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Investigation 
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Abstract: - We flip a coin and it is head with a probability p = 1/2 and tail with a probability q = 1 - p = ½. Consider if the coin land head we gain a 

dollar and if it is tail we lose a dollar. The game continues until a gambler who started with a finite, playing this fair game, go broke-known as the 
gamblers ruin problem. Also in the context of the random walk problem if one assumes that t denote the time at which the walker starting at the origin 
return to the origin. The purpose of this paper is to verify the theoretical prediction that the probability of the walker returns to the origin for the first time 

decay following the power law, 𝐹 𝑡  ~ 𝑡−3 2 . In addition we show that it has fat tail which is reminiscent of the power law degree distribution of the scale 
free complex network as predicted by the Barabási-Albert Model. 
 
Index Terms: - random walk, gambler’s ruin, first return time, nodes, links, hubs, preferential attachment rule, power-law degree distribution, fat tail, 
cumulative distribution.  

———————————————————— 

1 INTRODUCTION 
Many natural phenomena, like Brownian motion, are modeled 
by random walk idea. Hence, random walks are traditionally 
explained in the context of some other social vice, such as the 
position of a drunkard who randomly staggers right or left or 
just vacillates in place during each time step. We consider the 
classical gambler’s ruin problem which can be solved by total 
probability theory. We assume a game where a gambler, who 
start with respective bankroll, wins 1 unit each time with 
probability p = 1/2 and losses with probability q = 1 − p = 1/2 
independently of the other moves. The game stops when the 
fortunes of the gambler becomes zero (Gambler’s Ruin). This 
phenomenon is considered as the walker, initially at the origin, 
returns to the origin by the time defined as ‘first return’. Hence, 
this first return time theoretically follows a power law with fat 
tailed distribution. Our aim is the verification of the theory. 
Moreover, we intend to observe the power law tail of first 
return probability which reminds us about the degree 
distribution of complex network. In 1999, Rèka Albert and 
Albert-Lászlo Barabási proposed a completely new model (BA 
model), which approaches the topological features of real-life 
networks and its mechanism completely explains the 
appearance of the power-law distribution. 
 

2 THEORETICAL MODELS 
2.1 POWER LAW: HEAVY TAILED DISTRIBUTION 
Power law is a mathematical relationship which is 
homogeneous by nature and exhibits the property of scale 
invariance as well as the universality. One of the 
generalized forms of the power laws relates two variables 
such as 
 

  𝑓 𝑥 = 𝑎𝑥𝑘 +  𝛩(𝑥𝑘)          (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 

where, a and k are constant and 𝛩(𝑥𝑘) is an asymptotically 

small function of 𝑥𝑘 . Here k is typically called the scaling 
exponent. Power law tail is also known as the long tail, heavy 
tail, Pareto’s tail or Fat tail was first coined by Chris Anderson 
in an article of ‘wired magazine’ in October 2004. The scientific 
study of the power law tail started in 1946. According to the 
Probability theory, heavy tailed distribution is probability 
distribution whose tails are not exponentially bounded i.e. they 
have heavier tails than the exponential distribution. In many 
applications it is the right tail of the distribution that is of 
interest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1: Long tail distribution 

 
The distribution curve has a shape as Fig.1. The long-tailed 
curve shows a degree of inequality in the frequency 
distribution.  
 

2.2 THE CONCEPT OF RANDOM WALK FROM BROWNIAN 

MOTION 
Brownian motion is a phenomena of small particles suspended 
in a liquid which tends to move in stochastic paths through the 
liquid. Einstein noticed that the motion is caused by random 
bombardment of water molecules on the pollen. Mathematical 
Brownian motion is related to the random walk idea where the 
displacement of particles is randomized. It’s a stochastic 
process according to Modern Theory. An approximation of 2-
dimensional Brownian motion can be described as drunken 
man wandering around the square. Consequently, it has the 
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Markov property which assures that the future state of the 
particles is determined entirely by its current state, not by any 
past state. Surprisingly enough, the story of the Brownian 
motion starts with a botanist [1]. The term Brownian motion 
derives its name from the famous scientist Robert Brown, a 
pioneer of Botany. In 1928, he began to make microscopic 
observations of suspensions of grains released from pollen 
sacks taken from a type of evening primrose called Clarkia 
pulchella [2]. And it was Perrin’s microscope studies of 
Brownian particles that confirmed Einstein’s theory and sealed 
the reality of the discontinuous, atomic nature of matter. In 
1906, Smoluchowski first published an one-dimensional model 
to describe a particle undergoing Brownian motion [3]. In 
1908, Perrin and his team of research students embarked on 
an exhaustive set of experiments [4]. Tragically, many of 
Perrin’s team would lose their lives only a few years later in 
the First World War. However, the term random walk was first 
introduced by Karl Pearson in 1905 [5]. 
 

2.3 RANDOM WALK IN 1 D 
We assume a particle suffering displacements in the form of a 
series of steps of equal length along a straight line (initially it is 
in 0 position), can move either in forward or in backward 
direction.  
 
Now the equation of Brownian motion is derived as 
 

                              
𝜕𝑃(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑃(𝑥,𝑡)

𝜕𝑥2                    (2) 

                                   
Now Eq-(2) is a differential equation for probability density 
P(x,t), as well as, a well known Diffusion equation. So we can 
conclude that Brownian motion can be studied from the point 
view of diffusion. 
 

and         𝑃 𝑥, 𝑡 =  
1

 4𝜋𝐷𝑡
exp[x

2
/4DT]                       (3) 

 
And hence it’s the solution of diffusion equation. 
Consequently, we obtain some interesting features from the 
solution as follows: 
 
(a) Mean displacement, <x>= 0     (4) 
 
(b) Root mean square displacement, 
 

               𝑥2   = < 𝑥2 > =  
 𝑥2𝑃 𝑥,𝑡 𝑑𝑥
∞
−∞

 𝑃 𝑥,𝑡 𝑑𝑥
∞
−∞

=   𝑥2∞

−∞
𝑃 𝑥, 𝑡 𝑑𝑥       (5)                                                                                                 

 
(c) Variance, < 𝑥2 > = 2𝐷𝑡                       (6)  

 

2.4 GAMBLERS’ RUIN AND FIRST RETURN TIME 
A phenomenon called Gambler’s Ruin says that a gambler 
raises his bet to a fixed fraction of bankroll when he wins, but 
does not reduce it when he losses. If he plays long enough, he 
will go bankrupt, or we say, he will eventually go broke. And 
the gambler with a finite wealth, playing a fair game will go 
broke against an opponent with infinite wealth, though each 
bet has expected value zero to both side. Consequently, a 
gambler playing a negative expected value game will 
eventually go broke. Both of the result above is the corollary of 
a general theorem by Christian Huygens [6]. In the study of 
stochastic processes, the first return time (or first hit time or 
first passage time) [7] is a particular instance of a stopping 

time, the first time at which a given process ‘hits’ a given 
subset of the state space. Exit times and return times are also 
examples of hitting times. A common example of a first-hitting-
time model is a ruin problem, such as Gambler’s ruin. In this 
example, a gambler has an amount of money which varies 
randomly with time. The model considers the event that the 
amount of money reaches 0, representing bankruptcy. The 
model can answer questions such as the probability that this 
occurs within finite time, or the mean time until it occurs. 
 

2.5 THEORY OF FIRST RETURN TIME 
By using the Markov chain property in the Random Walk 
problem, it is obtained that the probability distribution function 
P(x,t) of random walk problem obeys diffusion equation. Let us 
assume the probability of the walker returns to position 0 is ut, 
and ft, the probability that the first returns time is t. Now, 
 

         𝑢𝑡 =  𝑢2𝑛 =   
1                                 𝑓𝑜𝑟 𝑛 = 0
 𝑓2𝑛  𝑢2𝑛−2𝑚       𝑓𝑜𝑟 𝑛 ≥ 1 𝑛

𝑛=1

                     (7)                                                                                       

 
Here we define 
 
                𝑈 𝑧 =   𝑢2𝑛𝑧

2∞
𝑛=0                                     (8)                                                           

 
 
  𝐹 𝑧 =   𝑓2𝑛𝑧

𝑛∞
𝑛=1           (9) 

                                                                                                    
And t = 2n , where n is an integer. 
 
Using the binomial theorem and Stirling formula, we obtain 
 

             𝐹 𝑧 =   
 2𝑛

𝑛  

 2𝑛−1 22𝑛
∞
𝑛=1  𝑧𝑛  

 
 

where,   𝑓2𝑛 =  
 2𝑛

𝑛  

(2𝑛−1)22𝑛  

 
 

In the limit n → ∞,  𝑓2𝑛  ~ 𝑛−3 2  or  𝑓𝑡  ~ 𝑡−3 2                          (10) 
 
Here t is called power law decay time. 
 

2.6 SCALE FREE NETWORK: A STUDY OF BA MODEL 
The study of network began in 1959 by Paul Erdös and Albert 
Rènyi [8, 9, 10]. Their investigation then known as Graph 
theory or the Erdös Rènyi model [11, 12]. A complex network is 
explained by three basic idea-(a) Small world [13, 14], (b) 
Degree Distribution [15, 16, 17] and (c) Clustering. A new 
generalized model was proposed by Watts and Strogatz[18] in 
1998. This new model was intermediate between the regular 
and random graph and even for a small probability P the graph 
behaves different just like ER model. For the first time in 1990, 
A. L. Barabási, R. Albert and H. Jeong proposed another 
model using preferential attachment mechanism [19]. For a 
large number of networks including the World Wide Web 
(Albert, Jeong,Barabási, 1999) [20] , Internet (Faloutsos el al. 
1999) or metabolic networks (Jeong el al.2000) [21] the 
degree distribution has a power law tail , such networks are 
called scale free networks (Barabási and Albert 1999). The two 
ingredients, Growth and Preferential attachment, introduce the 
scale free (SF) network model that has a power law degree 
distribution. The algorithm [22] is as follows- 
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(i) Growth: Starting with a small number (m0) of 
nodes at every time step, we add a new node 
with m(m0) edges that link the new node to m 
different nodes already present in the system. 

(ii) Preferential Attachment: When choosing the 
nodes to which the new node connects, we 
assume that the probability 𝜋  that a new node will 

be connected to node i depends on the degree ki 
of node i, such that 

 

                          𝛱 𝑘𝑖 =  
𝑘𝑖

 𝑘𝑗𝑗
                          (11)

           
After t time steps this algorithm results in a network with N = t 
+ m0 nodes and mt edges. Numerical simulations indicated 
that this network evolves into a scale invariant state with the 
probability that a new node has k edges following a power law 
with an exponent, γ

SF
= 3. The scaling exponent is 

independent of m, the only parameter of the model. In the very 
new model the hubs tend to accumulate more links. And every 
new node prefers to attach with these hubs. However, in 1925 
Yule [23] first uses preferential attachment mechanism, but it 
was not praised because of lacking of proper explanation. In 
1965, Derek de Solla Price [24] noticed the fact that power law 
degree distribution in citation and proposed a model similar to 
BA model. Consequently, Hilbert Simon [25] enounced the rich 
get richer idea in 1955 which again follows the power law. The 
study of complex network is largely inspired by the empirical 
study of real world networks whose behavior cannot be 
described as purely regular or purely random. The BA model is 
one of the several proposed models that finally generates 
scale free network. 
 

3 METHODOLOGY 
We have written a program based on random walk idea. One 
of the most famous and efficient methods is the Monte Carlo 
method for producing random numbers. This method was first 
used in 1949. The American mathematicians John Von 
Neumann & Stanislaw Ulam are considered as its originator. 
The program is written to carry out a trial and is repeated N 
times, each trial being independent of the rest. The simulation 
has been performed in a core 2quad PC with processor 2.93 
GHz and memory 3 GB. 
 

3.1 ALGORITHM 
(i). At the beginning, the walker is at the origin of a 1-D 

lattice. 
 

(ii). Generate a random number R. 
 
(iii). Check R. If 𝑅 ≤ 𝑝 = 0.50, go to step (iv); Otherwise go 

to step (vi). 
 
(iv). The walker moves to the left with respect to its origin. 
 
(v). Increase the time by one unit. 

 
(vi). If R > p = 0.50, the walker moves to the right. 
 
(vii). Increase the time by one unit and go to step (ii). 
 
(viii). Repeat the steps (i)-(vii) ad infinitum. 
 

(ix). Set counter-1 to count each time when the walker 
returns to the origin. 

 
(x). Set counter-2 to count the time steps for each event 

of returning to origin by the walker. 
 
(xi). After counting time step, T1 = 2, 50, 000 by counter-1, 

random number generator is stopped which 
determines our sample size. 

 
(xii). By counter-2, the 2, 50,000 events is counted, where 

in each event, the walker has returned to the origin by 
different number of steps. 

 
(xiii). Make a table for different intervals of steps and count 

how many times the walker returned to origin for that 
particular interval and hence, calculate the probability 
for that interval as Table-1. Here,  𝑁 = 2, 50, 000 and 
 𝐹(𝑡) = 1. 

 
(xiv). Hence, F(t) vs. t is plotted. 
 

4 RESULTS AND DISCUSSION 
                                            

TABLE 1  
AN IMAGINARY TABLE TO ILLUSTRATE HOW FIRST RETURN 

PROBABILITY, F(T) IS DEFINED. 

Interval of 
steps 

Average, t 
Times of 
return, N 

Probability, F(t) 

1-10,000 5,000 35,711 0.034 

10,001-
20,000 

15,000 22,800 0.029 

20,001-
30,000 

25,000 9,040 0.025 

30,001-
40,000 

35,000 4,490 0.02 

40,001-
50,000 

45,000 2,709 0.0004 

.. .. .. .. 

.. .. .. .. 

.. .. .. ..0.00008 

 

4.1 RMS DISPLACEMENT 
The root mean square displacement of Brownian motion is 
 
              < 𝑥2 > = 2𝐷𝑡                                           (12) 

 

So,                𝑥𝑟𝑚𝑠  ~ 𝑡1 2                                                (13) 
 
So, rms displacement Vs. time curve shows the monotonically 
increases of the displacement. Hence, on logarithmic scale it 
shows a straight line with slope 1/2. Consequently, rms 

displacement Vs.  𝑡 will show a straight line. 
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Fig.2:  drms Vs. t (upper curve) and drms Vs.  𝑡 curves (lower 

curve). 
 
For N = 10,000, drms Vs. t curve behaves same with the 
theoretical approach and shows the monotonically increase in 
displacement. Consequently, on the logarithmic scale, it is a 
straight line with slope 1/2 as shown in Fig.2. Hence, drms Vs. 

 𝑡 curve is a straight line as well. And here the slope is 0.62. 
 

4.2 CLOCK RANDOMNESS 
Here, in Fig.3, lnT Vs. N is plotted for a single realization. We 
have shown the steps, N in x-axis needed for each event to 
return to origin. And in y-axis the respective time, T. The y-axis 
is chosen to be in log scale in order to compensate the 
extreme values of return time, T. From Fig.3, it is observed 
that for the maximum of the events, the value of lnT varies 
from 5-8 i.e. the  number of steps varies from 148.413159103 
to 2980.957987042. Consequently, there are few steps where 
the value of lnT crosses 20 i.e. they needed steps over 
485165195.409790278 to return to origin. These 
characteristics surely exhibit power law nature.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. ln(t) Vs N curve 
 

4.3 THE FIRST FIVE EVENTS TO RETURN TO ORIGIN 
Though the program is written for a trail where the gambler 
goes to be bankrupted 2,50,000 times and it is repeated 25 
times, we record here only first five events of going broke. The 
Table-2 contents the distance of the random walker from the 
origin after each time steps. And in Fig.4, we have plotted 
walking distance Vs. time for first 24 steps while the random 
walker returned to origin for five times by five different events. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: The events of the random walker returning to origin for 
first five times 
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TABLE 2  
TABLE FOR THE STEPS OF RETURNING TO ORIGIN 

Time steps Walking distance 

0 0 

1 -1 

2 -2 

3 -1 

4 -2 

5 -3 

6 -4 

7 -3 

8 -4 

9 -3 

10 -2 

11 -1 

12 -2 

13 -1 

14 0 

15 1 

16 2 

17 1 

18 0 

19 -1 

20 0 

21 -1 

22 0 

23 1 

24 0 

 

4.4 SCALE-FREE FIRST RETURN PROBABILITY (FRP) 
We have performed the Monte Carlo simulation and collected 
data for N = 2,50,000. Our first goal is to quantify the degree of 
randomness in data having in mind the question: what is the 
first return probability, F(t) that the walker returns to zero in 
time t? We have calculated the probabilities for each interval. 
Then the result is normalized and plotted F(t) Vs. t curves for a 
single event in Fig.5, on normal scale and Fig.6 on logarithmic 
scale. Hence, on logarithmic scale, Fig.6 shows a remarkable 
feature that it exhibits power law tail with a head on the left 
and a long tail on the right. The left portion represents the few 
that dominates and the right portion to the majority with the 
long tail. In our problem, it indicates that very few events take 
infinitely large number of steps to go broke for a gambler. 
Consequently, maximum of the events need a few or few more 
steps. From the Fig.5, we have observed that for about 92% 
events, it takes few steps to go broke. Or, we may say, the 
random walker returns to the origin with a very small number 
of steps in 92% cases. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: First return probability distribution on normal scale. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6: First return probability distribution on logarithmic scale. 
 
In order to observe the distribution of the probability, we 
separate the Fig.5, which is plotted on normal scale for a 
single realization, in two portions to have a closer look in Fig.7. 
Here, we observe that the left portion (head in Fig.7(a)) has an 
L-shaped distribution. Consequently, on the right portion (tail in 
Fig.7(b)), we observe that there are some points of scarce 
density. On the logarithmic scale, these points show the fat tail 
distribution. This fat tail distribution reminds us about the 
power law nature of wealth condensation. 
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Fig. 7(a): First Return Probability Distribution for head 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
Fig. 7(b): First Return Probability Distribution for tail. 

 
J. P. Boucheaud & M. Mezard in their wealth condensation 
model stated that about 80% of the total wealth is owned by 
the riches who are about 20% of the world population. And 
20% of the wealth is distributed among the 80% of the world 
population. Similar phenomena have been occurred in the 
most social, biological, and technological networks. Again, 
data for 25 individual realizations are superimposed in Fig.8  
and Fig.9 on normal and logarithmic scale respectively. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8: First Return Probability Distribution: data for 25 
independent realization are superimposed (normal scale) 

 
Here, we are very familiar with the first return probability 
distribution curves shown both in Fig.6 and Fig.9. In the 
logarithmic scale, they have the same fat-tailed distribution like 
the degree distribution curve of the complex network. The 
scale free degree distribution of the BA model also exhibits 
this power law nature giving the idea of some nodes 
maintaining a large number of connections. And again 
maximum of the nodes have just one or few connections or 
links. Consequently, it will be an easy job to target the high 
degree nodes, called ‘hubs’, if someone try to affect a network 
system. We have obtained the theoretical value of the 
exponent of first return probability as -3/2 or -1.5. And in our 
work it is -1.5, which finely matches with the theoretical value 
of first return probability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9: First Return Probability Distribution: data for 25 
independent realization are superimposed (logarithmic scale) 
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4.5 CUMULATIVE DISTRIBUTION 
In probability theory and statistics, the cumulative distribution 
completely describes the probability distribution of a real-
valued random variable. It is also used to specify the 
distribution of multivariate random variables 
 
The cumulative distribution is mathematically described as 
 

                                 𝐹 𝑡 ′ > 𝑡 =   𝐹(𝑡)
𝑡𝑚𝑎𝑥
𝑡            

 

Hence,     
𝜕𝐹(𝑡 ′ >𝑡)

𝜕𝑡
= 𝐹(𝑡) 

 
Where, 𝐹(𝑡 ′ > 𝑡) is the cumulative distribution and 𝐹(𝑡) is the 

probability distribution. 
 
If    𝐹 𝑡 ′ > 𝑡  ~ 𝑡−𝛾  

 

Then,   𝐹 𝑡  ~ − 𝛾𝑡−(𝛾+1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
Fig.10: Cumulative distribution curve 

 
Here the simulation has been performed with ensemble size,  
E = 25 and in each event the random walker has returned to 
the origin 2,50,000 times which is a pretty long record. Hence 
the cumulative distribution is plotted in Fig.10. The red line 
here is drawn to guide our eyes for a straight line. Again, for 
the cumulative distribution, the theoretical value of the 
exponent is -0.50. And from Fig.10, we obtain the slope-0.51. 
 

5 CONCLUSIONS 

In this paper, we set a problem of the random walk idea in the 
context of gambling. There is well established theory for 
Gambler’s Ruin problem. However, to the best of our 
knowledge there do not exist experimental or numerical 
verification. We for the first time verified it numerically and to 
our surprise we found fat tail which was not predicted by the 
theory. Our goal is to observe the randomness i.e. the 
probability of first return time. Through this work, we have tried 
to study the power law behavior of the scale-free first return 
probability of a gambler’s ruin problem which follows the 

power-law, 𝐹 𝑡 ~ 𝑡−3 2 . Consequently, it is highly instructive to 
note that this first return probability distribution curve is a 
recollection of the fat tailed degree distribution of scale free 
complex network predicted by A.-L. Barabási and R. Albert. In 

addition to this, we have also studied some other 
characteristics such as cumulative distribution and rms 
displacement Vs. time. For cumulative distribution, from the 
CF(t) Vs. t graph, we obtain the slope of the value of -0.51. 
And drms Vs. t curve shows the monotonically increase in 
displacement and as a result, on the logarithmic scale, it is a 
straight line with slope 1/2. Again, drms Vs. √t curve is a straight 
line as well with the slope 0.62. For rms displacement the 
simulation has been performed for N = 10,000. For larger N, 
the curves become smoother. Hence, lnT Vs. N is plotted for a 
single realization to show the randomness in data. We also 
plot walking distance vs. time for first 24 steps while the 
random walker returns to origin for five times by five different 
events. We intended to compare the theoretical and 
experimental results. And we have obtained some 
considerable results from our work as well. 
 

ACKNOWLEDGMENTS 

The authors would like to convey their sincere gratefulness to 
Professor Dr. M. Kamrul Hassan, Department of Physics, 
University of Dhaka, for supervision of this work.  
 

References 
[1] M Haw, Colloidal suspensions, Brownian motion, 

molecular reality: a short history, J. Phys.: Condens. 
Matter, vol. 14, pp. 7769-7779, 2002. 

 
[2] Brown, Robert, A brief account of microscopical 

observations made in the months of June, July and 
August, 1827, on the particles contained in the pollen of 
plants; and on the general existence of active molecules 
in organic and inorganic bodies. Phil. Mag., vol. 4, pp. 
161-173, 1828. 

 
[3] Smoluchowski, M., Zur kinetischen Theorie der 

Brownschen Moleku-larbewegung und der Suspensionen, 
Annalen der Physik 326 (14): 756-780, 
doi:10.1002/andp.19063261405, 1906. 

 
[4] J. Perrin, Mouvement brownien et ralit molculaire. Ann. 

Chim. Phys.8ime srie 185 , 114 (1909). See also Perrin’s 
book ”Les Atomes”,1914. 

 
[5] Pearson, K. , The problem of the Random Walk. Nature. 

Vol. 72, pp. 294, 1905. 
 

[6] E. Shoesmith, Hygens’ solution to the gambler’s ruin 
problem, Historia Math, vol. 13(2), pp. 157-164, 1986. 

 
[7] Whitmore, G. A., First passage time models for duration 

data regression structures and competing risks, The 
Statistician, vol. 35, pp. 207-219, 1986. 

 
[8] P. Erdös and A. Rènyi, Publications Mathematics, vol. 6, 

pp. 290,1959; Publ. Math. Inst. Hung. Acad. Sci. vol. 5, 
pp. 17, 1960. 

 
[9] B. Bollobas, Modern Graph Theory, Springer-Verlag, New 

York, 1998.  
 

[10] Erdoös, P. and Rènyi, A., On the Evolution of Random 
Graphs, Publications of the Mathematical Institute of the 
Hungarian Academy of Sciences, vol. 5, pp. 17-61, 1960. 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013      ISSN 2277-8616 

120 
IJSTR©2013 
www.ijstr.org 

 
[11] P. Erdös and A. Rènyi, On random graphs, Publications 

Mathematicae, vol 6, pp. 290-297, 1959. 
 

[12] P. Erdös and A. Rènyi, On the strength of connectedness 
of a random graph, Acta Mathematica Scientia Hungary, 
vol. 12, pp. 261-267, 1961. 
 

[13] S. Milgram, The small-world problem, Psychology Today, 
vol. 2, pp. 6067, 1967. 

 
[14] M. Kochen, The Small World, 1989. 

 
[15] R. Albert, H.jeong, and A.-L. Barab´asi, Diameter of the 

world-wide 
web, Nature, vol. 401, pp. 130-131, Sept. 1999. 
 

[16] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-
law relationship of the internet topology, Computer 
Communications Review, vol. 29, pp. 251-262, 1999. 
 

[17] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. 
Barabási, The large-scale organization of metabolic 
networks, Nature, vol. 407, pp. 651-654, 2000. 

 
[18] D. J. Watts and S. H. Strogatz, Collective dynamics of 

’small worlds’ 
networks, Nature, vol. 393, pp. 440 - 442, 1998. 
 

[19] Albert R. and Barabási A.-L., Statistical mechanics of 
complex net-works. Review of Modern Physics, vol. 74, 
pp. 47-94, 2002. 
 

[20] Jeong, H., Albert R. and Barabasi, A.-L., ‘’Diameter of the 
World Wide Web”, Nature, vol. 401, pp. 130, 1999. 

 
[21] Albert, R., Jeong, H., and Barabási, A.-L., Attack and error 

tolerance of complex networks, Nature, vol. 406, pp. 378, 
2000. 

 
[22] Reka Albert and Albert -Laszlo Barabási, Statistical 

Mechanics of Complex Networks, arxiv:cond-
mat/0106096v1[cond-mat.stat-mech] 6 Jun, 2001. 

 
[23] Udny Yule, A Mathematical Theory of Evolution Based on 

the Con- 
clusions of Dr. J. C. Willis, F.R.S., Journal of the Royal 
Statistical Society, vol. 88, pp. 433-436, 1925 
 

[24] D. J. de S. Price, Networks of scientific papers , Science, 
vol. 149, pp. 510-515, 1965. 
 

[25] H. A. Simon, On a class of skew distributions functions, 
Biometrika, vol. 42, pp. 425-440, 1955. 


