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Beam And Rotating Disc Brake With Different 
Contact Location  

 
Ammar A. Yousif Mohammed, Inzarulfaisham Abd Rahim 

 
ABSTRACT: - In this paper a matix27 of ANSYS/General is used to simulate the contact between beam-disc systems. The beam was changed to 
different location and by using complex eigenvalue the stability was detected. An attempted is made to investigate the effect of system parameters, such 
as friction coefficient of the contact interaction between the beam and the disc, disc young’s modulus and contact stiffness. The main idea of the 

complex eigenvalue method involves asymmetry arguments of the stiffness matrix which formulate the friction coupling. This idea is more efficient and 
provides more insight to the friction induced dynamic instability in the disc brake system. The simulation performed in this work present a guideline to 
reduce the squeal noise of disc brake system and showed that the most important source of nonlinearity is the contact frictional sliding between the disc 

and the beam. ANSYS allows for a convenient contact interface by specifying the contact surface and the properties of the interfaces. The complex 
eigenvalue is solved by using modal analysis with QRDAMP method. The analysis determined the stability of the system. When the system is unstable 
the real part of the eigenvalue becomes positive and squeal occurs. If the damping ratio is negative, the system becomes unstable, and vice versus. The 

result showed that even the beam and disc at natural frequency, no squeal could generated if the beam at anti-node position.  
 
INDEX TERMS: - QRDAMP method, matix27, eigenvalue, contact stiffness, modal coupling, and dynamic instability 

———————————————————— 

 

1 INTRODUCTION  
Squeal is the most common problem which it's defined as a 
noise has frequency content at 1000 Hz or higher that occurs 
when a system experiences high vibrations amplitude [1]. 
However, there is yet neither a complete understanding of the 
squeal generating nor a general theory to describe the 
complexity of the system. The researchers tried to find an 
easy way to represent the brake system in order to pass 
these complexities and measure experimentally the effect of 
some parameters that generate the squeal. Many researchers 
tried to represent the brake system by using beam on disc, 
while other tried to represent the system by using plate on 
disc as Ammar [2]. An early experimental investigation by 
Masayaki and Mikio [3] was done by using beam on disc 
system. They found different in sound pressure between high 
and low frequency. These noises generated are depending on 
the friction coefficient, sliding distance and young's modulus. 
In this paper the authors didn't mention any information about 
the effect of Poisson's ratio on the squeal. At 1980 Masayaki 
and Mikio [4] return to run an attempted to study the effect of 
the beam length on squeal frequency. They found that 
increase the beam length can establish a fundamentals 
squeal mode at lower system frequency. At 1981 Masayaki 
and Mikio [5] study the contact's beam roughness and the 
squeal. They found that increase the roughness will 
generated higher noise and pressure level due to increase of 
sub-harmonic frequency level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Also at 1981 Masayaki and Mikio [6] they observed the effect 
of contact's beam angle on the squeal. Changing the contact 
angle can generated higher squeal, but the effect of the beam 
length on the squeal was more than the effect of changing the 
contact's angle. Masayaki and Mikio [7] found that the lost of 
the contact between the beam and disc is related to surface 
roughness. Increase the roughness can increase the loss of 
contact and squeal generated. Akey et al at [8], return to use 
the beam and the disc system to study the squeal. He 
represents the system inside finite element software and 
predicts the system instability with eigenvalue method. Massi 
and Baillet [9] used beam on disc with two different numerical 
methods linear and non-linear approach. In this study the 
authors approved that the beam on disc system with linear 
approach can match the same result exactly with non-linear 
real approach of the system. As can observe from the 
previous work, many factors can affect the squeal frequency 
occurrence. As the contact angle can affect the squeal, the 
different of beam location on the disc may be able to have 
some influence on the squeal also.  In this study we tried to 
find the relation between the beam location and the squeal 
generated.  
 

2 CONTACT'S STIFFNESS 
The stress-strain relationship for the pad friction material was 
used to determine the contact stiffness. The contact stiffness 
is a function for the young’s modulus of the elastic material 
(friction material). The contact area between the pad and the 
rigid surface (rotor) and the length L is given in the equation 1  
 

K =
AE

L
     , Junior [10],           equation (1) 

 
The contact stiffness can be calculated using two different 
approaches: from a previous knowledge of the young’s 
modulus of the friction material and through measurement of 
the stress-strain relationship under normal load, [10]. The 
effect of braking pressure was introduced into the finite 
element model through the variation of the contact stiffness 
between the rotor and beam. The use of the stress–strain 
relationship method to determine this contact stiffness, allows 
an evaluation of the effect of the braking pressure on the 
contact stiffness. The increases in braking pressure lead to 
high values for contact stiffness, as showed by Junior [10].  
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3 PERPENDICULAR'S BEAM ON ROTATING 

DISC 
A perpendicular beam on rotating disc is modeled to study 
disc brake squeal. The system consists of disc which is rotate 
about the axis of the wheel. The beam is in contact with the 
disc by using matrix27. The disc outer diameter is 0.4m, while 
the inner diameter is 0.1m and the thickness is 0.05m. The 
disc density and young’s modulus are 210GN/m^2 and 7800 
Kg/m^3, respectively. These values have been taking from 
Giannini [11] paper. The disc inner radius and outer radios is 
free-free. The beam dimensions are 0.05×0.05×0.5 m. The 
beam is free –free also. The beam density, and young’s 
modulus are 100 GN/m^2, 2500 kg/m^3. These values have 
been also taking from Giannini et al [11] paper. The FE mesh 
is generated using three dimension sweep mesh, as 
illustrated in figure 1. It is assumed that equal magnitude of 
the contact stiffness between the beam-disc interface 
surfaces. Note that in these numerical examples, the disc 
thickness is deliberately taken to be very small in order to 
reduce the amount of computing work. However, this will not 
affect the qualitative features of the results or the conclusion. 
The first seven natural (diametral) frequencies of the disc are 
273.31, 650.02, 1118.7, 1679.8, 2328.6, 3059.3 and 3866.3 
Hz The beam and the disc element are modeled with solid 45. 
Matrix27 has a dimension 12×12 and can relating two 
coincident nodes used in this simulation. The beam and the 
disc mesh (node) must be coincident to enable the generation 
of the node-to-node contact element. The inclusion of the 
friction force causes stiffness matrix (matrix27) to be 
unsymmetrical. This means that the friction force causes the 
results of eigenvalue to be complex values. Using matrix27 
has showed how the contact stiffness and friction coefficient 
affects the mode shape and natural frequency. Axial 
symmetric mesh should be applied to the disc because the 
non-axial symmetric mesh causes the double modes of the 
disc to split even in free conditions. 
 

 
Figure 1 Geometry illustrated the mesh of perpendicular 

beam with rotating disc  
 

The mating surface of the beam and the disc is assumed to 
have some flexibility in which they can move relative to each 
other. The formula which represents the contact between the 
beam and the disc can be derived as fellow.  

 
Normal force on the disc, Fx1=-K(x1-x2) 
 
Normal force on the beam, Fx2=K(x1-x2) 
 
Friction force on the disc, Fz1=µFx1=-µK(x2-x1) 
 
Friction force on the beam, Fz2=µFx2=µK(x1-x2) 
 
The above equation can be rearranged in matrix as follows. 
 

 
 
 
 
 
 
 
Fx1

Fz1

Fx2

Fz2 
 
 
 
 
 
 

=

 
 
 
 
 
 
 

K 0 −K 0

−μK 0 μK 0

−K 0 K 0

μK 0 −μK 0 
 
 
 
 
 
 

 
 
 
 
 
 
 
x1

z1

x2

z2 
 
 
 
 
 
 

   

(Interface friction matrix) 
 
The interface friction matrix can be used as the input to the 
interface element in the finite element method using ANSYS. 
The interface used in this analysis is known as matrix27. 
Matrix27 represents an arbitrary element whose geometry is 
undefined but whose elastic kinematics response can be 
specified by the stiffness, damping, or mass coefficients. The 
matrix assumed to related, each nodes, each with six degree 
of freedom per node, translations in the nodal x, y and z 
directions and rotations about the x, y and z axes. The effect 
of the contact stiffness between the beam and the disc on the 
system stability has been investigated by simulation the 
model with different contact values. The complex eigenvalue 
is performed between 1000 to 12000 Hz which is the range of 
the squeal occurrence by using modal analysis.  The analysis 
is carried out by changing the values of the contact stiffness 
while retaining the respective typical values for the others. 
The line of the instability is conducted as in Figure 2 by 
applying a range of contact stiffness value from 250 to 1100 
MN/m with increment of 150 MN/m.  
 

 
Figure 2 instability versus contact stiffness for the 3rd 

diametral mode shape, µ=0.4 
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Figure 2 shows that increase the contact stiffness can 
increase the instability. This means that most fundamental 
method of eliminating brake squeal is by changing the contact 
stiffness for each frequency or rotation speed in order to 
transfer the system to the stable frequency.  
 

4 SYSTEM MODE SHARE 
The purpose of the free-free finite element modal analysis is 
to identify the natural frequencies and mode shapes of the 
disc and pad as separate components. For, more information 
about the modal analysis for free-free method can be found in 
Ammar's paper [2] The mode shape at contact stiffness 750 
MN/m is conducted to understand more about the relation 
between the instability and mode shape as in figure 3.  
 

  
Mode shape in y-direction  

 
 

 
Mode shape in x-direction 

 

 
Mode shape in z-direction 

 
Figure 3 Mode shape at contact stiffness750 MN/m 
 
The mode shape in the x-direction showed that the disc in the 
third diametral mode shape.  In y-direction and z-direction 
(normal to the beam) the mode shape is a second diametral 
mode. Figure 3 indicates that the coupling between in-plane, 
transverse, and vertical displacements of the rotor generates 
dynamic instabilities and brake squeal. The effect of the 
contact stiffness on the squeal propensity showed two 
significant unstable diametral. The first is 3rd diametral mode 
which is already presented in the figure 2 and the second is 
the 7th diametral mode which is presented in the figure 4. The 
analysis in figure 4 is carried out by changing the values of 
the contact stiffness while retaining the respective typical 
values for the others. The area of stability is illustrated in 
figure 4 by applying a range of contact stiffness values from 
250 to 1100 MN/m with increment of 150 MN/m. 
 

 
Figure 4 Instability versus contact stiffness for the 7th 

diametral mode shape, µ=0.4 
 

Re=0Hz

f=3055.9H
z

Re=136.11
Hz

f=3127.9H
z

Re=168.68
Hz

Re=0Hz

f=3232.4H
z

Re=198.21
Hz

Re=0Hz0

50

100

150

200

250

250 400 550 750 900 1100

re
al

 p
ar

t 
o

f 
ei

ge
n

va
lu

e 
H

z

Contact stiffness MN/m

Stable area 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013      ISSN 2277-8616 

129 
IJSTR©2013 

www.ijstr.org 

Figure 4 shows that with certain contact stiffness 750 MN/m 
the system become stable for different disc rotation velocity. 
By comparing Figures 4 and 2 the instability in the figure 4 is 
higher than Figure 2, because the occurrence of the unstable 
frequencies is in the high frequency rang. This increment can 
be explained by change the pad stiffness. The value of the 
real part in the figure 4 is lower than Figure 2. This indicates 
that with higher diametral mode the system damping 
decreased. The effect of friction coefficient on the system 
stability is studied by running the simulation with different 
coefficient of friction values. The instability is conducted as in 
Figure 5 by applying a range of friction coefficient value from 
0 to 0.05 with increment of 0.01. 
  

 
Figure 5 Real part of eigenvalue as a friction coefficient 

function, K=400 MN/m 
 
The Figure 5 shows that the squeal stated with starting the 
friction coefficient value. The result indicates that the 
instability does not change for different friction coefficient 
values. This indicates that with high frequency the effects of 
friction coefficient will be constant. The value of the real part 
is approximately 401.66 Hz which stay constant with different 
friction coefficient. The sixth diametral mode shape is the 
mode which is showed in the figure 5. By changing the friction 
coefficient most of the other modes did not show any effect 
for increase the friction coefficient, in simple word the others 
mode shape did not tend to be unstable mode by increasing 
the friction coefficient. It can be said that the squeal 
generated due to the friction coefficient is related to the sixth 
diametral mode shape only. Figure 6 shows the effect of 
changing beam young’s modulus on the system instability. 
The beam young’s modulus is changed from 6 to 10 GN/m^2 
with increments of 1 GN/m^2.  

 
Figure 6 Instability as a function for beam young’s modulus, 

K=600MN/m, µ=0.01 
 

The Figure 6 showed that with increase young’s modulus the 
instability will increase until it reaches to 225.93 Hz (real part). 
The system returned to be stable when the young’s modulus 
reached to 8 GN/m^2. The system after that showed little 
instability. The results indicate that with increase young’s 
modulus the system tends to be stable system. The result for 
the figure 6 is for the third and second diametral mode shape. 
An increase in the Young modulus of the beam affects the 
natural frequency of the mode with the node at the contact 
point, because it introduces an increasing stiffness at the 
contact point. The system natural frequency of the mode at 
the unstable point (225.93Hz, 727.82 Hz) decreased if its 
compared with the disc free mode, because the stiffness at 
the contact point increased due to increment of the young’s 
modulus. The beam at this frequency showed penetration into 
the disc, as in the figure 7. This penetration make the system 
frequency decreased. It can said that the beam due to 
increase the contact stiffness trying to eliminate the disc 
rotation.  
 

0

401.66Hz

401.66Hz

401.66Hz

401.66Hz 401.66Hz

401.66Hz

0

50

100

150

200

250

300

350

400

450

0 0.01 0.02 0.02 0.03 0.04 0.05

R
ea

l P
ar

t 
o

f 
ei

ge
n

va
lu

e 
H

z

Friction Coefficient

Re=0Hz

f=727.82Hz
Re=225.93

Hz

Re=0

f=176.18Hz
Re=12.91H

z Re=0Hz

0

100

200

300

400

500

600

700

800

900

6 7 8 9 10

re
al

 p
ar

t 
o

f 
e

ig
e

n
va

lu
e

 H
z

Beam Young's modulus GN/m^2



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013      ISSN 2277-8616 

130 
IJSTR©2013 

www.ijstr.org 

 
Figure 7 disc mode shape in the x-direction  

 
The complex eigenvalue analysis as a function of the young’s 
modulus was presented in Massi et al paper [11] at a friction 
coefficient 0.01. The mode at 3 kHz referred to the first mode 
of the beam. The mode at 3.5 kHz is characterized by a 
tangential translation of the support summed to its bending 
vibration (beam second mode shape). The natural frequency 
of the disc, third mode shape (0, 3+) increased up to the 
natural frequency of the support at 3 kHz and then to the one 
at 3.5 kHz. Likewise, the natural frequency of the forth mode 
shape (0, 4+) increases up to the frequency of the third beam 
mode at 5 kHz. Giannini et al [11] result indicates that the 
mode which responsible for the squeal due to the change 
beam young’s modulus is the third and the forth mode shape, 
while the result in the Figure 6 indicates that the mode shape 
which is responsible about the squeal is the second and the 
third mode shape. This different in the result is due to the 
difference in the disc and beam dimensions, the number of 
the contact element (matrix27) and the value of the contact 
stiffness. Beside that Massi et al [11] did not considered one 
important factor in the matrix27 calculations. The distance 
between the beam and the disc will affect the result, which is 
not deal with it in the authors’ work. This different in the 
dimension and the application matrix27 made the different for 
the mode which has a relation with generated noise. 
 

5 HORIZONTAL BEAM CONTACT TOSTUDY 
THE EFFECT OF THE LATERAL VIBRATION 
PARAMETERS ON DISC BRAKE SQUEAL 
A horizontal beam on rotating disc is modeled to study disc 
brake squeal. The system consists of disc which is rotate 
about the axis of the wheel. The beam is in contact with the 
disc by using matrix27. The beam is model to be parallel to 
the z-axis. The beam and the disc young’s modulus, density, 
dimensions, boundary condition, mesh and element type is 
the same as the section 3. The system was run between the 
1000 to 12000 Hz which represents the squeal frequency. 
The beam and the disc mesh must be coincident to enable 
the generation of the node-to-node contact element.  The 
inclusion of the friction force causes stiffness matrix 
(matrix27) to be unsymmetrical. The system geometry is 
illustrated in the Figure 8. 

 

 
Figure 8 Geometry illustrate the mesh of horizontal beam 

with rotating disc  
 
Matrix27 was developed in this paper in order to achieve the 
requirement of the beam horizontal contact with the disc.  The 
out of the plane or diametral motion of the disc acts as a 
friction force on the horizontal beam which should be 
including in the contact matrix. The formula which represents 
the contact between the beam and the disc can be derived as 
fellow.  
 
Normal force on the disc, Fz1=K (z1-z2) 
 
Normal force on the beam, Fz2=-K (z1-z2) 
 
Friction force on the disc, Fx1=µFz1=µK (z1-z2) 
 
Friction force on the beam, Fx2=-µFz2=µK (z2-z1) 
 
Friction force on the disc, Fy1=-µFz1=-µK (z1-z2) 
 
Friction force on the beam, Fy2=µFz2=-µK (z2-z1) 
 
The above equation can be arranged in matrix as follows. 
 

 
 
 
 
 
 
 
 
 
 
 
Fx1

Fy1

Fz1

Fx2

Fy2

Fy3 
 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
0 0 µK 0 0 −µK

0 0 −µK 0 0 µK

0 0 K 0 0 −K

0 0 −µK 0 0 µK

0 0 µK 0 0 −µK

0 0 −K 0 0 K  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
x1

y1

z1

x2

y2

z2 
 
 
 
 
 
 
 
 
 
 

 

 
The effect of the contact stiffness between the beam and the 
disc on the system stability has been investigated by 
simulation the model with different contact values. The 
analysis is carried out by changing the values of the contact 
stiffness while retaining the respective typical values for the 
others. The area of instability is conducted as in Figure 9 by 
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applying a range of contact stiffness value from 200 to 1000 
MN/m with increment of 200 MN/m. 
 

 
Figure 9 Real part of eigenvalue versus contact stiffness, 

µ=0.4 
 

Figure 9 shows that the instability started to increase when 
the contact stiffness reach to 400 MN/m. This increments was 
linearly until it reach to 600 MN/m. the instability decrease 
until it diminish with contact stiffness 1000 MN/m. By 
comparing, figures 2 and 9 (perpendicular and horizontal 
beam position) at contact stiffness 600MN/m. The instability in 
the figure 2 was investigated with the third diametral mode (at 
frequency 767.83Hz) while in the figure 9 the instability is 
investigated with the sixth diametral mode (at frequency 
2072.1 Hz). The contact stiffness is 600MN/m in both figures 
showed approximately same real part with different frequency 
that mean the damping ratio decreased with high frequency in 
the figure 9. Thus it can be said that the horizontal beam with 
lower contact stiffness made the squeal appeared at higher 
frequency than the perpendicular beam. This result showed 
that changing the pad position may lead to an increase in the 
unstable system frequency. The system in the figure 8 can 
vibrates until higher frequency range without any squeal 
because the mode which is responsible about the squeal is 
shafted to the higher frequency. The result in the figure 9 
investigates a wide range of the area without any noise 
especially when the contact stiffness increases. 
 

6 SYSTEM MODE SHAPE 
For a particular mode the eigenvalue pair isSi1,2 = σi ∓ jωi, σi 

is the real part and ωi is the imaginary part for the ith mode. 
The motion for each mode can be described in terms of the 
complex conjugate eigenvalue and eigenvector:  
 

 ui =  ∅i  eσ it (ejωi t + e−jωit )      Equation (2) 
 

The displacement can be rewritten as a damped sinusoidal 
wave: 
 

 ui =  ∅i  eσ it cosωit                   Equation (3) 
 
Thus, σi and ωi are the damping coefficient and damped 
natural frequency describing damped sinusoidal motion. If the 
damping coefficient is negative, decaying oscillations typical 
of a stable system result. A positive damping coefficient, 
however, causes the amplitude of oscillations to increase with 
time. Therefore the system is not stable when the damping 
coefficient is positive. By examining the real part of the 
system eigenvalues the modes that are unstable and likely to 
produce squeal are shown in the figure 10 The mode shape 
at contact stiffness 600 MN/m is conducted (the real part 
showed positive value) to understand more about the relation 
between the instability and mode shape, figure 10. The mode 
shape is conducted in three directions to understand the 
relation between the lateral, diametral and vertical mode in 
producing brake squeal. The mode shape in the x-direction 
(normal to the beam) showed that the disc in the sixth 
diametral mode shape. In y-direction and z-direction the mode 
shape is the fifth diametral mode. Figure 10 indicates that the 
coupling between in-plane, transverse, and vertical 
displacements of the rotor generates dynamic instabilities and 
brake squeal. By comparing figures 3 and 10, the lateral 
mode is the higher diametral mode. Thus it can be said that 
the conclusion for the disc brake should be built on the lateral 
vibration of the disc. The figures 3 and 10 indicates that the 
horizontal vibration have the higher displacement than 
diametral and vertical mode.   
 
   

 
Mode shape in x- direction 
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Mode shape in z-direction 

 

 
Mode shape in y-direction 

 
Figure 10 Mode shape with contact stiffness 600 MN/m 

 
Figure 10 shows that the disc has three modes shape at the 
squeal frequency with rotating angle (phase) equal to 45 
degree. That rotating angle related to the rule of the 
symmetric system. The effect of the horizontal beam density 
on the system stability has been investigated by simulation 
the model with different density values. The complex 
eigenvalue is performed in the range of the squeal 
occurrence. The analysis is carried out by changing the 
values of the density while retaining the respective typical 
values for the others. The instability which was conducted 
with the contact stiffness 600 MN/m as in the figure 9 is 
studied. The instability line is conducted in Figure 11 by 
applying a range of density value from 1500 to 3000 Kg/m^3 
with increment of 1500 Kg/m^3.  
 

 
Figure 11 showed the instability as density function  

 
Figure 11 indicates that by increasing the density of the beam 
or decrease it, the system tends to be stable again. The 
results showed that the pad density have significant effect on 
the system instability. Figure 12 shows the effect of changing 
horizontal beam young’s modulus on the system stability. The 
beam young’s modulus is changed from 0 to 2 GN/m^2. The 
result does not show any instability with the young’s modulus 
value above 2 GN/m^2 until 10 GN/m^2.  

  

 
Figure 12 Instability depending on beam young’s modulus, 

K=600 MN/m, µ=0.01 
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Figure 12 showed that with increase young’s modulus the 
degree of the instability increased until the frequency reach to 
the 1219.3 Hz. The system returned to be stable when 
young’s modulus reached to 0.6 GN/m^2 (no squeal is found). 
The system after that showed little increase in the degree of 
instability, until 2GN/m^2. The results indicate that with 
increase of young’s modulus the system tends to be stable 
system. By comparing figures 6 and 12 the results indicate 
that with the horizontal beam position the instability appeared 
with the lower value of young’s modulus than the 
perpendicular beam. The maximum value of the real part in 
the figure 6 appeared with the third diametral mode shape 
while the maximum value of the real part in the figure 12 
appeared with the fifth diametral mode shape. This indicates 
that the beam in the horizontal position can shaft the brake 
noise to high frequency because the mode shape which 
represents the instability is increased.  By comparing figures 
11 and 12, the high unstable frequency which companied the 
effect of the density 2500 Kg/m^3 is 2072.1 Hz while the high 
unstable frequency companied with the effect of young’s 
modulus is 1208.1 Hz. This result indicates that the effect of 
changing the density values on the instability can be higher 
than the effect of changing young’s modulus on the instability 
because the unstable frequency is higher. The system 
showed two frequencies at beam young’s modulus 0.2 and 
0.4 GN/m^2. The mode at the frequency 2035.1Hz is fifth 
diametral mode and at frequency 4538.7Hz is eight diametral 
mode. The system can rotate at 0.2 GN/m^2 between these 
two frequencies (2035.1Hz, fifth diametral mode and 
1219.3Hz, fourth diametral mode) without noise, but with this 
limitation it is difficult to control the noise.     
The effect of friction coefficient on the system stability is 
studied by running the simulation with different coefficient of 
friction values. The area of stability is conducted as in Figure 
13 by applying a range of friction coefficient value from 0.3 to 
0.7 with increment of 0.1 
 

 
Figure 13 Instability of the system as a function for the friction 

coefficient, K=600 MN/m 
 

Figure 13 shows that the squeal stated with friction coefficient 
value 0.3. The result showed that the real part increased until 
it reached to 960.19 Hz with friction coefficient 0.4 then 
decrease linearly until it reaches to 16.431Hz at friction 
coefficient 0.5. The real part stated to increase again until it 
reached to 1959.4Hz then decrease linearly to zero value. 
The mode shape of the figure 13 at real part 960.19Hz is fifth 
diametral mode with while the sixth and eight diametral 
modes appeared with the real part 1959.4Hz and 16.413Hz, 
respectively. By comparing figures 13 and 5 it could be seen 
that the line of the instability in figure 13 returned to be zero 
value at friction coefficient 0.3 and 0.7, while there is no 
stability point in the figure 5. This stability point appeared due 
to change of beam location relative to disc node. This means 
that the system tends to be noisier at certain frequencies than 
the system in the figure 5. It should be noted that even the 
friction coefficient is constants the verity of the friction forces 
is still possible. This indicates that the change in friction force 
value results from the verity of the normal force, thus 
sometimes there is no noise with real part frequency 
2482.7Hz.  
 

7 VERTICAL BEAM CONTACT TO STUDY THE 

EFFECT OF THE VERTICAL VIBRATION 

PARAMETERS ON DISC BRAKE SQUEAL  
A vertical beam on rotating disc is modeled to study disc 
brake squeal. The system consists of disc which is rotate 
about the axis of the wheel. The beam is in contact with the 
disc by using matrix27. The beam is model to be parallel to 
the y-axis. The beam and the disc young’s modulus, density, 
dimensions, boundary condition, mesh and element type is 
the same as the section 2. The system was run between the 
1000 to 12000 Hz which represents the squeal frequency. 
The beam and the disc mesh (node) must be coincident to 
enable the generation of the node-to-node contact element.  
The inclusion of the friction force causes stiffness matrix 
(matrix27) to be unsymmetrical. The system geometry mesh 
is illustrated in the Figure 14. The aim of this study is to 
determine the effects of the node and antinode on brake 
squeal. The position of the pad should be considered to 
reduce the noise. Feildhouse [12] showed experimentally that 
the noise frequency can effect by the number of the node and 
antinode under the pad.  However this can explain why the 
brake sometimes show a squeal at certain frequency and 
does not showing any noise at the same certain frequency.  
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Figure 14 Geometry illustrates the mesh of vertical beam on 

rotating disc  
 
The formula which represents the contact between the beam 
and the disc can be derived as follow.  
 
Normal force on the disc, Fy1=K (y1-y2) 
 
Normal force on the beam, Fy2=-K (y1-y2) 
 
Friction force on the disc, Fx1=µFy1=µK (y1-y2) 
 
Friction force on the beam, Fx2=-µFy2=µK (z2-y1) 
 
Friction force on the disc, Fz1=-µFy1=-µK (y1-y2) 
 
Friction force on the beam, Fz2=µFy2=-µK (y2-y1) 
 
The above equation can be arranged in matrix as follows. 
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The effect of the contact stiffness between the beam and the 
disc on the system stability has been investigated by 
simulation the model with different contact values. The 
analysis is carried out by changing the values of the contact 
stiffness while retaining the respective typical values for the 
others. The area of instability is conducted as in Figure 15 by 
applying a range of contact stiffness value 0.1, 50, 100 and 
200 MN/m. 
 

 
Figure 15 Real part of egienvalue versus contact stiffness 

MN/m, µ=0.4 
 

Figure 15 shows that the instability stated to increase when 
the contact stiffness reach to 0.1 MN/m. This increment was 
linearly until it reaches to 50 MN/m. The real part continues 
the increment until it reached to the higher value of the 
instability (1289.8Hz). The instability decreased until it 
diminishes with contact stiffness 200 MN/m. By comparing the 
result of the figures 15 and 9 (vertical and horizontal beam 
position), the system showed increase in the degree of the 
instability. The instability in the figure 9 is investigated with the 
sixth diametral mode (at frequency 960.19Hz) while in the 
figure 15 the instability is also investigated with the fifth 
diametral mode (at frequency 1289.8Hz). At the contact 
stiffness 200MN/m the vertical beam's result showed stable 
system while in the horizontal beam the system is unstable 
system. This different in the result is related to the position of 
the node or the anti node which is in contact with the beam at 
the squeal, this point illustrates in the section 8. This result 
showed that changing the pad position may lead to an 
increase in the unstable system frequency for certain contact 
stiffness while decreased it for other. The system in the figure 
15 can vibrates until higher frequency range without any 
squeal because the mode which is responsible about the 
squeal is shafted to the higher frequency from 960.19Hz to 
1289.8 Hz. The result in the figure 15 investigates a wide 
range of the area without any noise especially when the 
contact stiffness increases above 200MN/m or decreased 
less than 0.1 MN/m. The effect of friction coefficient on the 
system stability is studied by running the simulation with 
different coefficient of friction values. The instability is 
conducted as in Figure 16 by applying a range of friction 
coefficient value from 0.1 to 0.7 with increment of 0.1. 
 

0

Re=548.58
Hz

f=1637.4H
z

Re=1289.8
Hz

f=1967.2H
z

00

200

400

600

800

1000

1200

1400

0.1 50 100 200

R
e

al
 p

ar
t 

o
f 

e
ig

n
va

lu
e

 H
z

Contact Stiffness MN/m



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013      ISSN 2277-8616 

135 
IJSTR©2013 

www.ijstr.org 

 
Figure 16 real part of eigenvalue as function for friction 

coefficient, K=50 MN/m 
 

Figure 16 show that the squeal stated when the friction 
coefficient value becomes 0.3. The degree of the instability 
increased until the friction coefficient reach to 0.6 with 
frequency equal to 1721.1Hz. The result indicates that the 
degree of instability increased with increase the friction 
coefficient values and so on the frequency due to increase the 
instability. It is also clear that when the friction coefficient 
reach to 0.7 the system return to be stable system. The fourth 
diametral mode shape is the mode which is showed in the 
figure 16. By changing the friction coefficient most of the other 
modes did not show any effect for increase the friction 
coefficient, in simple word the others mode shape did not tend 
to be unstable mode by changing the friction coefficient. It can 
be said that the squeal generated due to the friction 
coefficient is related to the fourth diametral mode shape only. 
By comparing figures 16 for vertical beam and 13 for 
horizontal beam it is found that the squeal appear with the 
fifth, sixth and seventh for the vertical beam, while the squeal 
appear with the forth diametral mode only. This result showed 
that the pad position should be considered during the design 
in order to reduce the brake squeal. The complex eigenvalue 
analyses were carried out on each friction coefficient between 
0.3 and 0.6 with increment 0.1 as shown in the figure 17.  

 
Figure 17 Real part of eigenvalue versus frequency as gauge 

to study the instability 
 
The vertical axis is the imaginary part of eigenvalues, which is 
actually the natural frequency. The horizontal axis represents 
the real part of eigenvalues, which is measurement of 
damping or instability. System modes with positive real part of 
eigenvalues are modes with negative damping. Therefore, the 
right half-plane is the unstable region while the left half-plane 
is the stable region. It is seen that when the friction coefficient 
increased the degree of the instability (real part of eigenvalue) 
approach the vertical axis. The frequency decreased with 
decrease the real part of eigenvalue from 1721.1Hz 
(Re=782.72) to 1677.6Hz (Re=669.25Hz) then 1637.4Hz 
(548.58Hz). Figure 18 shows the effect of changing the 
vertical beam young’s modulus on the system stability. The 
beam young’s modulus is changed from 0.2 to 1 GN/m^2. The 
result does not show any instability with the young’s modulus 
value above 1 GN/m^2 until 10 GN/m^2.  
 

 
 

Figure 18 the relation between the instability and beam 
young’s modulus, K=100MN/m, µ=0.01 
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Figure 18 showed that with increase young’s modulus the 
instability increased until the frequency reach to the 1118.2 Hz 
(third diametral mode). The degree of the instability is 
decreased when the young’s modulus reached to 0.4 
GN/m^2. The system at young’s modulus 0.4 is squeal with 
the eight diametral mode for that the frequency is increase 
from 1118.2Hz at young’s modulus 0.2GN/m^2 to 4906.3Hz at 
young’s modulus 0.4GN/m^2. The system after that showed 
increase in the degree of instability until it reach to 0.6 
GN/m^2. The results indicate that with increase young’s 
modulus above 1GN/m^2 the system tends to be stable 
system. By comparing figures 20 and 14 the results indicate 
that with the horizontal beam position there are four diametral 
mode shape appeared (second, third, fifth and eight) while 
with the vertical beam position there are three diametral mode 
shape appeared (third, eight and second) for the same beam 
young’ modulus from 0.2GN/m^2 to 1 GN/m^2. The result in 
the figure 12 showed that it is possible to appear two unstable 
modes at the same value of young’s modulus while with the 
figure 18 only one unstable mode shape can appear at every 
young’s modulus value. The instability can be achieved with 
the lower value of young’s modulus 1 GN/m^2 for the vertical 
beam than the horizontal beam. The maximum value of the 
real part which indicates to the degree of the instability in the 
figure 12 appeared with the fourth diametral mode shape 
(1208.1Hz) while the maximum value of the real part in the 
figure 18 appeared with the third diametral mode shape 
(1224.1 Hz). This indicates that the beam in the vertical 
direction can shows higher degree of instability with lower 
mode shape than the beam in the horizontal direction.   
 

8 SYSTEM MODE SHAPE  
The mode shape at young’s modulus 0.2 GN/m^2 is 
conducted to understand more about the relation between the 
instability and mode shape as in figure 19. The unstable 
mode in the figure 19 is conducted with imaginary value equal 
to zero while the two real parts have the same value with 
opposite signs. This indicated that the system damping ratio 
reached to its critical value.  
 

   
Mode shape in z-direction 

  

   

 
Mode shape in y-direction 

 

 
Mode shape in x-direction  

 
Figure 19 mode shape of the system at beam young’s 

modulus 0.2 GN/m^2  
 

The mode shape in the x-direction showed that the disc in the 
fourth diametral mode shape.  In y-direction (normal to the 
beam) and z-direction the mode shape is a third diametral 
mode. Figure 19 indicates that the coupling between in-plane, 
transverse, and vertical displacements of the rotor generates 
dynamic instabilities and brake squeal.  The mode shape of y-
direction in the figure 19 which is already perpendicular to the 
beam showed that the beam during the squeal at the node 
position. The mode shape of the figure 10 which is already 
perpendicular to the beam showed that the beam in the 
antionode position. That different between the effect of the 
node and the antinode is the major reason for the result 
different.  
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9 CONCLUSIONS 
The results showed that the disc beam (pad) is the source of 
generate the disc brake squeal. One easy method to reduce 
the brake squeal is by changing the pad density. As showed 
previously for the friction coefficient, young’s modulus and 
density can change the elastic properties of the friction 
material, since it changes the pad stiffness which can alter the 
modal coupling between the pad and the rotor. The pad 
stiffness is very important parameter to determine the stability 
of the system. The center of the beam can be considered as 
the center of the pad which showed considerer in the brake 
pad design. The result showed that even the beam and disc 
at natural frequency, no squeal generated if the beam at node 
position. 
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