IN SILICO IDENTIFICATION AND CHARACTERIZATION OF miRNA IN TURSIOPS TRUNCATUS

KHALIDA NAVEED* ${ }^{1}$, AYESHA GUL ${ }^{\mathbf{1}}$, SYEDA TATHEER FATIMA ${ }^{1}$
Baqai Institute of Information Technology, Baqai Medical University, Pakistan

Abstract

MicroRNAs (miRNAs) belong to class of single-stranded RNA molecules having length of 22 nucleotides. They take part in regulation of gene expression in numerous organisms at post-transcriptional repression level of messenger RNA. In the current research, the EST databases of Tursiops truncatus were explored for the prediction and analysis of potential miRNAs and their target genes with the aid of various computational and bioinformatics tools. In Tursiops truncates, the identification of miRNAs and their targets were carried out on linux operating system featured with Standalone BLAST, CD-Hit, Clustalw, RNAhybrid and imiRNA-SSF. Initially 24 potential miRNAs were identified among them two of them are paralogous with 100% identity. These 24 miRNAs were subjected for analysis of paralogous sequences, secondary structures, true and pseudo miRNAs and phylogenetic studies using CD-HIT, RNAhybrid, imiRNA-SSF, clustalw tools respectively. Finally 2 miRNA with id ttr- mir-147 and ttr- miR-4680 were predicted as mature and real miRNA. The present study suggested that there is an sample of miRNAs in this specie playing some crucial role in the development and physiology of Tursiops truncatus and can further explored for functional studies. These predicted miRNAs will be helpful to accelerate the pace miRNA discovery that eventually lead to an improved and better understanding of miRNA role in the course of development and physiology of Tursiops truncatus.

KEYWORDS: miRNA, Tursiops truncatus, Insilico analysis

KHALIDA NAVEED
Baqai Institute of Information Technology, Baqai Medical University, Pakistan

INTRODUCTION

MicroRNAs (miRNAs) are small noncoding RNA sequences usually consisting of 22 nucleotides. Its precursor is known as miRNA precursor or pre-miRNAs which is a stem-loop hairpin with length of 80 nucleotides. These precursor molecules are firstly transcribed as long RNA molecules. ${ }^{1}$ This precursor is then cleaved with two different RNAase III enzyme in subsequent manner namely Drosha and Dicer into mature miRNA.MicroRNA genes are among the most common and abundant class of regulatory genes in kingdom Animalia. It is supposed that miRNAs may involve in large number of regulatory functions yet not explored because of their high percentages in predicted genes of several organisms. ${ }^{6-10}$ The role of miRNAs in various regulatory processes in class of mammals is still not known. It may be due to their involvement in the course of tissue or developmental stage-specific expression processes or may because of evolutionary homology with other mammals or even with invertebrates. ${ }^{7,8,10-18}$ Experimental approach of miRNAs and their targets identification is time consuming and problematic. Therefore, various bioinformatics based methodologies have been established and employed for fast and reliable miRNAs prediction. Phylogenetic sequence conservation approach is the most successful scheme among the various in silico miRNAs prediction methodologies. ${ }^{19,}{ }^{20}$ The computational programs like miRscan ${ }^{10}$, miRseeker ${ }^{7}$ and RNAhybrid ${ }^{21}$, work on the basis of comparative genomics have been used for the successful prediction of miRNAs.Tursiops truncatus, commonly known as bottlenose dolphin, is among one of the eminent and well-characterized mammal species of marine world. Its natural habitat is tropical water with moderate temperature conditions throughout the world. Molecular understanding of bottlenose dolphin is still in primitive stage despite of its familiarity ${ }^{22-24}$. Therefore, there is a need to explore its molecular aspect of various biological functions and their regulations including information regarding miRNAs found in bottlenose dolphin. In this present study, with the aid of available bioinformatics based tools we have predicted miRNA from whole express sequence tags (ESTs) of Tursiops truncatus. This study will be helpful in better understanding of various cellular and development of Tursiops truncatus.

MATERIALS AND METHODS

Retrieval of Dataset for miRNAs prediction

A total of 8,045 express sequence tags (ESTs) of Tursiops truncatus available at NCBI (http://www.ncbi.nlm.nih.gov/nucest/?term=tursiops\ t runcatus) and miRNA sequences from miRBase database ${ }^{25}$ (http://www.mirbase.org/ftp.shtml) were retrieved as a data set for blastn.

Homology search for prediction of potential miRNAs

Blastn of complete ESTs of bottlenose dolphin was run against the data set of miRBase database using standalone blast version 2.2.29 ${ }^{26}$. Default parameters with e-value of 0.01 were used for blastn search for the prediction of potential miRNAs.

Removal of duplications among predicted miRNAs

In order to remove duplications among the predicted potential miRNAs, Clustering tool CD-HIT (cd-hit.org/) ${ }^{27}$ will be run against newly identified miRNAs.

Secondary structure prediction and validation

In predicted miRNA, nearly 80 nucleotides upstream and downstream of selected and then using sliding window of about 100 nucleotides with increment of 10 nucleotides in moving were used as pre-miRNA sequences. These precursor sequences were thensubjected to web based software RNAhybrid $\begin{array}{lll}\text { version } & 2.2^{28} & \text { (bibiserv.techfak.uni- }\end{array}$ bielefeld.de/rnahybrid/) for precursor secondary structure prediction.

Conservative analysis of miRNA

Tursiops truncatus conservation with their orthologs was analyzed with other eukaryotic species and will be align using ClustalW ${ }^{29}$ (www.ebi.ac.uk/Tools/msa/clustalw2/).

Phylogenetic analysis

Results of ClustalW will be analyzed by aligning selected miRNA sequences with CLUSTALW (www.ebi.ac.uk/Tools/msa/clustalw2/).

RESULTS

Computational prediction of miRNA in Tursiops truncatus

In kingdom animalia, most of miRNAs are highly conserved across different species and this characteristic can be explored for the prediction of novel miRNAs based on sequence alignments strategy. Therefore, we carried out Basic Local Alignment Search Tool BLAST searches of known animal miRNAs against the ESTs database of targeted organism in order to identify potential miRNAs. From 24 predicted different precursor miRNAs, two new and potential miRNAs in Tursiops truncatus were identified on the basis of their secondary structures; free energy; and true and pseudo content analysis.In miRBase database, two 2 datasets are available that is mature miRNA dataset and hairpin miRNA dataset respectively. Standalone BLAST was performed against mature miRNA datasets which resulted in no significant hits. It was then followed by BLAST search against hairpin miRNA dataset which results in 24 hits. The result summary of identified potential 24 microRNAs with their precursors, paralogous sequences and true microRNAs are listed in Table 1. The comprehensive information including names, sequence of hairpin miRNAs, MFE, and sources of novel Tursiops truncatus miRNA genes are also listed in Table 2. The length of 24 predicted miRNAs ranged from 20 to 21 nucleotides, while the predicted precursor sequences ranged in length from 77 to 300 nucleotides. Among 24 newly identified miRNAs, Paralogous sequences were observed in two predicted miRNA (mir147and mir-147b) (miR-1244-4 and miR 1244-4b). These sequences were perfectly (100%) matched with each other. The secondary structures of remaining 22 miRNAs were identified using RNAhybrid software. Among these 22 miRNAs, 6 miRNAs have higher minimal free energies which is greater than $-24 \mathrm{kcal} / \mathrm{mol}$. These 6 structures were excluded and finally 16
miRNAs were selected which are listed in Table 3. The 16 identified Tursiops truncatus miRNAshave MFEs ranging from -0.47 to $-27.8 \mathrm{kcal} / \mathrm{mol}$, with an average of about $-54.6 \mathrm{kcal} / \mathrm{mol}$. All the MFEls of hairpin structures of newly identified miRNAs were above 0.60 that used to discriminate miRNAs from other ones. ${ }^{30}$ All the predicted miRNAs have typical stem-loop in their structure and their expected secondary structures are shown in Table 3. The variation among the sizes of the predicted miRNAs may be due to their different
precursors that might be responsible for unique functions in miRNA biogenesis or gene regulation. ${ }^{30}$ According to study of zhang, the probability of occurrence of single miRNA in a length of about 100,000 ESTs is 1 miRNA indicating a rough frequency of miRNA occurrence is 0.1% in entire EST sequences of specie . ${ }^{30}$ Therefore, from the above assumption Tursiops truncatus having 8,045 ESTs should have 0.8045 miRNAs.

Total number of Tursiops truncatus EST sequences	$\mathbf{8 , 0 4 5}$
Total number of microRNAs identified in Tursiops truncatus	24
Prologues sequences found in 24 microRNAs	2
	$24-2=22$
Real miRNA sequences found	2
	ttr-mir 147; ttr- miR-4680

Table 1
Result summary of microRNAs in Tursiops truncatus

S\#	Genbank IDs .	MicroRNAsID	Sequence of microRNAs	Precursor sequence
1.	Gi74261219	Equusaballus miR-	TGCTCTGGATTAGGCTTTGGCTTAAG	CCCTTAAACCTCACGGGCTAGTCTCTGCT
		1261	GGAATGTTGTGGCTGATTTGATCTTCT	AGCTTCAAACTTTTCTTCTGCAGCTTCTTC
			ATCCAGACCTTTAAAGCGTTCTCCATA	ACCTCTCTCAGCCTTCACAGAATTGAAGA
			TTAGC	GAGTTAGGGCCTTGCTCTGGATTAGGCT
				TTGGCTTAAGGGAATGTTGTGGCTGATTT
				GATCTTCTATCCAGACCTTTAAAGCGTTC

6.	Gi259803777	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	ATTTCCTTAAGGAGGGCTTTAACCAATTA GTTATTAAACTTTTTTAATGGGTCTCAAAT TCTGTGACAAATTTTTGGTCAAGTTGTTTC CATTAAAAAGTACTGATTTTAAAAACTAAT AACTTAAAACTGCCACACACAAAACAAAT GGTCCACAACACATTCTCCTTTCCTTCTG AAGGTTTTACAATGCATTGTTATCATTAAC CAGTCTTTTGCTATTAAACTTAAATGGCC AATTGAAACAAACAGTTCTGAAACCGTTC TTCCACCACTGATTAAAACCGGGGTGGC AGGTATTGGGGATAATATTC
7.	Gi259802500	$\begin{aligned} & \hline \text { Eptesicusfuscus miR- } \\ & 9366 \end{aligned}$	ACTGAGAGATCATGCTGATAGTAACAT TGTTATCACGCTTGTGGGCAATAAGA GTGATTTGCGCCATCTCAGGGCGGTT CCTACAGATGAAGCAAGAGCTTTTGC AGAAAAGAATGGTTTGTCATTCATTGA GACATCTGCTCTAG	TATAACATCAGCATACTATCGTGGAGCTG TAGGTGCCTTATTGGTTTATGACATTGCT AAACATCTCACATATGAAAATGTAGAGCG ATGGCTGAAAGAACTGAGAGATCATGCT GATAGTAACATTGTTATCACGCTTGTGGG CAATAAGAGTGATTTGCGCCATCTCAGG GCGGTTCCTACAGATGAAGCAAGAGCTT TTGCAGAAAAGAATGGTTTGTCATTCATT GAGACATCTGCTCTAGACTCTACAAATGT AGAAGCTGCTTTTCAGACAATCTTGACAG AGATATACCGCATTGTTTCCCAGAAGCAA ATGTCAGACAGACGTGAAAATGACATGTC
8.	Gi259802594	$\begin{aligned} & \hline \text { Eptesicusfuscus miR- } \\ & 9366 \end{aligned}$	CTAGAGCAGATGTCTCAATGAATGACA AACCATTCTTTTCTGCAAAAGCTCTTG CTTCATCTGTAAGAACCGCCCTGAGAT GGCGCAAATCACTCTTATTGCCCACAA GCGTGATAACAA TGTTACTATCAGCATGATCTCTCAGT	GACATGTCATTTTCACGTCTGTCTGACAT TTGCTTCTGGGAAACAATGCGGTATATCT CTGTCAAGATTGTCTGAAAAGCAGCTTCT ACATTTGTAGAGTCTAGAGCAGATGTCTC AATGAATGACAAACCATTCTTTTCTGCAA AAGCTCTTGCTTCATCTGTAAGAACCGCC CTGAGATGGCGCAAATCACTCTTATTGCC CACAAGCGTGATAACAATGTTACTATCAG CATGATCTCTCAGTTCTTTCAGCCATCGC TCTACATTTTCATATGTGAGATGTTTAGCA ATGTCATAAACCAATAAGCCAATCAGTTA AATAAATCTTGGTCTAAAGAGATTAC
9.	Gi259802835	Mus musculus miR-684-1	GTAGGGCAATCTGTCTTTAAGTAGGG ATAAATTACTCTAAAAGAAA- TGAATCCTAGATAGTTTTCCCTTCAAA TCAAGCGTCTTG	TTCTTGCATACCTTGTTCGATTGGAGAAT TTTAATGTTTTTCATTTATCATTGTAAAAC CATGGACAATTTTATAACTTTTTTGTACGT AGCTGTTACATGTAGGGCAATCTGTCTTT AAGTAGGGATAAATTACTCTAAAAGAAAT GAATCCTAGATAGTTTTCCCTTCAAATCA AGCGTCTTGTTGTTTAAATAAACTTCTTGT TTAAAATGAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAGAAAAAAAAAAAA
10.	Gi259802942	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	GTTTTTCCTGTTGACTGTGGGCTCCAGGA TGAATGTAGTTCCAATGGCTTAATCCAAA TCAGGAGATAATTTCCTTAAGGAGGGCTT TAACCAATTAGGTACTGATTTTAAAAACTA ATAACTTAAAACTGCCACACACAAAACAA ATGGTCCACAACACATTCTCCTTTCCTTC TGAAGGTTTTACAATGCATTGTTATCATTA ACCAGTCTTTTGCTATTAAACTTAAATGG CCAATTGAAACAAACAGTTCTGAAACCGT TCTTCCACCACTGATTAAAACCGGGGTG GCAGGTATTGGGGATAATATTC
11.	Gi259803027\|	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGCCCA CAACACATTCCCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TAAGAGATTTGGGAGGATTGTTTTCCTCA TTAAGCTTTGTTTTATCATGGGTCTCAAAT TCTGTGACAAATTTTTGGTCAAGTTGTTTC CATTAAAAAGTACTGATTTTAAAAACTAAT AACTTAAAACTGCCACACACAAAACAAAT GGCCCACAACACATTCCCCTTTCCTTCTG AAGGTTTTACAATGCATTGTTATCATTAAC CAGTCTTCTGCTATTAAACTTAAATGGCC AATTGAAACAAACAGTTCTAAAACCGTTC TTCCACCACTGATTAAAACCGGGGGGGC AGGTATTGGGAATAATATTC
12.	Gi259803318	Homo sapiens miR-1244-4	$\begin{aligned} & \text { TTTTTAACCATCTCATACAAACCAACTA } \\ & \text { CTTATAGTACAGCTAAGTACATACACa } \\ & \text { aaaaaaGTTACTGGAATGCTCGGAATAA } \end{aligned}$	GGACAACATTGTTTCACACATACATCAAA CAGGCCAAAAAAAATAAACAGCAACTTCA TAAACAAAAAAAGGAAAAAAAAAAAACCT TTTACCTTTGGCCTTTTTAACCATCTCATA CAAACCAACTACTTATAGTACAGCTAAGT ACATACACAAAAAAAGTTACTGGAATGCT CGGAATAAAATTGTTTTTTTGTTGTTGTTT TTGCTTTTTTTTTACAAGGTTTTTTTTCTC CTTTGAAATTATAATGAACATGGCCACAC CACAAGTAAAGTCAAAAGT
13.	Gi259803425	Homo sapiens miR-1244-4	aTCTTATTCCGAGCATTCCAGTAACttttt tGTGTATGTACTTAGCTGTACTATAAGT AGTTGGTTTGTATGAGATGGTTAAAAA	CCTACTTCTGACTTTACTTGTGGTGTGAC CATGTTCATTATAATCTCAAAGGAGAAAA AAAACCTTGTAAAAAAAAAGCAAAAACAA CAACAAAAAAACAATCTTATTCCGAGCAT TCCAGTAACTTTTTTTGTGTATGTACTTAG

				CTGTACTATAAGTAGTTGGTTTGTATGAG ATGGTTAAAAAGGCCAAAGGTAAAAGGTT TCTTTTTTTTCCTTTTTTTGTCTATGAAGTT GCTGTTTATTTTTTTTGGCCTGTTTGATGT ATGTGTGAAACAATGTTGTCC
14.	Gi259803533	Homo sapiens miR-1244-4b	aTCTTATTCCGAGCATTCCAGTAACttttt tGTGTATGTACTTAGCTGTACTATAAGT AGTTGGTTTGTATGAGATGGTTAAAAA	CCTACTTCTGACTTTACTTGTGGTGTGAC CATGTTCATTATAATCTCAAAGGAGAAAA AAAACCTTGTAAAAAAAAAGCAAAAACAA CAACAAAAAAACAATCTTATTCCGAGCAT TCCAGTAACTTTTTTTGTGTATGTACTTAG CTGTACTATAAGTAGTTGGTTTGTATGAG ATGGTTAAAAAGGCCAAAGGTAAAAGGTT TCTTTTTTTTCCTTTTTTTGTCTATGAAGTT GCTGTTTATTTTTTTTGGCCTGTTTGATGT ATGTGTGAAACAATGTTGTCC
15.	Gi259803694	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TTTCCTTAAGGAGGGCTTTAACCAATTAG CTCATTAAACTTTTTTAATGGGTCTCAAAT TCTGTGACAAATTTTTGGTCAAGTTGTTTC CATTAAAAAGTACTGATTTTAAAAACTAAT AACTTAAAACTGCCACACACAAAACAAAT GGTCCACAACACATTCTCCTTTCCTTCTG AAGGTTTTACAATGCATTGTTATCATTAAC CAGTCTTTTGCTATTAAACTTAAATGGCC AATTGAAACAAACAGTTCTGAAACCGTTC TTCCACCACTGATTAAAACCGGGGTGGC AGGTATTGGGGATAATATTC
16.	Gi259805583	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TTCCTTAAGGAGGGCTTTTAACCAATTAGT TCTCATTAAACTTTTTTAATGGGTCTCAAA TTCTGTGACAAATTTTTGGTCAAGTTGTTT CCATTAAAAAGTACTGATTTTAAAAACTAA TAACTTAAAACTGCCACACACAAAACAAA TGGTCCACAACACATTCTCCTTTCCTTCT GAAGGTTTTACAATGCATTGTTATCATTAA CCAGTCTTTTGCTATTAAACTTAAATGGC CAATTGAAACAAACAGTTCTGAAACCGTT CTTCCACCACTGATTAAAACCGGGGTGG CAGGTATTGGGGATAATATTC
17.	Gi259805668	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TTCCTTAAGGAGGGCTTTAACCAATTAGT TCTCATTAAACTTTTTTAATGGGTCTCAAA TTCTGTGACAAATTTTTGGTCAAGTTGTTT CCATTAAAAAGTACTGATTTTAAAAACTAA TAACTTAAAACTGCCACACACAAAACAAA TGGTCCACAACACATTCTCCTTTCCTTCT GAAGGTTTTACAATGCATTGTTATCATTAA CCAGTCTTTTGCTATTAAACTTAAATGGC CAATTGAAACAAACAGTTCTGAAACCGTT CTTCCACCACTGATTAAAACCGGGGTGG CAGGTATTGGGGATAATATTC
18.	Gi259805867	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TCCTTAAGGAGGGCTTTAACCAATTAGTT CTCATTAAACTTTTTTAATGGGTCTCAAAT TCTGTGACAAATTTTTGGTCAAGTTGTTTC CATTAAAAAGTACTGATTTTAAAAACTAAT AACTTAAAACTGCCACACACAAAACAAAT GGTCCACAACACATTCTCCTTTCCTTCTG AAGGTTTTACAATGCATTGTTATCATTAAC CAGTCTTTTGCTATTAAACTTAAATGGCC AATTGAAACAAACAGTTCTGAAACCGTTC TTCCACCACTGATTAAAACCGGGGTGGC AGGTATTGGGGATAATATTC
19.	Gi259805909	Homo sapiens miR-1244-4	$\begin{aligned} & \text { TTTTTAACCATCTCATACAAACCAACTA } \\ & \text { CTTATAGTACAGCTAAGTACATACACa } \\ & \text { aaaaaaGTTACTGGAATGCTCGGAATAA } \end{aligned}$	GGACAACATTGTTTCACACATACATCAAA CAGGCCAAAAAAAATAAACAGCAACTTCA TAAACAAAAAAAGGAAAAAAAAAAAACCT TTTACCTTTGGCCTTTTTAACCATCTCATA CAAACCAACTACTTATAGTACAGCTAAGT ACATACACAAAAAAAGTTACTGGAATGCT CGGAATAAAATTGTTTTTTTGTTGTTGTTT TTGCTTTTTTTTTACAAGGTTTTTTTTCTC CTTTGAAATTATAATGAACATGGTCACAC CACAAGTAAAGTCAAAAGT
20.	Gi259805914	Xenopuslaevis miR703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTACTC ATTAAACTTTTTTAATGGGTCTCAAATTCT GTGACAAATTTTTGGTCAAGTTGTTTCCA TTAAAAAGTACTGATTTTAAAAACTAATAA CTTAAAACTGCCACACACAAAACAAATGG TCCACAACACATTCTCCTTTCCTTCTGAA GGTTTTACAATGCATTGTTATCATTAACCA GTCTTTTGCTATTAAACTTAAATGGCCAAT TGAAACAAACAGTTCTGAAACCGTTCTTC CACCACTGATTAAAACCGGGGTGGCAGG TATTGGGGATAATATT
21.	Gi259804379	Bosstaurus miR- $2904-3$	ACGGCAGCGCCGCGGGAGCCTCGGT TGGCCTCGGATAGCCGGTCCCCCACC	TGGTGTATGTGCTTGGCTGAGGAGCCAA TGGGGCGAAGCTACCATCTGTGGGATTA

			GTCC	TGACTGAACGCCTCTAAGTCAGAATCCC GCCCAGGCGGAACGATACGGCAGCGCC GCGGGAGCCTCGGTTGGCCTCGGATAG CCGGTCCCCCACCGTCCACACCACTTCC AACCTCATAGGAGCCGATGTATTTATTTT CCTTGAGTTTTTATTTATGCTGTAAAATGT ACCAAGCGATGGTTAAAGGGGACGTCAG AC
22.	Gi259805383	Xenopuslaevis miR- 703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACAATGCATTGTTATCATTAACCA GTCT	TTCCTTAAGGAGGGCTTTTAACCAATTAGT CTCATTAAACTTTTTTAATGGGTCTCAAAT TCTGTGACAAATTTTTGGTCAAGTTGTTTC CATTAAAAAGTACTGATTTTAAAAACTAAT AACTTAAAACTGCCACACACAAAACAAAT GGTCCACAACACATTCTCCTTTCCTTCTG AAGGTTTTACAATGCATTGTTATCATTAAC CAGTCTTTTGCTATTAAACTTAAATGGCC AATTGAAACAAACAGTTCTGAAACCGTTC TTCCACCACTGATTAAAACCGGGGTGGC AGGTATTGGGGATAATATTC
23.	Gi259803963	Xenopuslaevis miR- 703	ACTGATTTTAAAAACTAATAACTTAAAA CTGCCACACACAAAACAAATGGTCCA CAACACATTCTCCTTTCCTTCTGAAGG TTTTACGATGCATTGTTATCATTAACCA GTCT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTCC ATTAAACTTTTTTAATGGGTCTCAAATTCT GTGACAGATTTTTGGTCAAGTTGTCTCCA TTAAAAAGTACTGATTTTTAAAAACTAATAA CTTAAAACTGCCACACACAAAACAAATGG TCCACAACACATTCTCCTTTCCTTCTGAA GGTTTTACGATGCATTGTTATCATTAACC AGTCTTTTGCTATTAAACTTAAATGGCCAA TTGAGACAAACAGTTCTGAAACCGTTCTT CCACCACTGATTAAGACCGGGGTGGCAG GTATTGGGGATAATATTC
24.	Gi259802663	Bostaurus miR-4680	CTGAATATAAGAACTCTTGCAGTCTTA GATGTTATAAAAAATATATATATCTGAA TTGTAAGAGTTGTTAGCACAG	GAATTTGTATCTGTTTTCATGTTTGTGTTC TTTTCATTGCAGGGGCAGAAAACGTTTTG TAAGTGAAGGAGATGGAGGTCGTCTTAA ACCAGAGAGCTACTGAATATAAGAACTCT TGCAGTCTTAGATGTTATAAAAAATATATA TATCTGAATTGTAAGAGTTGTTAGCACAG TTTTTTGGTTTTTTTTTTTTTTAGCACTTGT TTTGGGTACAAGACATTTTTGAAATTTTGT AAACTTACATTTAAGGGAAATTTTTAAAGT AAGTGTTTT

Table 2
Sequences of 24 identified miRNA and precursor

This article can be downloaded from www.ijpbs.net

Int J Pharm Bio Sci 2016 Oct; 7(4): (B) 847-855

$\begin{array}{lllllll}15 & 259803963 & 313 & -170.9 & 35.5878 & -1.53\end{array}$
\qquad
$\begin{array}{lllllll}16 & 77992081 & 287 & -69.5 & 39.024 & -0.620\end{array}$

Table 3
Sequence details and sec. structures of miRNA

This article can be downloaded from www.ijpbs.net

Conservation of Tursiops truncatus miRNAs

The conservation search of pre-miRNA (ttr-mir-147) of Tursiops truncates against orthologous species was carried out and suggested sequence conservation of miRNA with other animals with same physiological functions. This outcome strongly validate that the newly identified miRNAs is a potential candidate of miRNAs in

Tursiops truncatus. The sequence conservation results are shown in Figure:1. Phylogenetic analysis of the miRNA (ttr-mir-147) sequence shown in Figure: 2 suggest that the Tursiops truncatus is more closely related to Capra hircus and Canis familiaries indicating its evolutionary conservation during the course of development.

osa-MIR5834	cgrugccuacaucuruaacc-----ac-----uaaamgucu
cfa-mir-147	gagauacuuagaucaccuuuguaacgacgugruugaucuaauaccuauggucacacgccu
chi-mir-147	gagauacuuagaucaccuuugugaaguacguguuugaucuaauaccuauggucacacgecu
ttr-mir-147	---auacuuagaucaccurugugaagacguguccgaucuaauaccuauggucacacgecu
mmal-mir-147b	---auauuuagaucaccuuuguaaaggcgugruugaucuaagaccuguggucacacgecu
hsa-mir-147b	--auauuuagaucaccuxuguaaagacgugrdugaucuaagaccuguggucacacgccu
ppy-mir-147b	--auauuuagaucaccuxuguaaagacgugruugaucuaagaccuguggucacacgecu
ptr-mir-147b	--uauuuagaucaccuxuguaaagacgugruugaucuaagaccuguggucacacgecu
aca-mir-147	--gauacuuagaucaccuagugaaggcgugruugaucuacuuacunuggucacacgecu
oha-mir-147-1	------uuagaucaccuagruaagacgugruugaucuecuaccuunggucacacgecu
gga-mir-147	-----unagaucaccuraguaaagacgugruugaucuccuaccunuggucacacgecu
mdo-mir-147b	-gauacuuagaucaccunuguagaggegugruugaucugaugacuuuggucacacgecu
tgu-mir-147	---------aucaccunaguaagacgugruugaacugaugacuuagucacacgccu
osa-MIR5834	ccgcaaucgaguncuuaauauc--
cfa-mir-147	uиacgaagacgauguaaaaucce
chi-mir-147	uuacgaagacgauguaaaauccc
ttr-mir-147	uuacgaagacgauguaaaauc--
mmal-mir-147b	ucacgaagacgacguaaaauc--
hsa-mir-147b	uuacgaagacgauguaaaauc--
ppy-mir-147b	unacgaagacgauguaaaauc--
ptr-mir-147b	uuacgaagacgauguaaaauc--
aca-mir-147	uracgaagacgauguaaaauccc
oha-mir-147-1	unacgaagacgauguaaaau---
gga-mir-147	unacgaagacgauguaaaau---
mdo-mir-147b	ucacgaagacgauguaaaauc--
tgu-mir-147	unacgaagacgauguaaaau---

Figure 1
Sequence variation among ttr-mir-147 and other miRNAs using Clustalw

Figure 2
Phylogenetic tree showing evolutionary relatedness of ttr-mir-147

CONCLUSION

By seeking the publicly accessible Tursiops truncatus ESTs with those bioinformatics method, an aggregate number for 2 possibility miRNAs were distinguished. We anticipate that seeing of the part of miRNAs in the metabolic drought resistant in the animal will assistance clarify the methodology from a post transcriptional level.

REFERENCES

1. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663-70.
2. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S , Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23-34.

Those discoveries about miRNAs clinched alongside Tursiops truncatus will clear those manners to understanding the function and processing of Tursiops truncatus small RNAs in future.

CONFLICT OF INTEREST

Conflict of interest declared none.
3. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834-8.
4. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA
involved in developmental timing in C. elegans. Genes \& development. 2001;15(20):2654-9.
5. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415-9.
6. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissuespecific microRNAs from mouse. Current Biology. 2002;12(9):735-9.
7. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biology. 2003;4(7):R42.
8. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858-62.
9. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862-4.
10. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science. 2003;299(5612):1540-.
11. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology. 2003;13(10):807-18.
12. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology. 2001;11(13):1017-27.
13. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003;9(2):180-6.
14. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Developmental cell. 2003;5(2):351-8.
15. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9(10):1274-81.
16. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853-8.
17. Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Developmental biology. 2003;258(2):432-42.
18. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86-9.
19. Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome research. 2007;17(12):1865-79.
20. Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature. 2007;450(7167):219-32.
21. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic acids research. 2006;34(suppl 2):W451-W4.
22. Blair a, Sco d, Kaufmann h. Movements and activities of the Atlantic bottlenose dolphin, Tursiops truncatus, near Sarasota, Florida. Fishery bulletin. 1981;79(4).
23. Scott MD, Wells RS, Irvine AB. A Long-Term Study of Bottlenose Dolphins on the West Coast of Florida 11. The bottlenose dolphin. 1990:235.
24. Vollmer NL, Rosel PE. A review of common bottlenose dolphins (Tursiops truncatus truncatus) in the northern Gulf of Mexico: Population biology, potential threats, and management. Southeastern Naturalist. 2013;13(m6):1-43.
25. Sam Griffiths-Jones RJG, Stijn van Dongen, Alex Bateman and Anton J. Enright. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research. 2006;34:D140-D4.
26. Jian Ye SMaTLM. BLAST: improvements for better sequence analysis. Nucleic Acids Research. 2006;34:W6-W9.
27. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26(5):680-2.
28. Rehmsmeier JKgaM. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research. 2006;34(W451-W454).
29. Julie D.Thompson DGHaTJG. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. 30. Zhang B., Pan X., Cobb G.P., Anderson T.A. (2006). Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences, 63(2), 246-254.

