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Abstract 

 

The Finite Impulse Response (FIR) filter is a digital filter widely used in Digital Signal Processing 

applications in various fields like imaging, instrumentation, communications, etc. Programmable digital 

processors signal (PDSPs) can be used in implementing the FIR filter. However, in realizing a large-

order filter many complex computations are needed which affects the performance of the common digital 

signal processors in terms of speed, cost, flexibility, etc. 
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1. Introduction 

There are many conventional methods for the design ofa FIR filter such as window method 

(Kaiser, Blackmann, Hanning and Hamming etc.), frequency sampling method etc. (Parks and 

McClellan, 1972; Rabiner, 1973; Litwin,2000). But these methods do not allow sufficient and 

precise control of various frequencies like pass band and stop band cut-off frequencies and the 

transition width. For last few years the works have been done continuously to evolve new 

methods for the filter design. The most frequently used method for the design of exact linear 

phase FIR filter is Chebyshev approximation method based on the Remez exchange algorithm 

developed by Parks McClellan (PM)(Parks and McClellan, 1972). A well-defined computer 

programme reported in McClellan et al. (1973) shows the further improvements in their results. 

These filter design methods are based on classical optimisation techniques and have greater 

tendency to get struck at local minima as they are highly dependent on their starting solutions. 

Slow convergence speed also limits the usefulness of the classical optimisation techniques. The 

objective function for the design of optimal digital filters involves accurate control of various 

parameters of frequency spectrum and is highly on-uniform, non-linear, non-differentiable and 

multimodal in nature. Several disadvantages of classical optimisation techniques are: 

 Highly sensitive to starting points when the number of solution variables and hence the 

size of the solution space increases 
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 Frequent convergence to local optimum solution or divergence or revisiting the same 

suboptimal solution 

 Requirement of continuous and differentiable objective cost function (gradient search 

methods) 

 Requirement of the piecewise linear cost approximation(linear programming) 

 Problem of convergence and algorithm complexity(non-linear programming). 

 

1.1 Digital Filter Types 

There are two basic types of digital filters, Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) filters. The general form of the digital filter difference equation is 

𝑦 𝑛 =  𝑎𝑖𝑥 𝑛 − 𝑖 −𝑁
𝑖=0  𝑏𝑖𝑦 𝑛 − 𝑖 𝑁

𝑖=0          (1) 

where, y(n) is the current filter output, the 𝑦 𝑛 − 𝑖  are previous filter outputs, the 𝑥 𝑛 − 𝑖  are 

current or previous filter inputs, the 𝑎𝑖are the filter’s feed forward coefficients corresponding to 

the zeros of the filter, the 𝑏𝑖are the filter’s feedback coefficients corresponding to the poles of the 

filter, and N is the filter’s order.  

IIR filters have one or more nonzero feedback coefficients. That is, as a result of the feedback 

term, if the filter has one or more poles, once the filter has been excited with an impulse there is 

always an output. FIR filters have no non-zero feedback coefficient. That is, the filter has only 

zeros, and once it has been excited with an impulse, the output is present for only a finite (N) 

number of computational cycles [3].Because an IIR filter uses both a feed-forward polynomial 

(zeros as the roots) and a feedback polynomial (poles as the roots), it has a much sharper 

transition characteristic for a given filter order. Like analog filters with poles, an IIR filter usually 

has nonlinear phase characteristics. Also, the feedback loop makes IIR filters difficult to use in 

adaptive filter applications. 

A digital filter is characterized in terms of difference equations .There are two types of digital 

filters, they are non-recursive, and recursive filters which are characterized based on their 

responses [1]. 

The response of a non-recursive filter at any instant depends on the present, past and future values 

of the input. At any specific instant nT. The response is of the form 

𝑦 𝑛𝑇 = 𝑓(… . , 𝑥 𝑛𝑇 − 𝑇 , 𝑥 𝑛𝑇 ,𝑥 𝑛𝑇 + 𝑇 … . . )                  (2)       

Assuming linearity and time-invariance y(nT) can be expressed as 

𝑦 𝑛𝑇 =  𝑎𝑖𝑥 𝑛𝑇 − 𝑖𝑇 ∞
𝑖=−∞      (3) 

where .𝑎𝑖represents constants. Now assuming causality for the filter we have 

a-1= a-2 =………..=0 

In addition, assuming ai=0 for i> N the response can be written as Nth-order linear difference 

equation given as: 

𝑦 𝑛𝑇 =  𝑎𝑖𝑥 𝑛𝑇 − 𝑖𝑇 𝑁
𝑖=0                   (4) 

Such a linear, time-invariant, causal, non-recursive filter represented as Nth-order linear 

difference equation is called the Finite Impulse Response (FIR) filter. 

When a unit impulse defined as 

𝛿 𝑛𝑇 =  
0 𝑓𝑜𝑟 𝑛 ≠ 0
1 𝑓𝑜𝑟 𝑛 = 0
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is applied to the system described by Equation (1.4), then the response, which is nothing but the 

impulse response h(nT) is given as 

𝑦 𝑛𝑇 =  𝑎𝑖𝛿 𝑛𝑇 − 𝑖𝑇 𝑁
𝑖=0       (5) 

From the above equation it can be inferred that the impulse response is finite and from the 

property of the impulse function we can see that the constants .ai are nothing but the samples of 

the impulse response. That means 

ℎ 0 = 𝑎0, ℎ 𝑇 = 𝑎1……………………….ℎ 𝑛𝑇 = 𝑎𝑛    (6) 

From these set of difference equations we can construct a block diagram consisting of an 

interconnection including delay elements, multipliers, and adders. Such a block diagram can be 

further analyzed in terms of signal flow diagrams. Such a block diagram can be referred as a 

realization of the system or in other words as a structure for realizing the system. These 

structures are nothing but the filter structures. One of the limitations of the FIR filter is that the 

order of the filter is generally large in order to meet the desired specifications of the filter. As the 

filter order is increased, the computational complexity is more which may limit the frequency of 

operation. 

Traditionally, a DSP algorithms are implemented either using general purpose DSP processors 

(low speed, less expensive, flexible) or using Application Specific Integrated Circuits (ASIC) 

which offer high speed but are expensive and less flexible.  

 

Figure 1: Magnitude frequency response specifications for a low pass filter. 

The following are the key parameters of interest: 

𝛿𝑝= peak pass band deviation (or ripples) 

𝛿𝑠  = stop band deviation. 

fs = stop band edge frequency. 

Fp = pass band edge frequency. 

Fs = sampling frequency. 

The edge frequencies are often given n the normalized form, that is as the fraction of the 

sampling frequency (f/Fs). Pass band and stop band deviation may be expressed in decibels. 

When they specify the pass band ripples and minimum stop band attenuation respectively. Thus 

the minimum stop band attenuation, As and the peak pass band ripple, Ap, in decibels are given 

as 

As (stop band attenuation) = -20log10 𝛿𝑠  

Ap (pass band ripple) = 20 log10 (1+𝛿𝑝 ) 

The difference between fs and fp gives the transition width of the filter. Another important 

parameter is the filter length, N, which defines the number of filter. 
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2. Proposed Solution 

In our work we are designing digital FIR filter by frequency sampling method. The frequency 

sampling method will work in following way, we start in the frequency domain, and sample the 

desired frequency response H(ejΩ) with N evenly-spaced samples instead of a continuous 

frequency, and get Hd(k)= Hd(ejΩ)|Ω=2πk/N, (k=0,1,…, N-1). Then, let H(k)= Hd(k)= 

Hd(ejΩ)|Ω=2πk/N, we get the unit impulse response, h(n)=IDFT[H(k)], where IDFT is Inverse 

Discrete Fourier Transform. The inverse DFT then yields an impulse response which will lead to 

a filter whose frequency response the same as that of the specification exactly at the location of 

the frequency samples. 

Here optimization of filter coefficients is used to design the low pass filter. Bio inspired 

optimization serves our purpose. Bacterial foraging optimization has been used earlier but backed 

by drawbacks of slow convergence. So improvement in BFO is brought by addition of particle 

swarm optimization (PSO). This BPSO optimization calls an objective function each time. This 

objective function is the backbone of whole algorithm. It calculates the error between designed 

filters frequency response and ideal filter response and optimization tends to minimize that error. 

Many constraints are put in objective function to reach the destination. The number of variables 

to optimize by BPSO is the order of filter divided by 2, if it is even else order +1 divided by 2. 

This is because digital filter coefficients exhibits a property of similarity of [ℎ 1 =
ℎ 𝑁 ,ℎ 2 = ℎ 𝑁 − 1 ……… ] . As per the property of BFO and PSO, initial positions of 

bacteria are random, but we have to fix some of them to give the control of defined pass band 

frequency. Various filter parameters which are responsible for the optimal filter design are the 

stop band and pass band normalized frequencies (𝜔𝑠 , 𝜔𝑝) the pass band and stop band ripples 

(𝛿𝑠,𝛿𝑝 ), the stop band attenuation and the transition width. These parameters are mainly decided 

by the filter coefficients which are evident from transfer function in equation 1.5. Different kind 

of error fitness function calculation is used in literature but in our work following error 

calculation is used: 

𝐸 𝜔 =  𝐺(𝜔)[𝐻𝑑 𝑒
𝑗𝜔  − 𝐻𝑖(𝑒

𝑗𝜔 )] 

Where 𝐻𝑑 𝑒
𝑗𝜔   is designed filter response and 𝐻𝑖(𝑒

𝑗𝜔 )]  is ideal filter response, 𝐺(𝜔)  is the 

weighting factor. For ideal low pass filter 

𝐻𝑖 𝑒
𝑗𝜔  =  

1 𝑓𝑜𝑟 0 ≤ 𝜔 ≤ 𝜔𝑐

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

The major drawback of this algorithm is that 
𝛿𝑝

𝛿𝑠,
 is fixed. To give control of user over pass band 

and stop band ripples the error function is updated as: 

𝐽 = max
𝜔≤𝜔𝑝

[ 𝐸 𝜔 − 𝛿𝑝  ] + max
𝜔≥𝜔𝑠

[ 𝐸 𝜔 − 𝛿𝑠 ] 

This equation provides the constraint to the objective function for minimization of error. This 

error is compared to previous error after every iteration and if condition is met then optimization 

stops. The complete flow chart of the method step by step is shown in the appendix-A 

3. Results 

In our work as discussed above FIR filters are designed by frequency sampling method. 

Frequency sampling method gives more freedom to control the undesired ripples in pass band and 

stop band. It is a bitter truth to accept that ideal filter response is impossible to design, but it is 

always tried to minimize the ripples in stop band. Our work is also a step forward in that 

direction. We have chosen bio inspired optimization to set frequency response of filter so that 

ripples can be minimized. Here particle swarm optimization (PSO) in collaboration with bacterial 

foraging optimization (BFO) is used and results are compared with only BFO and practical 
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response of filter. For this purpose MATLAB is used as a tool as it provides a wide range of 

toolboxes and freedom to design desired filter. The frequencies selected here for stop band and 

pass band are normalized. The order of filter is set to M=21. Since filter coefficients shows a 

similar pattern so we need to calculate only 11 coefficients here as order is odd, if order is to be 

even then calculation points will be M/2. This reduces the computation time. 1000 sampling 

points have been selected. To reduce the side lobs in the filter, two methods can be adopted: 

either increase the samples or set the coefficients value to optimum value. Increasing the 

sampling points still not gives control over filter coefficients and increases the computation time 

also. So, later is selected for our work. Initially BFO is used for computation and sets the 

coefficient value. In BFO as discussed above an objective function is called in each iterations and 

that objective function measure the error after calculating by the formula discussed in chapter 4. 

Initial values considered for filter, BFO and BPSO optimization is listed in table 1. 

Table 1: Initial Parameters considered for filter design 

Order of filter 21 

Pass band frequency 0.5*pi 

Transition band frequency 0.1*pi 

Pass band ripples 0.1 

Stop band ripples 0.01 

Sampling points 1000 

BFO Parameters 

Number of bacteria 26 

Dimension of searching space 11 

No of chemo tactic step 5 

Swimming steps 15 

Reproduction steps 4 

Elimination/dispersal steps 2 

Step size 0.5 

PSO Parameters 

C1 0.5 

C2 0.05 

R1& R2 random 

Initial positions of bacteria in both optimizations is taken random conditionally the positions for 

which pass band frequency is greater than the sampling points frequency, are set to 1 in every 

iteration so that control over cut off frequency can be provided during optimization. In BFO each 

bacteria move to gain optimum position which has been animated in our script and final positions 

attained by bacteria are shown in figure 2.  
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Figure2: bacteria final position after BFO optimization 

Since random positions are used every time as per the BFO algorithm, results may be different 

each time script is executed. Here results pasted are after execution of 20 times.Any optimization 

works best if the error function or fitness function decreases after iterations. Decreasing fitness 

function indicates the error is reducing which automatically enhances results. Since ideal filter 

response is 1 for pass band and 0 for stop band, so decrease in error proves results are 

approaching the ideal values. The fitness value in case of BFO is shown in figure 3 below. Which 

shows the decrease in error value and improvement in results.The output of BFO is multiplied 

with exponential function, which gives the impulse response of filter. DFT is applied to outcome 

and real part of it is considered as filter coefficients. Frequency response is obtained for these 

filter coefficients. 

 

Figure 3: Fitness value graph of BFO optimization 

This creates a low pass filter. To check the feasibility of this filter a signal of three different 

frequencies of 100, 300 & 700 Hz is constructed and sampling frequency of that signal is taken as 

2000 Hz. Since we have taken normalized pass band frequency as 0.5*pi (500 Hz), so signal with 

frequency 700 Hz is undesired for our filter and designed filter should suppress that frequency. 

Figure 4 shows the combined three frequency’s signal in time domain and frequency domain. For 

conversion of signal to frequency domain, fourier transform is used.  
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Figure 4: Test signal in time and frequency domain before filtering 

We have mixed the signal with three frequency signal of 100, 300 and 700 Hz, which is clearly 

visible in frequency domain signal with main lobes around these central frequencies and time 

domain signal is chirped rather than sinusoidal shape because of mixing. If this signal is passed 

through filter designed by BFO then outcome is shown in figure 5. This figure shows BFO filter 

stop the signal of 700 Hz frequency and signal in time domain is also in somewhat sinusoidal 

shape. BFO filter gives good response as it kept the lobes of other frequency signals unchanged.  

 

Figure 5: Filtered signal by BFO designed low pass filter 

The frequency response of BFO filter is shown in figure 5 which is compared with proposed 

optimization technique also. Here BFO filter response shows that ripples are very much less in 

pass band and filter response changes at pass band frequency and a transition band is visible till 

stop band frequency. This filter exactly follows the pass band frequency and stop band frequency 

limit. Side lobs are also of less magnitude than practical filter’s side lobs. The filter coefficients 

values are shown in table 3 along with PBFO optimized coefficients. 

Figure6 clearly shows that although side lobs are reduced by BFO but still it is very far away 

from ideal response. So PSO is added to BFO optimization to improve results. 

In PBFO, PSO is used to update the random directions of bacteria. In this also efficiency of 

algorithm is shown by the decrease in the fitness function value which is shown in figure 7. 

Number of iterations in both the cases is kept same and BFO parameters are considered as given 

in table1. Figure 6 shows that fitness function is settled to a more minimum value than BFO 

optimization which is also reflected in frequency response graph o PBFO, shown in figure 6. Side 

lobs in PBFO are more reduced than both practical and BFO designed filter.  Figure 8 shows the 

0 0.05 0.1 0.15 0.2 0.25
-2

-1

0

1

2

time/s

a
m

p
lit

u
d
e

Time-domain diagram before filtering

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

frequency/Hz

a
m

p
lit

u
d
e

Frequency-domain diagram before filtering

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25
-2

-1

0

1

2

time/s

a
m

p
lit

u
d
e

Time-domain diagram after filtering with BFO

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

frequency/Hz

a
m

p
lit

u
d
e

Frequency-domain diagram after filtering with BFO



Volume 1, Issue 11, 2016, pp. 23-32 

 

International Journal of Emerging Trends in Research                                                                                               30 
 

output of filter after considering the same signal as above as input. Results show that PBFO 

clearly suppress the frequency signal of 700 Hz which was not in case of BFO. So PBFO 

performs better than BFO in every aspect. 

 

Figure 6: frequency response of practical, BFO, BPSO designed filter 

 

Figure 7: fitness values in case of PBFO optimization 

 

Figure 8: Filter output of BFO and PBFO designed filter 

Above tablel show that alnmost for every filter coefficient magnitude is lesser in case of PBFO 

than BFO. A more clear demonstartion of this table is shown in figure 8 in form of bar graph. 
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Figure 8: Bra graph comparison of BFO and PBFO filter coefficients 

This algorithm is checked for other pass band frequencies for same hybrid input signal to the 

filter.  

4. Conclusions 

The designing of FIR filter by frequency sampling method gives more control over ripples 

suppression than window method. Frequency sampling method also gives freedom to optimize 

the filter coefficients to approach the ideal filter response. For this purpose bacteria foraging 

optimization (BFO) along with particle swarm optimization (PSO) is used and filters response 

was compared with only BFO designed filter which was our one of the objective. Low pass filter 

is designed to prove our results. Results show that frequency response by PBSO is better than 

BFO. Side lobs are more suppressed in PBFO than BFO and filter thus designed is checked for a 

signal mix of various central frequencies signals. Our designed filter performs better in case of 

filtration of undesired signal. Results considered here are for filter order of 21. These can be 

checked for more filter orders and results will be found improved for our desired filter. 
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