error (ε) for all the values of Y without introducing 
extraneous and arbitrary random variables. For a single 
predictor variable (univariate variable) we have; 
Y = f(X) +  εfor some function f. 
 

2.2 Simple linear regression 
Simple linear regression or ordinary least squares (OLS) fits 
a straight line to the dataset of interest. It is given as; 
 

Y = β0 + β1X + ε        2  
 
Where ε is the error term (accounts for difference between 

the observed and predictedvaluesof Y). We make 
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assumptions that the error has a mean zeroand a constant 
variance σ², and isidentically independently distributed (iid). 

By this we meanthat each error term is centered about the 
line of best fit (with mean zero) and that there is a constant 
amount of deviation of the error terms from the line of best 
fit (with constant variance).To find the line of best fit through 
the scatter plot of (X, Y) values, we actually aimat 

minimizing the error term for all the values of y. We then 

modify our equation as follows; 
 

yi = β0 + β1xi + εi 3  
 
The fitted or predicted value thus becomes; 
 

y i = β0 + β1xi                      (4) 
 
This simply implies that;  yi = y i + εi  

We can rewrite the model by solving the error term as; 
 

εi = yi − y i = yi − β0 − β1xi                    (5)  
 
Selecting the values of β0 and β1 that minimizes the total 

error as much as possible. We have; 
 

    Min εi
2

n

i=1

=   yi − β0 − β1xi 
2

n

i=1

    (6) 

   
 Taking the partial derivatives and set them to zero 
 

∂

∂β0

=  −2(yi − β0 − β1xi   ) 

n

i=1

          (7) 

 

∂

∂β1

=  −2xi(yi − β0 − β1xi   ) 

n

i=1

         (8) 

 
The above equations yield the following two normal 
equations; 
 

 yi

n

i=1

= nβ0 + β1  xi

n

i=1

              (9) 

 

 xiyi

n

i=1

= β0  xi

n

i=1

+ β1  xi
2

n

i=1

               (10) 

 
These are two equations in two unknowns. We can thus 
solve for β0 and β1 yielding; 

 

β0 =
1

n
  yi

n

i=1

− β1  xi

n

i=1

 = y − β1x     (11) 

 

β1 =
 yi − nβ0

n
i=1

 xi
n
i=1

                                             (12) 

 

2.3 Derivation of spline regression model 
Spline regression is a regression model with piecewise 
continuous polynomial function. We intend to derive 
penalized spline. Considering a simple linear model (4), and 

applying the concept of algebra we have; y = Xβ which can 

be rewritten in matrix form as follows; 
 

y =  

y 1

y 2

⋮
y n

  ,  X =  

1
1

x1

x2

⋮
1

⋮
xn

 β =  
β 0

β 1

   with 

 

β =  XTX −1XTY                                                      (13) 

 
Clearly y  is a unique linear combination of the x-values and 

1, the basis is thus x and 1. 
 

2.4 Penalized Splines 
Using penalization criteria we choose Q such that; 
 

 bi
2

k

i=1

< 𝑄                                            (14) 

 
The above equation represents a minimization criterion 
since it reduces the overall effect of individual piecewise 
functions and avoids over-fitting the data. We can formally 
state the minimization criterion as minimizing the equation 
given below; 
 
 y − Xβ 2subject to  βTDβ ≤ Q, where; 

 

D =

 
 
 
 
 
 
0
0
0

0
0
0

0 0 ⋯ 0
0 0 ⋯ 0
1 0 ⋯ 0

0 0 0 1 ⋯ 0
⋮
0

⋮
0

⋮ ⋮ ⋱   ⋮
0 0 ⋯ 1 

 
 
 
 
 

=  
02×2 02×k

0k×2 Ik×k
 (15) 

 
Applying Lagrange Multiplier results an equation which is 
equivalent to minimizing; 
 

 y − Xβ 2 + λ2βTDβ                        (16) 

 

for  some λ ≥ 0                w. r. t β 

 

We now aim at solving the optimal β  for any given value of 

λ. We need to derive two common matrix equations and 

show that; 
 

i) 
∂ aTβ 

∂β
= a                               (17) 

 

ii) 
∂ βT Aβ 

∂β
= 2Aβ             (18) 

 
Where a is a 2 × 1 vector, Α is a 2 × 2 symmetric matrix, 

β = [β0β1]T, and the partial g β     w. r. t      β is; 
 

∂g β 

∂β
=  

∂g β / ∂β0

∂g β / ∂β1
  

 

i) By multiplication we know that; 
 

aTβ = a1β0 + a2β1 

∴  
∂ aTβ 

∂β
=  

∂ (a1β0 + a2β1)/β0

∂ (a1β0 + a2β1)/β1
 =  

a1

a2
 = a  
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ii) By multiplication we also know that; 
 

Aβ =  
a1 a2

a2 a3
  
β0

β1
 =  

a1β0 a2β1

a2β0 a3β1
  

βTAβ = a1β0
2 + 2a2β0β1 + a3β1

2 

 

Using partial derivatives we obtain; 

 

∂ βTAβ 

∂β
=

 
 
 
 
 
∂(a1β0

2 + 2a2β0β1 + a3β1
2)

β0

∂(a1β0
2 + 2a2β0β1 + a3β1

2)

β1  
 
 
 
 

 

 

=  
2a1β0 + 2a2β1

2a2β0 + 2a3β1
  

 

= 2  
a1 a2

a2 a3
  
β0

β1
  

= 2Aβ 

 

2.5Deriving the Penalized Spline Solution 
The solution to the penalized spline will involve minimizing 
(16), that is solving when all the partial derivatives with 
respect to β0 and β1 are zero. This could be represented 

mathematically as; 
 

∂

∂β 
  y − Xβ  

2
 +

∂

∂β 
 λ2β TDβ  = 0             (19) 

 
Since differentiation is linear, we are able to split (19) into 
two parts With the two identities already proved we get;  
 
∂

∂β 
  y − Xβ  

2
 = 2XT(y − Xβ )whereXTy is the vector aT and 

XTX is the matrix A. We also have;  
∂

∂β 
 λ2β TDβ  which by linearity of differentiation, λ gets 

factored out leaving; 

λ2 ∂

∂β 
 β TDβ  with D being symmetrical, we gain apply the 

differentiation identities to get; 
∂

∂β 
 λ2β TDβ  = 2λ2Dβ , we finally combine the partial 

derivatives to get; 
 

λ2Dβ − XT y − Xβ  = 0                                  (20) 

 
Clearly from linear algebra we can manipulate (20) to get; 
 

λ2Dβ = XT y − Xβ   

λ2Dβ = XTy − XTXβ  

XTXβ + λ2Dβ = XTy 

β  XTX + λ2D = XTy 

β =  XTX + λ2D −1XTy 

 

Now since we already have β  and we know that y = Xβ  we 

now fit the penalized spline as follows; 
 

y = X XTX + λ2D −1XTy  (21) 

 
 
 
 

3.0 Smooth Hazard Model 
 

3.1Fitting the Penalized spline (P-Spline) 
Given the survival time τi for the ith observational unit, we 

define Ci to represent the right censoring time; with 

i = 1,2,… , N.We note that Yi = min τi , Ci . We also define 
the censoring indicator, δi as follows; 

 

δi =  
1        if τi < Ci

0     Otherwise
         (22) 

 
Now given a covariate xi, which is independent of time and 

denoted by p − dimensional  covariate vector for the ith 
observational unit, we can then model the hazard function 
as; 
 

h t, xi = λ0 t exp ⁡(xi
Tβx(t)                      (23) 

 
Where λ0 is the baseline hazard, βx(t) is the vector of 

covariate effects that vary smoothly with survival time, t.The 

main idea is to estimate β(t) smoothly by avoiding the 

tough parametric assumptions. A common approach to 
dealing with non-linear relationship is to approximate f by a 
polynomial of order m (Yuedong. W, 2011).For instance,  

 

f x = β0 + β1x + ⋯+ βm−1xm−1    (24) 

 
Applying the Sobolev Space, f ∈ W2

m [a, b] we have 

 
W2

m a, b 

=  f: f, f ′ ,… , f m−1 are absolutely continuous,  f  m  
2

b

a

dx

< ∞         (25) 

 
By Taylors theorem, 
 

f x =  
f  v (a)

v!

m−1

v=0

 x − a v

             
Polynomial  of  order  m

+  
 x − u m−1

 m − 1 !

x

a

f  m  u du

               
Rem  (x)

(26) 

 
The polynomial regression in (24) ignores the remainder 
term Rem (x), it could be mere assumption that Rem (x) is 

negligible. The idea behind smoothing spline is simply to let 
data decide how large Rem (x) is going to be. Now using 

the least squares (LS) on W2
m a, b , an infinite dimensional 

space, we have; 
 

1

n
 (

n

i=1

yi − f(xi)
2             (27) 

 
The distance measure between f and polynomial is,  
 

  f  m  
2

b

a

dx                                                   (28) 
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We now estimate f by minimizing LS under the constraint 

say, ρ which yields; 

 

  f  m  
2

b

a

dx ≤ ρ   where ρ is some constant. 

 
We introduce a Lagrange multiplier in (27) and (28) so as to 
get Penalized Least Squares (PLS) 
 

1

n
 (

n

i=1

yi − f(xi)
2 + λ  f  m  

2

b

a

dx            (29) 

 

  f  m  
2b

a
dxis called the roughness penalty 

If we consider now the Sobolev space W2
m [a, b] with a linear 

product 
 

 f, g =  f  v  a g v  a 

m−1

v=0

+  f (m)
b

a

g(m)dx (30) 

 
We further say that W2

m a, b = ℋ0 ⊕  ℋ1 , where 

 
ℋ0 = span  1,  x − a ,… ,  x − a m−1/(m − 1)!   (31) 

 

ℋ1 =   f: f  v  a = 0, v = 0,… , m − 1,  f  m  
2

b

a

dx < ∞ (32) 

 
Now (31) and (32) are RKHS’s with the RKs 
 

R0 x, z =  
(x − a)v−1(z − a)v−1

 v − 1 !  v − 1 !

m

v=1

 (33) 

 

R1 x, z =  
 x − u +

m−1 z − u +
m−1

 m − 1 !  m − 1 !

b

a

du    (34) 

 

(x)+means that max(x, 0) 

 
Looking at (31), it is clear that ℋ0 contains a polynomial of 

order m in the Taylor expansion. If we now denote Q to be 
the orthonormal projection operator onto ℋ1 and based on 

the definition of the inner product, the roughness penalty is; 

  f  m  
2b

a
dx =  Qf 2which shows that   f  m  

2b

a
dx 

measures the distance between parametric polynomial 
space ℋ0 and f.ℋ0 has no penalized functions. The 

penalized least squares is thus; 
 

1

n
  yi − f(x) 2

n

i=1

+  λ Qf 2 

 
Where λ  is a smoothing parameter that controls the 

balance between the goodness-of-fit measured by the least 
squares and departure from the null space ℋ0 measured by 
 Qf 2. Functions in ℋ0 are not penalized since 

 
 Qf 2 = 0when f ∈ ℋ0. 
 

Conclusion 
In the analysis of larger studies of censored data with long-
term follow-up, the usual common standard techniques 
such as Cox model (Cox, 1972) may not be appropriate due 
to violation of the proportional hazard assumption that is 
caused by the time-varying effects. By ignoring the 
presence of such time-varying effects one may end up with 
incorrect models coupled with biased conclusions as a 
result of misleading effect estimates. Appropriate modeling 
of the shapes of the covariates is very important since 
‘incorrect’ shapes of the time varying effects could result to 
misleading conclusions just as erroneously assuming the 
proportional hazard. Previous studies have shown varying 
tests and models for the time-varying effects.  Cox (1972) 
proposed a transformation of time which formed a basis for 
testing and assessing the non-PH, a method that heavily 
relies on the choice of the time transformation. In this paper 
we proposed the use of penalized splines in order to 
disclose and model effects of survival data within the 
context of cox model framework. The model allows for easy 
testing of time variation in the presence of effects using 
standard methods such as likelihood ratio test. However, 
although the penalized splines (PS) provide a flexible fit, 
they still suffer from the same restrictions that affect other 
non-linear smooth functions such as Fractional 
Polynomials. 
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