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Abstract 

This theory practically depends on the critical section problem. After 

studying the overview of CSP, it’s seen that there are lots of 

drawbacks in CSP but most of the different solutions are given by the 

different authors. But still no one has got the perfect solution to 

overcome this problem. But from the my point of view, it’s 

considered as “it can get a solution including all four possible 

conditions like (Mutual exclusion, No-preemption, Bounded waiting 

and starvation).the best way to go for this approach, it should be 

completely checked it out of all the instruction, but it’s very true no 

any process can move Parallely in critical section, practically one has 

to wait finally. According to these conditions it provides a great 

convenience to prove this problem. No one has proved the CSP till 

now, it’s proved by myself in each case of set instruction and 

algorithms. It provides a gateway to solve the problem of CSP in 

coming future. 

 

 CSP Keywords- Algorithms of critical section problem, used 

semaphore properties,synchronization of all the process,Different 

solutions of CSP. 

 

Introduction 

In concurrent programming a critical section is a piece of code that 

accesses a shared resource (data structure or device) that must not be 

concurrently accessed by more than one thread of execution. A 

critical section will usually terminate in fixed time, and a thread, task 

or process will have to wait a fixed time to enter it (aka bounded 

waiting). Some synchronization mechanism is required at the entry 

and exit of the critical section to ensure exclusive use, for example a 

semaphore. By carefully controlling which variables are modified 

inside and outside the critical section (usually, by accessing important 

state only from within), concurrent access to that state is prevented. A 

critical section is typically used when a multithreaded program must 

update multiple related variables without a separate thread making 

conflicting changes to that data. In a related situation, a critical 

section may be used to ensure a shared resource, for example a 

printer, can only be accessed by one process at a time. In computers, 

a critical section routine is an approach to the problem of two or more 

programs competing for the same resource at the same time. Imagine 

that two programs want to increment a counter. If both do it at the 

same time: fetch the operand , increment it, and store back the 

incremented value, then one of the increments will be lost. On today's 

processors, the programs can use an atomic read-modify-write 

instruction, such as fetch-and-op, compare-and-swap, or exchange. 

On early processors, these instructions did not exist; the problem was  

 

 

 

to accomplish the incrementing atomically, using only ordinary 

assembler instructions. The problem was defined and first solved by 

Edsgar Dijkstra. "Critical section routine" was his name for the code 

that solved the problem. 

 

 

 

 

 

 

 

 

 

General structure of a typical process pi 

The simplest method is to prevent any change of  

  processor 

Methodology 

control inside the critical section. On uni-processor systems, this can 

be done by disabling interrupts on entry into the critical section, 

avoiding system calls that can cause a context switch while inside the 

section and restoring interrupts to their previous state on exit. Any 

thread of execution entering any critical section anywhere in the 

system will, with this implementation, prevent any other thread, 

including an interrupt, from getting the CPU and therefore from 

entering any other critical section or, indeed, any code whatsoever, 

until the original thread leaves its critical section. 

 

This brute-force approach can be improved upon by using 

semaphores. To enter a critical section, a thread must obtain a 

semaphore, which it releases on leaving the section. Other threads are 

prevented from entering the critical section at the same time as the 

original thread, but are free to gain control of the CPU and execute 

other code, including other critical sections that are protected by 

different semaphores. 

Some confusion exists in the literature about the relationship between 

different critical sections in the same program.[citation needed] In 

general, a resource that must be protected from concurrent access 

Do 

{ 

Entry section 

Critical section 

Exit section 

Remainder section 

} 

While(1); 
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may be accessed by several pieces of code. Each piece must be 

guarded by a common semaphore. Is each piece now a critical section 

or are all the pieces guarded by the same semaphore in aggregate a 

single critical section? This confusion is evident in definitions of a 

critical section such as "... a piece of code that can only be executed 

by one process or thread at a time". This only works if all access to a 

protected resource is contained in one "piece of code", which requires 

either the definition of a piece of code or the code itself to be 

somewhat contrived. 

Currency arises in three different contexts: 

 

-    Multiple applications – Multiple programs are allowed to 

dynamically share processing time. 

-    Structured applications – Some applications can be effectively 

programmed as a set of concurrent processes. 

-    Operating system structure – The OS themselves are implemented 

as set of processes. 

Concurrent processes (or threads) often need access to shared data 

and shared resources. 

-    Processes use and update shared data such as shared variables, 

files, and data bases. 

Writing must be mutually exclusive to prevent a condition leading to 

inconsistent data views. 

Maintaining data consistency requires mechanisms to ensure the 

orderly execution of cooperating processes. 

 

1) solution to Critical-Section Problem 

1. Mutual Exclusion. If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections. 

2. Progress. If no process is executing in its critical section and 

there exist some processes that wish to enter their critical 

section, then the selection of the processes that will enter the 

critical section next cannot be postponed indefinitely. 

3. Bounded Waiting. A bound must exist on the number of times 

that other processes are allowed to enter their critical sections 

after a process has made a request to enter its critical section 

and before that request is granted. 

• Assume that each process executes at a nonzero speed. 

• No assumption concerning relative speed of the n 

processes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm  1 

Shared variables: 

– var turn: (0..1); 

initially turn = 0 

 

– turn = i ⇒ Pi can enter its critical section 

• Process Pi 

repeat 

while turn = i do no-op; 

critical section 

turn := j; 

remainder section 

until false; 

• Satisfies mutual exclusion, but not progress 

Algorithm 2 

• Shared variables 

– var flag: array [0..1] of boolean; 

initially flag[0] = flag[1] = false. 

– flag[i] = true ⇒ Pi ready to enter its critical section 

• Process Pi 

repeat 

flag[i] := true; 

while flag[j] do no-op; 

critical section 

flag[i] := false; 

remainder section 

until false; 

• Does not satisfy the mutual exclusion requirement. 

Algorithm 3 

• Combined shared variables of algorithms 1 and 2. 

• Process Pi 

repeat 

flag[i] := true; 

turn := j; 

while (flag[j] and turn=j) do no-op; 

critical section 

flag[i] := false; 

remainder section 

until false; 

• Meets all three requirements; solves the critical-section 

 



• Before entering its critical section, process receives a number. 

Holder of the smallest number enters the critical section. 

• If processes Pi and Pj receive the same number, if i < j, then 

Pi is served first; else Pj is served first. 

• The numbering scheme always generates numbers in 

increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5... 

 

Bakery Algorithm (Cont.) 

• Notation <≡ lexicographical order (ticket #, process id #) – (a, b) < 

(c, d) if a < c or if a = c and b < d – max (a0, an−1) is a number, k, 

such that k ≥ ai for i = 0,..., n – 1 

• Shared after checking all the conditions of critical section it’s 

estimated that, all the four possible conditions is not becoming 

satisfied, but if we use semaphore requirements, Bakery’s 

algo,Dekker’s algo,Peterson algo tell the solution of only in separate 

conditions using semaphore set instructions. The overall meaning of 

this objective different types of solution are given but everywhere 

some part of error is counted so  to meet all the four possible 

conditions one algo is implemented according to above conditions 

which are given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A proper solution to the Critical-Section problem must meet three 

requirements: 

 

Only one thread is allowed in its critical section at a time. That is, 

execution of critical sections is mutually exclusive. 

If there’s no thread in its critical section, but some threads are waiting 

to enter their critical sections, only the waiting threads may 

participate in deciding who gets to enter first. Ultimately, there must 

be progress in the resolution and one thread must be allowed to enter. 

Threads waiting to enter their critical sections must be allowed to do 

so in a bounded timeframe. That is, threads have bounded waiting. 

 

This is the basic scaffold for proposed solutions to the Critical-

Section problem: 

 

 

 

 

 

 

 

There are multiple threads that will run the above code. Each will 

have unique critical sections and remainder sections, but their entry 

and exit sections will be identical. In Java terms, the entry section is 

what happens behind the scenes at the top of a synchronized block. 

The exit section is what happens when a synchronized block ends. 

The critical section is the code inside the synchronized block, and the 

remainder section is some arbitrary code that’s not synchronized. As 

you can see, this is just a simplification of cooperating threads, and 

any solutions to this problem will apply to all other Critical-Section 

scenarios. 

If we assume turn= 1 value is kept false and then again 

false 

main program 

{ 

Var: turn: Boolean 

Pi 

{ 

Repeat 

Flag[i] =T; 

Turn = j; 

While flag[j]AND 

Turn=j do skip 

 

Critical section 

 

Flag[i]=F; 

Until 

False 

} 

Pj 

{ 

Repeat 

Flag [j]=T; 

Turn = i; 

 

While (flag[i] AND turn = i 

 

Do skip 

 

Critical section 

Flag[j] = f; 

Until 

False 

} 

} 

In this case all four conditions satisisfies. 

 

data 

Var choosing: array [0...n−1] of Boolean; 

Number: array [0...n−1] of integer; 

Data structures are initialized to false and 0, 

respectively 

 

Bakery Algorithm (Cont.) 

Repeat 

choosing[i] := true; 

Number[i] := max (number [0], number [1], number [n 

− 1]) +1; 

choosing[i] := false; 

for j := 0 to n − 1 

do begin 

 

Repeat 

Entry section 

Critical section 

Exit section 

Remainder section 

Until false; 

 



After using the semaphore section finally these factors involves in 

each steps in spite of solutions too 

 

 

 

 

 

 

 

Two Types of Semaphores 

• Counting semaphore – integer value can range over an 

Unrestricted domain. 

• Binary semaphore – integer value can range only between 0 

And 1; can be simpler to implement. 

Difficulties with Semaphores 

 

Semaphores provide a powerful synchronization tool. 

wait(s) and signal(s) are scattered among several processes. 

Therefore, it is difficult to understand their effects. 

Usage must be correct in all the processes. 

One bad process (or one programming error) can kill the whole 

system. 

 

The use of a special machine instruction to enforce has a no. of 

advantages: 

1. it’s applicable to any no. of processes on either a single possessors 
sharing main memory . 

2. it’s simple and therefore easy to verify. 

3. it can be used to support multiple critical sections; each critical 
section can be defined by it’s own variable. 

 

• Can implement a counting semaphore S as a binary 

Semaphore 

Synchronization tool that does not require busy waiting. 

• Semaphore S – integer variable 

• can only be accessed via two indivisible (atomic) operations 

 

 

 

 

Fig 1.Implementing Threads in the Kernel 

 

 

 

 

 

Fig2. Hybrid Implementations 

wait(s) and signal(s) are scattered among several processes. 

Therefore, it is difficult to understand their effects. 

Usage must be correct in all the processes. 

One bad process (or one programming error) can kill the whole 

system. 

2) According to shared variable- 

enum Boolean {false=0; true=1 ;} 

Boolean flag [2] = {false, true} 

In this way it can be seen that if one process fails outside the CS 

including the flag setting code then the other process is not blocked. 

But if process fails inside it’s CSP or after setting it’s flag[true], just 

before entering it’s CSP then the other problem is permanently 

blocked. It doesn’t guarantee of the mutual exclusion. 

The main idea is behind of that the CSP problem can be solved by 

simply in a uniprocessor environment if we can forbid interrupts to 

occur while a shared variable is being modified. In this manner,we 

can be sure that current sequence of instructions will be allowed to 

execute in oder without preemption. No other instruction will be run, 

so no unexpected modifications could be made to the shared variable. 

Many machines therefore provide special hardware instruction that 

allow either to test and modify content of a word,or to swap the 

contents of two words, atomically that is to say as one uninterruptible 

unit.thus, these special instructions can be used to solve the critical 

problem in simple manner. 

The use of a special machine instruction to enforce has a no. of 

advantages: 

1. it’s applicable to any no. of processes on either a single processssors 
sharing main memory . 

2. it’s simple and therefore easy to verify. 

it can be used to support multiple critical sections;each critical 

section can be defined by it’s own variable. 

while choosing[j] do no-op; 

while number[j] = 0 

and (number[j],j) < (number[i], i) do no-op; 

end; 

Critical section 

Number[i] := 0; 

Remainder section 

Until false; 

 

Wait(S): while S ≤ 0 do no-op; 

S: = S − 1; 

Signal(S): S: = S + 1; 

 



Summary and Conclusion 

When the multiple processes access, so called the critical section of 

the memory, they use a spin lock to allow only one of the processes 

to access the critical section with Test & Set instruction or similar 

types at a time. But my understanding is that those processes running 

on the different processors are independent(the processes are made to 

be independent to run in parallel), which makes me think why they 

have to access the same memory locations. I would guess it should be 

to synchronize the processes or something, but cannot think of an 

actual example. 

To be honest, part of the reason that writers have ignored the 

CRITICAL_SECTION structure is that it's implemented very 

differently under the two main Win32 code bases: Microsoft® 

Windows® 95 and Windows NT®. Everyone knows that both code 

bases have spawned numerous descendents (most recently, Windows 

Me and Windows XP, respectively), but it's not necessary to list them 

all here. The point is that now that Windows XP is well established, 

developers can soon drop support for the Windows 95 line of 

operating systems. We have done so in this article. The life of a 

critical section begins when it's passed to InitializeCriticalSection (or 

more accurately, when its address is passed). Once initialized, your 

code passes the critical section to the EnterCriticalSection and 

LeaveCriticalSection APIs. Once a thread returns from 

EnterCriticalSection, all other threads that call EnterCriticalSection 

block until the first thread calls LeaveCriticalSection. Finally, when 

you no longer need the critical section, good coding practice dictates 

that you pass it to DeleteCriticalSection. 

In the ideal case where a critical section is unowned, a call to 

EnterCriticalSection is very fast because it simply reads and modifies 

memory locations within user-mode memory. Otherwise (with one 

exception that we'll get to later), threads that block on a critical 

section do so efficiently, without burning up extra CPU cycles. 

Blocked threads wait in kernel mode and aren't schedulable until the 

critical section owner releases it. If multiple threads are blocked on a 

critical section, only one thread acquires the critical section when 

another thread releases it. 

 

Fig. 3example of a critical section routine 

The final case of the critical section problem is: 

1) Busy waiting is employed. 

2) starvation 

3) Deadlock 

So it’s noticed that different solution are given by for the CSP. But 

it’s concluded that,using semaphore section,bounded buffer 

solution,producer-consumer problem it’s not solved by  accurately

 till now that all the process may run simultaneously. So it’s 

important to know that those properties which are given for the 

solution of CSP. They are satisfying all the four requirements but in 

some cases not for all. Therefore CSP is enhanced for one property 

more,finally one process has to wait,until other process couldn’t be 

released. 
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