
RESEARCH PAPER ON SOFTWARE SOLUTION OF

CRITICAL SECTION PROBLEM
Er.Ankit Gupta, Er. Arpit Gupta, Er. Amit Mishra

ank_mgcgv@yahoo.co.in, arpit_jp@yahoo.co.in, amitmishra.mtech@gmail.com,
Faculty Of Engineering and Technology(IT department), Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya.

Chitrakoot-485780, Satna, Madhya Pradesh, India

Abstract

This theory practically depends on the critical section problem. After

studying the overview of CSP, it’s seen that there are lots of

drawbacks in CSP but most of the different solutions are given by the

different authors. But still no one has got the perfect solution to

overcome this problem. But from the my point of view, it’s

considered as “it can get a solution including all four possible

conditions like (Mutual exclusion, No-preemption, Bounded waiting

and starvation).the best way to go for this approach, it should be

completely checked it out of all the instruction, but it’s very true no

any process can move Parallely in critical section, practically one has

to wait finally. According to these conditions it provides a great

convenience to prove this problem. No one has proved the CSP till

now, it’s proved by myself in each case of set instruction and

algorithms. It provides a gateway to solve the problem of CSP in

coming future.

 CSP Keywords- Algorithms of critical section problem, used

semaphore properties,synchronization of all the process,Different

solutions of CSP.

Introduction

In concurrent programming a critical section is a piece of code that

accesses a shared resource (data structure or device) that must not be

concurrently accessed by more than one thread of execution. A

critical section will usually terminate in fixed time, and a thread, task

or process will have to wait a fixed time to enter it (aka bounded

waiting). Some synchronization mechanism is required at the entry

and exit of the critical section to ensure exclusive use, for example a

semaphore. By carefully controlling which variables are modified

inside and outside the critical section (usually, by accessing important

state only from within), concurrent access to that state is prevented. A

critical section is typically used when a multithreaded program must

update multiple related variables without a separate thread making

conflicting changes to that data. In a related situation, a critical

section may be used to ensure a shared resource, for example a

printer, can only be accessed by one process at a time. In computers,

a critical section routine is an approach to the problem of two or more

programs competing for the same resource at the same time. Imagine

that two programs want to increment a counter. If both do it at the

same time: fetch the operand , increment it, and store back the

incremented value, then one of the increments will be lost. On today's

processors, the programs can use an atomic read-modify-write

instruction, such as fetch-and-op, compare-and-swap, or exchange.

On early processors, these instructions did not exist; the problem was

to accomplish the incrementing atomically, using only ordinary

assembler instructions. The problem was defined and first solved by

Edsgar Dijkstra. "Critical section routine" was his name for the code

that solved the problem.

General structure of a typical process pi

The simplest method is to prevent any change of

 processor

Methodology

control inside the critical section. On uni-processor systems, this can

be done by disabling interrupts on entry into the critical section,

avoiding system calls that can cause a context switch while inside the

section and restoring interrupts to their previous state on exit. Any

thread of execution entering any critical section anywhere in the

system will, with this implementation, prevent any other thread,

including an interrupt, from getting the CPU and therefore from

entering any other critical section or, indeed, any code whatsoever,

until the original thread leaves its critical section.

This brute-force approach can be improved upon by using

semaphores. To enter a critical section, a thread must obtain a

semaphore, which it releases on leaving the section. Other threads are

prevented from entering the critical section at the same time as the

original thread, but are free to gain control of the CPU and execute

other code, including other critical sections that are protected by

different semaphores.

Some confusion exists in the literature about the relationship between

different critical sections in the same program.[citation needed] In

general, a resource that must be protected from concurrent access

Do

{

Entry section

Critical section

Exit section

Remainder section

}

While(1);

mailto:ank_mgcgv@yahoo.co.in
mailto:arpit_jp@yahoo.co.in

may be accessed by several pieces of code. Each piece must be

guarded by a common semaphore. Is each piece now a critical section

or are all the pieces guarded by the same semaphore in aggregate a

single critical section? This confusion is evident in definitions of a

critical section such as "... a piece of code that can only be executed

by one process or thread at a time". This only works if all access to a

protected resource is contained in one "piece of code", which requires

either the definition of a piece of code or the code itself to be

somewhat contrived.

Currency arises in three different contexts:

- Multiple applications – Multiple programs are allowed to

dynamically share processing time.

- Structured applications – Some applications can be effectively

programmed as a set of concurrent processes.

- Operating system structure – The OS themselves are implemented

as set of processes.

Concurrent processes (or threads) often need access to shared data

and shared resources.

- Processes use and update shared data such as shared variables,

files, and data bases.

Writing must be mutually exclusive to prevent a condition leading to

inconsistent data views.

Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes.

1) solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections.

2. Progress. If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times

that other processes are allowed to enter their critical sections

after a process has made a request to enter its critical section

and before that request is granted.

• Assume that each process executes at a nonzero speed.

• No assumption concerning relative speed of the n

processes

Algorithm 1

Shared variables:

– var turn: (0..1);

initially turn = 0

– turn = i ⇒ Pi can enter its critical section

• Process Pi

repeat

while turn = i do no-op;

critical section

turn := j;

remainder section

until false;

• Satisfies mutual exclusion, but not progress

Algorithm 2

• Shared variables

– var flag: array [0..1] of boolean;

initially flag[0] = flag[1] = false.

– flag[i] = true ⇒ Pi ready to enter its critical section

• Process Pi

repeat

flag[i] := true;

while flag[j] do no-op;

critical section

flag[i] := false;

remainder section

until false;

• Does not satisfy the mutual exclusion requirement.

Algorithm 3

• Combined shared variables of algorithms 1 and 2.

• Process Pi

repeat

flag[i] := true;

turn := j;

while (flag[j] and turn=j) do no-op;

critical section

flag[i] := false;

remainder section

until false;

• Meets all three requirements; solves the critical-section

• Before entering its critical section, process receives a number.

Holder of the smallest number enters the critical section.

• If processes Pi and Pj receive the same number, if i < j, then

Pi is served first; else Pj is served first.

• The numbering scheme always generates numbers in

increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Bakery Algorithm (Cont.)

• Notation <≡ lexicographical order (ticket #, process id #) – (a, b) <

(c, d) if a < c or if a = c and b < d – max (a0, an−1) is a number, k,

such that k ≥ ai for i = 0,..., n – 1

• Shared after checking all the conditions of critical section it’s

estimated that, all the four possible conditions is not becoming

satisfied, but if we use semaphore requirements, Bakery’s

algo,Dekker’s algo,Peterson algo tell the solution of only in separate

conditions using semaphore set instructions. The overall meaning of

this objective different types of solution are given but everywhere

some part of error is counted so to meet all the four possible

conditions one algo is implemented according to above conditions

which are given below:

A proper solution to the Critical-Section problem must meet three

requirements:

Only one thread is allowed in its critical section at a time. That is,

execution of critical sections is mutually exclusive.

If there’s no thread in its critical section, but some threads are waiting

to enter their critical sections, only the waiting threads may

participate in deciding who gets to enter first. Ultimately, there must

be progress in the resolution and one thread must be allowed to enter.

Threads waiting to enter their critical sections must be allowed to do

so in a bounded timeframe. That is, threads have bounded waiting.

This is the basic scaffold for proposed solutions to the Critical-

Section problem:

There are multiple threads that will run the above code. Each will

have unique critical sections and remainder sections, but their entry

and exit sections will be identical. In Java terms, the entry section is

what happens behind the scenes at the top of a synchronized block.

The exit section is what happens when a synchronized block ends.

The critical section is the code inside the synchronized block, and the

remainder section is some arbitrary code that’s not synchronized. As

you can see, this is just a simplification of cooperating threads, and

any solutions to this problem will apply to all other Critical-Section

scenarios.

If we assume turn= 1 value is kept false and then again

false

main program

{

Var: turn: Boolean

Pi

{

Repeat

Flag[i] =T;

Turn = j;

While flag[j]AND

Turn=j do skip

Critical section

Flag[i]=F;

Until

False

}

Pj

{

Repeat

Flag [j]=T;

Turn = i;

While (flag[i] AND turn = i

Do skip

Critical section

Flag[j] = f;

Until

False

}

}

In this case all four conditions satisisfies.

data

Var choosing: array [0...n−1] of Boolean;

Number: array [0...n−1] of integer;

Data structures are initialized to false and 0,

respectively

Bakery Algorithm (Cont.)

Repeat

choosing[i] := true;

Number[i] := max (number [0], number [1], number [n

− 1]) +1;

choosing[i] := false;

for j := 0 to n − 1

do begin

Repeat

Entry section

Critical section

Exit section

Remainder section

Until false;

After using the semaphore section finally these factors involves in

each steps in spite of solutions too

Two Types of Semaphores

• Counting semaphore – integer value can range over an

Unrestricted domain.

• Binary semaphore – integer value can range only between 0

And 1; can be simpler to implement.

Difficulties with Semaphores

Semaphores provide a powerful synchronization tool.

wait(s) and signal(s) are scattered among several processes.

Therefore, it is difficult to understand their effects.

Usage must be correct in all the processes.

One bad process (or one programming error) can kill the whole

system.

The use of a special machine instruction to enforce has a no. of

advantages:

1. it’s applicable to any no. of processes on either a single possessors
sharing main memory .

2. it’s simple and therefore easy to verify.

3. it can be used to support multiple critical sections; each critical
section can be defined by it’s own variable.

• Can implement a counting semaphore S as a binary

Semaphore

Synchronization tool that does not require busy waiting.

• Semaphore S – integer variable

• can only be accessed via two indivisible (atomic) operations

Fig 1.Implementing Threads in the Kernel

Fig2. Hybrid Implementations

wait(s) and signal(s) are scattered among several processes.

Therefore, it is difficult to understand their effects.

Usage must be correct in all the processes.

One bad process (or one programming error) can kill the whole

system.

2) According to shared variable-

enum Boolean {false=0; true=1 ;}

Boolean flag [2] = {false, true}

In this way it can be seen that if one process fails outside the CS

including the flag setting code then the other process is not blocked.

But if process fails inside it’s CSP or after setting it’s flag[true], just

before entering it’s CSP then the other problem is permanently

blocked. It doesn’t guarantee of the mutual exclusion.

The main idea is behind of that the CSP problem can be solved by

simply in a uniprocessor environment if we can forbid interrupts to

occur while a shared variable is being modified. In this manner,we

can be sure that current sequence of instructions will be allowed to

execute in oder without preemption. No other instruction will be run,

so no unexpected modifications could be made to the shared variable.

Many machines therefore provide special hardware instruction that

allow either to test and modify content of a word,or to swap the

contents of two words, atomically that is to say as one uninterruptible

unit.thus, these special instructions can be used to solve the critical

problem in simple manner.

The use of a special machine instruction to enforce has a no. of

advantages:

1. it’s applicable to any no. of processes on either a single processssors
sharing main memory .

2. it’s simple and therefore easy to verify.

it can be used to support multiple critical sections;each critical

section can be defined by it’s own variable.

while choosing[j] do no-op;

while number[j] = 0

and (number[j],j) < (number[i], i) do no-op;

end;

Critical section

Number[i] := 0;

Remainder section

Until false;

Wait(S): while S ≤ 0 do no-op;

S: = S − 1;

Signal(S): S: = S + 1;

Summary and Conclusion

When the multiple processes access, so called the critical section of

the memory, they use a spin lock to allow only one of the processes

to access the critical section with Test & Set instruction or similar

types at a time. But my understanding is that those processes running

on the different processors are independent(the processes are made to

be independent to run in parallel), which makes me think why they

have to access the same memory locations. I would guess it should be

to synchronize the processes or something, but cannot think of an

actual example.

To be honest, part of the reason that writers have ignored the

CRITICAL_SECTION structure is that it's implemented very

differently under the two main Win32 code bases: Microsoft®

Windows® 95 and Windows NT®. Everyone knows that both code

bases have spawned numerous descendents (most recently, Windows

Me and Windows XP, respectively), but it's not necessary to list them

all here. The point is that now that Windows XP is well established,

developers can soon drop support for the Windows 95 line of

operating systems. We have done so in this article. The life of a

critical section begins when it's passed to InitializeCriticalSection (or

more accurately, when its address is passed). Once initialized, your

code passes the critical section to the EnterCriticalSection and

LeaveCriticalSection APIs. Once a thread returns from

EnterCriticalSection, all other threads that call EnterCriticalSection

block until the first thread calls LeaveCriticalSection. Finally, when

you no longer need the critical section, good coding practice dictates

that you pass it to DeleteCriticalSection.

In the ideal case where a critical section is unowned, a call to

EnterCriticalSection is very fast because it simply reads and modifies

memory locations within user-mode memory. Otherwise (with one

exception that we'll get to later), threads that block on a critical

section do so efficiently, without burning up extra CPU cycles.

Blocked threads wait in kernel mode and aren't schedulable until the

critical section owner releases it. If multiple threads are blocked on a

critical section, only one thread acquires the critical section when

another thread releases it.

Fig. 3example of a critical section routine

The final case of the critical section problem is:

1) Busy waiting is employed.

2) starvation

3) Deadlock

So it’s noticed that different solution are given by for the CSP. But

it’s concluded that,using semaphore section,bounded buffer

solution,producer-consumer problem it’s not solved by accurately

 till now that all the process may run simultaneously. So it’s

important to know that those properties which are given for the

solution of CSP. They are satisfying all the four requirements but in

some cases not for all. Therefore CSP is enhanced for one property

more,finally one process has to wait,until other process couldn’t be

released.

References
[1] Howard P. Katseff, ACM New York, NY, USA ©1978

[2] Winter,J. J. ; Breslin,J. T. ; Leupold,H. A., : JUL 1970

[3] PaulMcKenney 15:00, 26 May 2006 (UTC)

[4] Gurudutt 10:16, 10 September 2007 (UTC)

[5] Silberschatz and Galvin c 1998

[6] Dijkstra – The first (1965), Knuth – Presented (1966), Lamport –

Presented the Bakery (Baker’s) algorithm (1974).

[7] info@semaphoresolutions.ca, Kevin Kotorynski

[8] Jon Emerson)

[9] Michel Raynal: Algorithms for Mutual Exclusion, MIT Press,

ISBN 0-262-18119-3

[10] Sunil R. Das, Pradip K. Srimani: Distributed Mutual Exclusion

Algorithms, IEEE Computer Society, ISBN 0-8186-3380-8

[11] Thomas W. Christopher, George K. Thiruvathukal: High-

Performance Java Platform Computing, Prentice Hall, ISBN 0-13-

016164-0

[12] Gadi Taubenfeld, Synchronization Algorithms and Concurrent

Programming, Pearson/Prentice Hall, ISBN 0-13-197259-6

[13] Proceedings of the World Congress on Engineering 2010 Vol

III

[14] WCE 2010, June 30 - July 2, 2010, London, U.K.

[15] CS425/ECE 428 Distributed Systems, Fall 2009, Instructor:

Klara Nahrstedt

[16] Out: Tuesday, September 22, Due Date: Tuesday, October

LESLIE LAMPORT

[17] Digitul Equipment Corporution,Pulo Alto, California6,By

Paul Krzyzanowski

[18] September 21, 2010 [updated February 17, 2011]

[19] Matt Pietrek and Russ Osterlund,RussOsterlund@adelphia.net,

[20] Abraham Silberschatz and Peter Baer Galvin, Operating

System Concepts. John Wiley & Sons, 5th Edition, 1999.

[21] Some parts are taken from GATE-2011 computer science and

engineering.

[22] Shivani engineering question bank of O.S. 4th and 6th revised

