
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013 ISSN 2277-8616

237
IJSTR©2013

www.ijstr.org

A Novel Framework For End-To-End Automation
Testing

Praveen M Bidarakundi, Raghavendra Prasad S.G

Abstract: - Often implementation of the program will change .Implementations are changed to reduce running time and/or to reduce memory
consumption (space complexity) of the program. Often there is need to test the two version of the software, one current and another newer version.
Newer version will be having some extra methods/functions, but the remaining methods/functions will be same as that of current version. We need to

make sure that these methods of current version have not been affected by the changes done in new version. (Regression Testing), and also often the
methods will be refactored to different prototypes/signatures to offer abstraction. These new prototyped methods (signature changed methods) will in-
tern invoke the previous method (before to new prototyping), i.e. newer prototyped methods are just wrappers around the previous methods. For

instance APIs are wrapped around by corresponding methods .In this situation, it becomes important to test the newly prototyped methods that are
wrappers around the old methods/APIs, as we need to verify the correct bindings/mappings of the older and newly prototyped methods. Usually
developers write the unit tests to test their logic. But the testers cannot write them as tester lacks the knowledge of logic implemented, and tester may

not have any knowledge of coding, but tester knows what each method does and what is it’s expected behavior/return type. Thus we need to offer new
way to test each method. We propose a novel framework, which addresses these important issues. Framework takes three input parameters namely,
class to be tested, variable initialization values (test data), and expected results. From this information, framework automatically builds test driver class
at runtime; on the fly on running the framework. Test driver class is used to test the class under test. This test driver class is compiled and executed to

get the actual results for class under test. These generated actual results are compared with expected result to find methods different behaviors.
Methods whose actual result is not matching with the expected result, then this implies that methods have different behavior, thus the test is failure, and
else test is successful.

Index Terms: - Class Testing, Differential Unit testing, End-to-End Automation of Unit Test, Framework for unit test, Object Oriented programs testing,
Unit Testing, Integration Testing.

————————————————————

1 INTRODUCTION
Software developers often manipulate (slightly) different
versions of the same software. The most common scenario is
changing software systems by evolving them from one version
to another. Another scenario is having multiple
implementations of the same interface, feature, or functionality
to reduce running time and memory space requirement. For
example, we may have multiple C compilers that handle ANSI
C code [3]. Yet another scenario is in the context of mutation
testing [4]: intentionally making slight changes to a program to
create mutant versions. In all these scenarios with multiple
versions of programs, the versions can have different
functional behaviors. A typical task then is to determine how
the behaviors of one version differs from (or are the same as)
the behaviors of a different version[2]. In such tasks, testers
would like to generate test inputs that show the behavioral
differences between the two versions (producing different
outputs for the same inputs), if any differences exist. This type
of testing is called differential testing [3].

Regression testing and mutation testing are examples of
differential testing. Researchers have developed approaches
for differential testing of software at the system level, including
testing of C compilers [3], flash file system software [5], and
grammar driven functionality [6]. We focus on differential unit
testing, where differential testing is applied on a program unit.
Experiment-driver Integration testing needs to be addressed
for object oriented software [1]. This paper attempts to provide
integration testing approach. Specifically, we focus on object-
oriented programs, where a unit can be a class or a set of
classes. Object-oriented unit tests for a class consist of
sequences of method invocations. Behavior of an invocation
depends on the method’s arguments and the state of the
receiver at the beginning of the invocation. Behavior of an
invocation can often be observed through the method’s return
values and the state of the receiver at the end of the
invocation. Differential unit testing of object oriented programs
thus requires (1) execution of pairs of corresponding methods
from the two versions by providing same inputs and (2)
comparison of the outputs of the resulting method executions.
We propose a framework that can be used in differential unit
testing of object-oriented programs, for checking the
implementation errors and java bindings between newer
methods (newer prototype) and existing methods (before
newer prototype). Framework takes three input parameters,
namely class to be tested, variable initialization values,
expected result values. From this information, framework
automatically builds test driver class at runtime, on the fly.
Methods can receive the same inputs, and framework
compares their outputs. If the outputs are different, framework
reports to testers the different behaviors of the two versions.
For Differential unit testing, we will execute the framework
against the newer version to get actual results and these
actual results are compared with expected results of the
current version, to find variation/differences. We have
implemented framework in a tool that operates on Java
classes. This paper introduces the framework, presents our

————————————————

 Praveen M Bidarakundi is currently pursuing masters
degree program in information technology engineering in
Visvesvaraya Technological University, Karnataka, India,
PH-+918971470267 E-mail: pm.bidarakundi@mail.com

 Raghavendra Prasad S.G is currently an Assistant
Professor, at Dept. of ISE R.V.C.E Bangalore, India,
Country, and PH-+919845003187.

 E-mail: sgrp.vishnu@gmail.com

mailto:pm.bidarakundi@mail.com
mailto:sgrp.vishnu@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013 ISSN 2277-8616

238
IJSTR©2013

www.ijstr.org

implementation, discusses results obtained, and proposes
differential test generation based on the code instrumented by
framework.

2 EXAMPLE
To illustrate the framework, we use a binary search tree class
BST that implements a set of comparable elements, shown in
Figure 3. The class My_Input in the figure is the comparable
type of elements (e.g., integers in this example) stored in the
stack. Each tree has a pointer to the root node and a field size
that denotes the number of elements in the tree. Each node
has an element and pointers that maps to right child and left
child. The class provides implements for the standard set
operations: insert, remove, and contains. The class also has a
constructor that creates an empty tree. In Fig.4, we have
binary search tree class WrBST, this implement a set of
comparable elements, as shown in Figure 4. The class also
implements the standard set operations: insert, remove, and
contains. These set operations intern invokes the
operations/methods of the class BST(fig 3),so there needs to
be proper one to one mapping of the method of class
WrBST(Fig.4) to method of class BST(Fig.3).These are called
java bindings(binding of a method to another method). These
mappings/bindings have to be correct, and then only the
correct operation/result is obtained. If there is any
wrong/misconfigured bindings ,the framework will detect the
same and display them, framework is be able to do this as the
method’s return values of current(class BST) and newer
version(class WrBST) will differ in case of wrong bindings. In
this example, we consider WrBST (newer version) to be the
class under test (fig 4), and its current version to be the
reference class BST(fig 3).

public class My_Input implements Comparable {

private int o;

public My_Input(int i) { o = i; }

public boolean equals(Object that) {

if (!(that instanceof My_Input)) return false;

return (o == ((My_Input)that).o);

}}

class BST implements Set {

Node root;

int size;

static class Node {

My_Input value;

Node left;

Node right;

}

public BST() { ... }

public BST insert(My_Input m) { ... }

public BST remove(My_Input m) { ... }

public boolean contains(My_Input m) { ... }

}

Figure 3 A set operations implemented as a binary search tree
(BST) – Current Version

Here we can see that newer version class has different
implementation than that of Current Version. Often
implementations may be changed, to increase performance
(running time and space) of the programs, to have one more
layer of abstraction to provide interface to user. Here Newer
Version (Fig 4) is actually wrapper around the Current Version
(Fig 3).We need to test whether bindings between Newer
Class methods and the Current class methods are proper i.e.
to check Newer class methods are appropriately calling the
Current Version methods and also the methods should provide
same return value as that of current version, irrespective of the
implementation. Framework will test newer version to see all
the methods of this class provide the same output as that of
Current Version. User provides class to be tested (Newer
Class), method input parameter values i.e. test data (Variable
initialization file), and Expected result (results of the Current
Version’s methods execution or new results) to the framework.

public class WrBST extends ReferenceBST {

public WrBST() { super(); }

public boolean equals(Object t) {

if (!(t instanceof BST))

return false;

BST b = (BST)t;

if (size != b.size) return false;

if (!root.equals(b.root)) return false;

return true;

}

public BST insert(BST c, My_Input m) {

return c.insert(m);

}

public BST remove(BST c, My_Input m) {

return c.remove(m);

}

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013 ISSN 2277-8616

239
IJSTR©2013

www.ijstr.org

public boolean contains(BST c, My_Input m, boolean r) {

return c.contains(m);

}}

Figure 4. A set operations implemented as a binary
search tree (BST)-Newer Version.

3 FRAMEWORK
Framework will test all the method of a class, user/Tester need
not to have any coding knowledge. User/Tester needs to
provide three parameters for the framework. These are input
parameters as class under Test, Variable Initialization file and
expected result.

3.1 High Level Design
As shown in above Fig.5, java source file is converted to xml
file with required class information in it and then framework will
parse the xml to get relevant information for creating Test
driver class at runtime. This Test driver class is generated at
runtime of the framework automatically on the fly. Once the
test driver class is automatically generated, then it is compiled,
executed and the actual results are populated in result xml
and this actual result is compared with expected result to
produce success/ failure appropriately.

START

JAVA SOURCE FILE

XML File Containing
relevant Class
Information.

Generate Test
Driver for the class

under test

Actual Results and
comparing with

Expected Results

Test Success or Fail ,
if Failed what

methods

END

 Fig.5

If there is no source file available, then we can convert class
file to source file, with the help of java decompiles. Once, if we
get source file, we can give it to framework as input.
Framework can be executed step by step also, as we can first
give only source file as input, the framework converts source
file to xml file and halts and asks for the variable initialization
file. To increase ease of use of the framework, framework auto
generates variable initialization file in appropriate xml format,
in which user has to just change the values. Once we give this
newly edited variable initialization file (test data) as input, the
framework proceeds further for execution and builds the test
driver for testing the class under test. Then it compiles and
executes the test driver generated and produces actual
results. Then framework once again halts and asks the user
to provide expected result file. Framework auto generates the
expected result file in the correct format; this is done to
increase the ease of use of the framework. Tester just needs
to edit the values in the file. Then framework proceeds for the
further execution and compares the actual results with the
expected results and produces test as failure, if expected and
actual values does not match. If test is failed, then it also
displays what methods have failed and also what was
expected value and what is actually produced value. If the test
has passed, then it is displayed as test successful.

3.2 Capabilities of the framework
Framework has faced various challenges like Passing
Complex/user built-in data type as input parameter to a
method, comparing two complex objects for equality, output of
one method as input to another method, proper sequence of
methods invocation, and handling of inner classes/interface.
These challenges and how these are handled by the
framework is elaborated in this section.

1) Passing Complex/user built-in data type as input
parameter to method :
If a method takes a complex/user built-in data type variable as
input, then frameworks handles this by creating the object of
the complex data type/user built-in data type, it parses the
xml(variable initialization xml file) and finds that it needs to
create an object and also it automatically imports the required
packages without manual intervention. This automatic import
is done by creating index of all classes internally by the
framework.

2) Comparing two complex objects for equality:
If the output of the method is complex/user built-in object, then
we need to compare this object with the expected objects.
This is handled by the framework by creating the ―equals‖
method and passing the two objects as input parameter and
the method returns true if both the objects are equal, else it
returns false.

3) Output of one method as input to another
method:
If a method’s output parameter is required to provide as an
input parameter of another method, then the framework will
recognize this by examining the xml variable initialization file
and appropriately invokes the first method and assigns its
output value to a variable and this same variable value is
supplied as input variable to the second method. This solution
is implemented in the framework, so tester/user need not to

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013 ISSN 2277-8616

240
IJSTR©2013

www.ijstr.org

worry about handling it and also care has been taken as to
invoke methods in correct order.

4) Proper sequence of methods invocation:
 In a class, there will be getters and setter methods, and the
setters should be invoked first and then only getters should be
invoked, because unless we set the values, we will not be able
to get the values. Frameworks parses the xml file for
identifying setters and getters methods, and first arranges
setters methods and invokes them, later getters methods are
invoked.

5) Handling of inner classes/interface:
Inner class’s methods have to be properly invoked by creating
the object of the outer class, but the inner class methods can
call the outer class methods as per java specifications. Thus
we need to invoke the inner class methods using the object of
outer class. This is handled by the framework by creating the
object of the outer class and invoking the methods of inner
class appropriately, as framework gets inner classes and inner
class methods information from the xml.

6) Automatic imports code generation
There will be user built in/external library classes in the auto
generated test driver, these classes will be present in the
different packages and these are bundled in jars. Jar will be
available in java build path, but framework need to import the
corresponding packages in test driver class. This is handled in
the framework by creating the index to the all classes and
packages. Thus frameworks will automatically import the
corresponding packages required for classes. These
capabilities of the framework make it truly end-to-end
automation i.e. framework is executed without any manual
intervention.

4 TEST RESULTS
The framework is tested with classes of all types, i.e. classes
having all possible conditions and constraints. This section
provides the results of the framework execution against these
classes and evaluates the framework.

1. Sample console output from the execution of
the framework.

Framework is tested against the classes and the results are
recorded. Below is the console output screen shoot of the
framework execution. In this screen shot Fig 6, we can find
that framework has followed step by step execution and as
expected and actual values are different, the test has failed.
We can also see that framework produces sensible system
outs that will help in understanding the flow of the framework.
Here NaServer, is a class, that contains the methods to
connect to the server and execute the methods/APIs on the
server. These methods/APIs will return actual values after
execution; the same are recorded and compared with
expected results.

2. Code Coverage from the framework
We have used EclEmma code coverage tool for finding the
code coverage of the classes executed using the framework.
To keep this paper concise and to the point, here we have just
shown code coverage of the some classes, but these classes
will cover all the scenarios and constraints. As framework is
able to test each method of the class, we will get 100% of

code coverage, provided we supply correct variable
initialization values (test data) that will test/cover all the
instruction of a method. We will be also able to find what code
has not executed and we can change the variable initialization
values to execute this part of the code that has been missed in
first time execution. In Fig 7, we can see that elements are the
classes and the coverage of the instructions is almost 100%,
and all the methods in each class have been executed, except
private methods, as private methods are not to be executed,
as these are not exposed to user/tester or external world.
From analysing this result we can conclude that that
framework is powerful enough to test all the methods of class,
and provide almost 100% code covearage, without tester ever
having to know any programming language and coding
experience. The evaluation of this framework shows that
framework has greater code coverage and method coverage
than that of other frameworks.

Fig 6 Console output from the execution of the framework

Fig.7 code coverage from the framework.

5 CONCLUSIONS
Framework provides end-to-end testing of any java class,
tester need not know the logic implemented in the methods
and also the need not have any coding experience to test
methods using this framework. Framework can be easily used
by everyone either novice or experienced. This framework

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 4, APRIL 2013 ISSN 2277-8616

241
IJSTR©2013

www.ijstr.org

works for all object oriented languages. By this result we can
conclude that that framework is powerful enough to test all the
methods of class. The evaluation of this framework shows that
framework has greater code coverage and method coverage
than that of any other framework. Thus it provides the novel
approach towards unit testing, class testing and also
integration testing (tests for proper binding/mappings between
methods of two classes). Further enhancement would be to
automate the workflow scenarios i.e. executing only certain
methods in certain sequence, to achieve a workflow test case.

References
[1] Yvan Labiche, Integration Testing Object-Oriented

Software System: An Experimental-Driven Research
Approach, Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference,IEEE CCECE
2011 – 000652. 8-11 May 2011, Page(s): 000652 -
000655.

[2] Tao Xie,Kunal Taneja,Shreyas Kale and Darko
Marinov,Towards a Framework for Differential Unit
Testing of Object-Oriented Programs,Second
International Workshop on Automation of Software Test
(AST'07)-0-7695-2971-2/07,IEEE Computer Society,
2007.

[3] W. M. McKeeman. Differential testing for software. Digital

Technical
Journal of Digital Equipment Corporation,10(1):100–107,
1998.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data
selection: Help for the practicing programmer. IEEE
Computer,
11(4):34–41, April 1978.

[5] A. Groce, G. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification. In
Proc. 29

th
 International Conference on Software

Engineering, 2007

[6] R. L¨ammel andW. Schulte. Controllable combinatorial

coverage in grammar-based testing. In Proc. 18th IFIP
International Conference on Testing Communicating
Systems,pages 19–38, 2006.

