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Abstract� Plates and plate-type structures have gained a special importance and notably increased engineering applications in recent 
years. A large number of structural components in engineering structures can be classified as plates. Plates are also indispensable in ship 
building and aerospace industries. The wings and a large part of the fuselage of an aircraft, for example, consist of a slightly curved plate 
skin with an array of stiffened ribs. The hull of a ship, its deck and its super structure are further examples of stiffened plate structures. 
Plates with variable thickness are also have a great importance in a wide variety of engineering applications i.e. nuclear reactor, 
aeronautical field, naval structure, submarine, earth-quake resistors etc. A mathematical model is presented for the use of engineers and 
research workers in space technology have to operate under elevated temperatures. In this paper, the thickness varies linearly in x- 
direction and thermal effect is varying linearly in two directions. Rayleigh Ritz method is used to evaluate the fundamental frequencies. Both 
the modes of the frequency are calculated for the various values of taper parameters and thermal gradient. 

Index Terms� Visco-elastic, Vibration, Thickness, Square plate, Thermal gradient, Taper constant, Frequency.   

�������������������� 
 
1.INTRODUCTION 
 
Plates with variable thickness are frequently used in order to 
economize on the plate materials or to lighten the plates, 
especially when used in wings for high-speed, high-
performance aircrafts. By carefully designing the thickness 
distribution, a substantial increase in stiffness, buckling and 
vibration capacities of the plate may be obtained over its 
uniform thickness counterpart. In the aeronautical field, 
analysis of non-homogeneous plates with thermal gradient 
and variable thickness has been of great interest due to their 
utility in aircraft wings. The research in the field of vibration is 
quite mesmerizing and continuously acquiring a great attention 
of scientists and design engineers because of its unbounded 
effect on human life. In the engineering we cannot move 
without considering the effect of vibration because almost all 
machines and engineering structures experiences vibrations. 
As technology develops new discoveries have intensified the 
need for solution of various problems of vibrations of plates 
with elastic or visco-elastic medium. Since new materials and 
alloys are in great use in the construction of technically 
designed structures therefore the application of visco-elasticity 
is the need of the hour. Tapered plates are generally used to 
model the structures. Plates with thickness variability are of 
great importance in a wide variety of engineering applications. 
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Study of effect of vibration can�t be restricted only in the field 

of science but, our day to day life is also affected by it. 
Whether it be a constructive aspect e.g. aircraft, space shuttle, 
satellite or design engineering to the destructive aspect, e.g. 
tsunami, earthquake etc., none of these are remained 
untouched with the effect of vibrations.  Structures of plates 
have wide applications in ships, aircrafts, bridges, etc. A 
thorough dynamic study of their behavior and characteristics is 
essential to assess and use the full potentials of plates. In the 
aeronautical field, analysis of plates with variable thickness 
has been of great interest due to their utility in aircraft wings.  
Vibration of plates of various shapes, homogeneous or non-
homogeneous, orthotropic or isotropic, with or without 
variation in thickness, have been studied by various authors, 
with or without considering the effect of temperature.   
Recently, A.K. Gupta and Anupam Khanna [1], studied the 
Thermal Effect on Vibrations of Parallelogram Plate of Linearly 
Varying Thickness. A.K. Gupta and Anupam Khanna [2], 
studied the Vibration of clamped visco-elastic rectangular plate 
with parabolic thickness variations. A.K. Gupta and Anupam 
Khanna [3], has been studied on Free vibration of clamped 
visco-elastic rectangular plate having bi-direction exponentially 
thickness variations. A.K.Gupta and A. Khanna [4], also 
studied the, Vibration of Visco-elastic rectangular plate with 
linearly thickness variations in both directions. Anupam 
Khanna, Ashish Kumar Sharma [5], studied the Study of free 
Vibration of Visco-Elastic Square Plate of Variable Thickness 
with Thermal Effect. Anupam Khanna, Ashish Kumar Sharma 
[6], has been studied on Vibration Analysis of Visco-Elastic 
Square Plate of Variable Thickness with Thermal Gradient. In 
the recent past, there has been increasingly great interest in 
high strength, corrosion resistance and high temperature 
performance materials for structural components used in 
mechanical, aerospace, ocean engineering, electronic and 
optical equipments. Modern engineering structures are based 
on different types of design, which involve various types of 
anisotropic and non-homogeneous materials in the form of 
their structure components. Depending upon the requirement, 
durability and reliability, materials are being developed so that 
they can be used to give better strength and efficiency. The 
equipment used in air-jet, communications and in other similar 
technological industries take into consideration such materials, 
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which not only reduce the weight and size but also are reliable 
in terms of efficiency, strength and economy. Plate type 
structural components of varying thickness fabricated out of 
modern composite materials such as glass epoxy, boron 
epoxy, Kevlar and graphite etc. fulfill these requirements which 
are lighter, stiffer and stronger than any other conventional 
material used earlier and help the designer to reduce the 
weight and size of the structure. Visco-elasticity, as its name 
implies, is a generalization of elasticity and viscosity. The ideal 
linear elastic element is the spring. When a tensile force is 
applied to it, the increase in distance between its two ends is 
proportional to the force. The ideal linear viscous element is 
the dashpot. The plate type structural components in aircraft 
and rockets have to operate under elevated temperatures that 
cause non-homogeneity in the plate material i.e. elastic 
constants of the materials becomes functions of space 
variables. In an up-to-date survey of literature, authors have 
come across various models to account for non-homogeneity 
of plate materials proposed by researchers dealing with 
vibration but none of them considers non-homogeneity on 
orthotropic visco-elastic plates. The aim of present 
investigation is to study two dimensional thermal effect on the 
vibration of visco-elastic square plate whose thickness vary 
linearly in one direction and thermal effect vary linearly in two 
directions. It is assumed that the plate is clamped on all the 
four edges and its temperature varies linearly in both the 
directions. Due to temperature variation, we assume that non 
homogeneity occurs in Modulus of Elasticity.  For various 
numerical values of thermal gradient and taper constants. 
Frequency for the first two modes of vibration is calculated and 
results are shown in Graphs.  

2. EQUATION OF MOTION AND ANALYSIS 
Differential equation of motion for visco-elastic square plate of 
variable thickness in Cartesian coordinate is given [1]: 

     1 xxxx xxyy yyyy 1 x xxx xyy 1,y yyy yxx

2
1,xx xx yy 1,yy yy xx 1,xy xy

[D W, 2W, W,  2D, W, W,  2D W, W,

D (W, W, ) D (W, W, ) 2(1 )D W, ] hp W  0      

      
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(2.1) 
which is a differential equation of transverse motion for non-
homogeneous plate of variable thickness.  
Here, D1 is the flexural rigidity of plate i.e.  

                         
3 2

1 / 1 2 (1 )D E h v                 (2.2) 

and corresponding two-term deflection function is taken as [5] 
2
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Assuming that the square plate of engineering material has a 
steady two dimensional temperature distribution i.e. 

                    0 (1 / )(1 / )x a y a                  (2.4) 

where, τ  denotes the temperature excess above the 

reference temperature at any point on the plate and 0τ  

denotes the temperature at any point on the boundary of plate 
and �a� is the length of a side of square plate. 
The temperature dependence of the modulus of elasticity for 
most of engineering materials can be expressed in this 
                          γτ-10EE                    (2.5) 

where, E0 is the value of the Young's modulus at reference 

temperature i.e. 0τ   and γ  is the slope of the variation of 

E with τ . The modulus variation (2.5) become 

                       0[1 (1 / )(1 / )]E E x a y a            (2.6) 

where, 0 (0 1)    
 
 thermal gradient. 

It is assumed that thickness also varies linearly in one 
direction as shown below: 

                        0 1(1 / )h h x a 
      

              (2.7) 

where, 1 is taper parameter in x direction respectively and 
h=h0 at x=y=0. 
Put the value of E & h from equation (2.6) & (2.7) in the 
equation (2.2), one obtain 

 
3 3 2

1 0 0 1[ [1 (1 / )(1 / )] (1 / ) ]/12(1 )D E x a y a h x a v            
(2.8) 

Rayleigh-Ritz technique is applied to solve the frequency 
equation. In this method, one requires maximum strain energy 
must be equal to the maximum kinetic energy. So it is 
necessary for the problem under consideration that 

                       
* *( ) 0V T                             (2.9) 

for arbitrary variations of W satisfying relevant geometrical 
boundary conditions.  
Since the plate is assumed as clamped at all the four edges, 
so the boundary conditions are  

               , 0xW W 
,

0,x a
 

               
, 0yW W  ,

0,y a            (2.10) 

Now assuming the non-dimensional variables as 

       / , / , / , /X x a Y y a W W a h h a                       (2.11) 

The kinetic energy T* and strain energy V* are [2] 
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and 
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where,   3 3 2
0 0 / 24(1 )Q E h a v   

Using equations (2.12) & (2.13) in equation (2.9), one get 
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where,        
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and  
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Here, 2 2 2 2
0 012 (1 ) /v a E h    

is a frequency parameter. 

Equation (2.16) consists two unknown constants i.e. A1 & A2 
arising due to the substitution of W. These two constants are 
to be determined as follows 

            
** 2 **( ) / nV T A  

 
    , n = 1, 2             (2.17) 

On simplifying (2.17), one gets 

            1 1 2 2 0b n A b n A        , n =1, 2              (2.18) 

where, bn1, bn2 (n=1,2) involve parametric constant and the 
frequency parameter. 
For a non-trivial solution, the determinant of the coefficient of 
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equation (2.18) must be zero. So one gets, the frequency 
equation as 

                       

1 1 1 2

2 1 2 2

0
b b

b b


                    

 (2.19) 

With the help of equation (2.19), one can obtains a quadratic 
equation in λ2 from which the two values of λ 2 can found. 
These two values represent the two modes of vibration of 
frequency i.e. λ1(Mode1) & λ2(Mode2) for different values of 
taper constant and thermal gradient for a clamped plate. 

3 RESULT AND DISCUSSION 

All calculations are carried out with the help of latest Matrix 
Laboratory computer software. Computation has been done 
for frequency of visco-elastic square plate for different values 
of taper constants 1 and 2, thermal gradient , at different 
points for first two modes of vibrations have been calculated 
numerically. In Fig I: - It is clearly seen that value of frequency 
decreases as value of thermal gradient increases from 0.0 to 
1.0 for β1 =0.0 and β1 =0.8 for both modes of vibrations. In Fig 
II :-  Increasing value of frequency for both of the modes of 
vibration is shown for increasing value of taper constant β1 
from 0.0 to 1.0 for α=0.0  and α=0.8 respectively. Note that 

value of frequency increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig I: - Frequency vs. thermal gradient 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig II: - Frequency vs. Taper constant 

4. CONCLUSION 
The objective of this paper is to clarify the characteristics of 
vibration of plates with variable thickness. It shows that the 
proposed results have a good convergence and satisfactory 
accuracy compared with experimental results. The effects of 
the thickness of plates, size of the defect on free vibration 
behavior of plates also investigated. So, main aim for our 
research is to develop a theoretical mathematical model for 
scientists and design engineers so that they can make a use 
of it with a practical approach, for the welfare of the human 
beings as well as for the advancement of technology. 
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