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Abstract 
 Cluster analysis divides data into groups (clusters) for the 

purposes of summarization or improved understanding. For 

example, cluster analysis has been used to group related 

documents for browsing, to find genes and proteins that 
have similar functionality, or as a means of data 

compression.. In this chapter we provide a short introduction 

to cluster analysis. We present a brief view of recent 

techniques which uses a concept-based clustering approach.  

 

 Introduction 
Cluster analysis divides data into meaningful or useful 

groups (clusters). If meaningful clusters are our objective, 
then the resulting clusters should capture the “natural” 

structure of the data. Cluster analysis is only a useful 

starting point for other purposes, e.g., data compression or 

efficiently finding the nearest neighbors of points. Whether 

for understanding or utility, cluster analysis has long been 

used in a wide variety of fields: psychology and other social 

sciences, biology, statistics, pattern recognition, information 

retrieval, machine learning, and data mining. In this chapter 

we provide a short introduction to cluster analysis. We 

present a brief view recent technique, which uses a concept-

based approach. In this case, the approach to clustering high 

dimensional data must deal with the “curse of 
dimensionality”. 

Concept of Cluster Analysis 
Cluster analysis groups objects (observations, events) based 

on the information found in the data describing the objects 

or their relationships. The aim is the objects in a group 

should be similar (or related) to one another and different 

from (or unrelated to) the objects in other groups. The 
greater the similarity (or homogeneity) within a group and 

the greater the difference between groups, the better the 

clustering.Cluster analysis is a classification of objects from 

the data, where by “classification” we mean a labeling of 

objects with class (group) labels. As such, clustering does 

not use  

 

previously assigned class labels, except perhaps for 

verification of how well the clustering worked. Thus, cluster 

analysis is sometimes referred to as “unsupervised 

classification” and is distinct from “supervised 

classification,” or more commonly just “classification,” 
which seeks to find rules for classifying objects given a set 

of pre-classified objects. Classification is an important part 

of data mining, pattern recognition, machine learning, and 

statistics (discriminant analysis and decision analysis).  

 

As mentioned above, the term, cluster, does not have a 

precise definition. However, several working definitions of a 

cluster are commonly used and are given below. There are 

two aspects of clustering that should be mentioned in  

 

 

 

conjunction with these definitions. First, clustering is 

sometimes viewed as finding only the most “tightly” 

connected points while discarding “background” or noise 

points. Second, it is sometimes acceptable to produce a set 

of clusters where a true cluster is broken into several 

subclusters (which are often combined later, by another 

technique). The key requirement in this latter situation is 
that the subclusters are relatively “pure,” i.e., most points in 

a sub cluster are from the same “true” cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Well-Separated Cluster Definition:  
A cluster is a set of points such that any point in a cluster is 
closer (or more similar) to every other point in the cluster 

than to any point not in the cluster. Sometimes a threshold is 

used to specify that all the points in a cluster must be 

sufficiently close (or similar) to one another. However, in 

many sets of data, a point on the edge of a cluster may be 

closer (or more similar) to some objects in another cluster 
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than to objects in its own cluster. Consequently, many 

clustering algorithms use the following criterion.  

 

 

 

 

 

 

 

 

 

 

 

2.Center-based Cluster Definition: 
 A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 

center of any other cluster. The center of a cluster is often a 

centroid, the average of all the points in the cluster, or a 

medoid, the “most representative” point of a cluster.  

 
 

 

 

 

 

 

 

 

 

 

3.Contiguous Cluster Definition (Nearest 

Neighbor or Transitive Clustering): A cluster is a 

set of points such that a point in a cluster is closer (or more 

similar) to one or more other points in the cluster than to any 

point not in the cluster.  

 

 

 

 

 

 

 

 

 

4.Density-based definition: A cluster is a dense 

region of points, which is separated by low-density regions, 

from other regions of high density. This definition is more 
often used when the clusters are irregular or intertwined, and 

when noise and outliers are present. Notice that the 

contiguous definition would find only one cluster in Figure . 

Also note that the three curves don’t form clusters since 

they fade into the noise, as does the bridge between 

the two small circular clusters.  

 

 

 

 

 

 

 

 

5.Similarity-based Cluster definition: A cluster is 

a set of objects that are “similar”, and objects in other 

clusters are not “similar.” A variation on this is to define a 

cluster as a set of points that together create a region with a 

uniform local property, e.g., density or shape. The proximity 

measure (and the type of clustering used) depends on the 

attribute type and scale of the data. The three typical  types 

of attributes are shown in Table 1, while the common data 

scales are shown in Table 2.  

 

 

Table 1: Different attribute types 

 

Qualitative - Nominal - The values are just different 

names, e.g., colors or zip codes.  
Ordinal -      The values reflect an ordering, nothing 

more, e.g., good, better, best 

Quantitative - Interval - The difference between 

values is meaningful, i.e., a unit of Measurement 

exits. For example, temperature on the Celsius or 

Fahrenheit scales.  

Ratio-The scale has an absolute zero so that ratios are 

meaningful. Examples are physical quantities such as 

electrical current, Pressure, or temperature on the 

Kelvin scale.  

 
             Table 2: Different attribute scales 

Euclidean Distance and Some Variations 

 

The most commonly used proximity measure, at 

least for ratio scales (scales with an absolute 0) is 

the Min kowski metric, which is a generalization of 

the distance between points in Euclidean space. 

 

 

 

 
 

 

 
where, 

 r is a parameter, d is the dimensionality of the data 

object, and x
ik 

and x
jk 

are, respectively, the k
th 

components of the i
th 

and j
th 

objects, x
i 
and x

j
.  

 
For r = 1, this distance is commonly known as the L

1 

norm or city block distance. If r = 2, the most 

Binary Two values, e.g., true and false 

Discrete A finite number of values, or an 

integer, e.g., counts 

 

Continuous An effectively infinite number of 

real values, e.g., weight. 



common situation, then we have the familiar L
2 

norm or Euclidean distance. Occasionally one might 
encounter the L

max 
norm (L

∞ 
norm), which represents 

the case r → ∞. Figure 7 gives the proximity 
matrices for the L1, L2 and L

∞ 
distances, 

respectively, using the data matrix from Figure 2.  

 

The r parameter should not be confused with the 

dimension, d. For example, Euclidean, Manhattan 

and supremum distances are defined for all values of 

d, 1, 2, 3, …, and specify different ways of 

combining the differences in each dimension 

(attribute) into an overall distance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, note that various Minkowski distances are 

metric distances. In other words, given a distance 

function, dist, and three points a, b, and c, these 

distances satisfy the following three mathematical 

properties: reflexivity ( dist(a, a) = 0 ), symmetry ( 

dist(a, b) = dist(b, a) ), and the triangle inequality ( 

dist(a, c) ≤ dist(a, b) + dist(b, a) ). Not all distances 

or similarities are metric, e.g., the Jaccard measure 

of the following section. This introduces potential 

complications in the clustering process since in such 

cases, a similar (close) to b and b similar to c, does 

not necessarily imply a similar to c. The concept 

based clustering, which we discuss later, provides a 

way of dealing with such situations.  

  Hierarchical and Partitional Clustering 

  

The main distinction in clustering approaches is 

between hierarchical and partitional approaches. 

Hierarchical techniques produce a nested sequence 

of partitions, with a single, all-inclusive cluster at 

the top and singleton clusters of individual points at 

the bottom. Each intermediate level can be viewed 

as combining (splitting) two clusters from the next 

lower (next higher) level. (Hierarchical clustering 

techniques that start with one large cluster and split 

it are termed “divisive,” while approaches that start 

with clusters containing a single point, and then 

merge them are called “agglomerative.”) While most 

hierarchical algorithms involve joining two clusters 

or splitting a cluster into two sub-clusters, some 

hierarchical algorithms join more than two clusters 

in one step or split a cluster into more than two sub-

clusters.  

Partitional techniques create a one-level (unnested) 

partitioning of the data points. If K is the desired 

number of clusters, then partitional approaches 

typically find all K clusters at once. Contrast this 

with traditional hierarchical schemes, which bisect a 

cluster to get two clusters or merge two clusters to 

get one. Of course, a hierarchical approach can be 

used to generate a flat partition of K clusters, and 

likewise, the repeated application of a partitional 

scheme can provide a hierarchical clustering.  

 

There are also other important distinctions between 

clustering algorithms: Does a clustering algorithm 

cluster on all attributes simultaneously (polythetic) 

or use only one attribute at a time (monothetic)? 

Does a clustering technique use one object at a time 

(incremental) or does the algorithm require access to 

all objects (non-incremental)? Does the clustering 

method allow a cluster to belong to multiple clusters 

(overlapping) or does it assign each object to a 

single cluster (non-overlapping)? Note that 

overlapping clusters are not the same as fuzzy 

clusters, but rather reflect the fact that in many real 

situations, objects belong to multiple classes. 

 

Specific Partitional Clustering Techniques: 

K-means 

The K-means algorithm discovers K (non-

overlapping) clusters by finding K centroids 

(“central” points) and then assigning each point to 

the cluster associated with its nearest centroid. (A 

cluster centroid is typically the mean or median of 

the points in its cluster and “nearness” is defined by 

a distance or similarity function.) Ideally the 

centroids are chosen to minimize the total “error,” 

where the error for each point is given by a function 

that measures the discrepancy between a point and 

its cluster centroid, e.g., the squared distance. Note 

that a measure of cluster “goodness” is the error 

contributed by that cluster. For squared error and 

Euclidean distance, it can be shown [And73] that a 

gradient descent approach to minimizing the squared 

error yields the following basic K-means algorithm. 

(The previous discussion still holds if we use 

similarities instead of distances, but our optimization 

problem becomes a maximization problem.)  

Basic K-means Algorithm for finding K clusters. 

1. Select K points as the initial centroids.  

2. Assign all points to the closest centroid.  

3. Recompute the centroid of each cluster.  



4. Repeat steps 2 and 3 until the centroids don’t 

change (or change very little).  

 

K-means has a number of variations, depending on 

the method for selecting the initial centroids, the 

choice for the measure of similarity, and the way 

that the centroid is computed. The common practice, 

at least for Euclidean data, is to use the mean as the 

centroid and to select the initial centroids randomly.  

In the absence of numerical problems, this 

procedure converges to a solution, although the 

solution is typically a local minimum. Since only the 

vectors are stored, the space requirements are 

O(m*n), where m is the number of points and n is 

the number of attributes. The time requirements are 

O(I*K*m*n), where I is the number of iterations 

required for convergence. I is typically small and 

can be easily bounded as most changes occur in the 

first few iterations. Thus, the time required by K-

means is efficient, as well as simple, as long as the 

number of clusters is significantly less than m.  

 
Theoretically, the K-means clustering algorithm can 

be viewed either as a gradient descent approach 

which attempts to minimize the sum of the squared 

error of each point from cluster centroid  or as 

procedure that results from trying to model the data 

as a mixture of Gaussian distributions with diagonal 

covariance matrices . 

 Specific Hierarchical Clustering 

Techniques: MIN, MAX, Group Average  

 
In hierarchical clustering the goal is to produce a 

hierarchical series of nested clusters, ranging from 

clusters of individual points at the bottom to an all-

inclusive cluster at the top. A diagram called a 

dendogram graphically represents this hierarchy and 

is an inverted tree that describes the order in which 

points are merged (bottom-up, agglomerative 

approach) or clusters are split (top-down, divisive 

approach). One of the attractions of hierarchical 

techniques is that they correspond to taxonomies 

that are very common in the biological sciences, 

e.g., kingdom, phylum, genus, species, … (Some 

cluster analysis work occurs under the name of 

“mathematical taxonomy.”) Another attractive 

feature is that hierarchical techniques do not assume 

any particular number of clusters. Instead, any 

desired number of clusters can be obtained by 

“cutting” the dendogram at the proper level. Finally, 

hierarchical techniques are thought to produce better 

quality clusters . 

 

In this section we describe three agglomerative 

hierarchical techniques: MIN, MAX, and group 

average. For the single link or MIN version of 

hierarchical clustering, the proximity of two clusters 

is defined to be minimum of the distance (maximum 

of the similarity) between any two points in the 

different clusters. The technique is called single link, 

because if you start with all points as singleton 

clusters, and add links between points, strongest 

links first, these single links combine the points into 

clusters. Single link is good at handling non-

elliptical shapes, but is sensitive to noise and 

outliers.  

For the complete link or MAX version of 

hierarchical clustering, the proximity of two clusters 

is defined to be maximum of the distance (minimum 

of the similarity) between any two points in the 

different clusters. The technique is called complete 

link because, if you start with all points as singleton 

clusters, and add links between points, strongest 

links first, then a group of points is not a cluster 

until all the points in it are completely linked, i.e., 

form a clique. Complete link is less susceptible to 

noise and outliers, but can break large clusters, and 

has trouble with convex shapes.  

For the group average version of hierarchical 

clustering, the proximity of two clusters is defined to 

be the average of the pairwise proximities between 

all pairs of points in the different clusters. Notice 

that this is an intermediate approach between MIN 

and MAX. This is expressed by the following 

equation: 

 

 

 

 

 

 

 

 

Figure 8 shows a table for a sample similarity matrix 

and three dendograms, which respectively, show the 

series of merges that result from using the MIN, 

MAX, and group average approaches. In this simple 

case, MIN and group average produce the same 

clustering.  

 

 

 

 

 

 

 

 



The “Curse of Dimensionality” 

 
It was Richard Bellman who apparently originated 

the phrase, “the curse of dimensionality,” in a book 

on control theory [Bel61]. The specific quote from 

[Bel61], page 97, is “In view of all that we have said 

in the forgoing sections, the many obstacles we 

appear to have surmounted, what casts the pall over 

our victory celebration? It is the curse of 

dimensionality, a malediction that has plagued the 

scientist from the earliest days.” The issue referred 

to in Bellman’s quote is the impossibility of 

optimizing a function of many variables by a brute 

force search on a discrete multidimensional grid. 

(The number of grids points increases exponentially 

with dimensionality, i.e., with the number of 

variables.) With the passage of time, the “curse of 

dimensionality” has come to refer to any problem in 

data analysis that results from a large number of 

variables (attributes).  

 

In general terms, problems with high 

dimensionality result from the fact that a fixed 

number of data points become increasingly 

“sparse” as the dimensionality increase. To 

visualize this, consider 100 points distributed with 

a uniform random distribution in the interval [ 0, 

1]. If this interval is broken into 10 cells, then it is 

highly likely that all cells will contain some 

points. However, consider what happens if we 

keep the number of points the same, but distribute 

the points over the unit square. (This corresponds 

to the situation where each point is two-

dimensional.) If we keep the unit of discretization 

to be 0.1 for each dimension, then we have 100 

two-dimensional cells, and it is quite likely that 

some cells will be empty. For 100 points and three 

dimensions, most of the 1000 cells will be empty 

since there are far more points than cells. 

Conceptually our data is “lost in space” as we go 

to higher dimensions.  
 

For clustering purposes, the most relevant aspect of 

the curse of dimensionality concerns the effect of 

increasing dimensionality on distance or similarity. 

In particular, most clustering techniques depend 

critically on the measure of distance or similarity, 

and require that the objects within clusters are, in 

general, closer to each other than to objects in other 

clusters. (Otherwise, clustering algorithms may 

produce clusters that are not meaningful.) One way 

of analyzing whether a data set may contain clusters 

is to plot the histogram (approximate probability 

density function) of the pairwise distances of all 

points in a data set (or of a sample of points if this 

requires too much computation.) If the data contains 

clusters, then the graph will typically show two 

peaks: a peak representing the distance between 

points in clusters, and a peak representing the 

average distance between points. Figures 9a and 9b, 

respectively, show idealized versions of the data 

with and without clusters. Also see [Bri95]. If only 

one peak is present or if the two peaks are close, 

then clustering via distance based approaches will 

likely be difficult. Note that clusters of different 

densities could cause the leftmost peak of Fig. 9a to 

actually become several peaks. 

 

 

 

 

 

 

 

 

 

 

There has also been some work on analyzing the 

behavior of distances for high dimensional data. , it 

is shown, for certain data distributions, that the 

relative difference of the distances of the closest and 

farthest data points of an independently selected 

point goes to 0 as the dimensionality increases, i.e., 

 

 

 
 

 

 

For example, this phenomenon occurs if all 

attributes are i.i.d. (identically and independently 

distributed). Thus, it is often said, “in high 

dimensional spaces, distances between points 

become relatively uniform.” In such cases, the 

notion of the nearest neighbor of a point is 

meaningless. To understand this in a more 

geometrical way, consider a hyper-sphere whose 

center is the selected point and whose radius is the 

distance to the nearest data point. Then, if the 

relative difference between the distance to nearest 

and farthest neighbors is small, expanding the radius 

of the sphere “slightly” will include many more 

points.  

 

In a theoretical analysis of several different 

types of distributions is presented, as well as some 

supporting results for real-world high dimensional 

data sets. This work was oriented towards the 

problem of finding the nearest neighbors of points, 

but the results also indicate potential problems for 

clustering high dimensional data.  

 

The work just discussed was extended to look at the 

absolute difference, MaxDist – MinDist, instead of 



the relative difference. It was shown that the 

behavior of the absolute difference between the 

distance to the closest and farthest neighbors of an 

independently selected point depends on the 
distance measure. In particular, for the L

1 
metric, 

MaxDist – MinDist increases with dimensionality, 
for the L

2 
metric, MaxDist – MinDist remains 

relatively constant, and for the L
d 

metric, d ≥ 3, 

MaxDist – MinDist goes to 0 as dimensionality 

increase. These theoretical results were also 

confirmed by experiments on simulated and real 

datasets. The conclusion is that the L
d 

metric, d ≥ 3, 

is meaningless for high dimensional data.  

 

The previous results indicate the potential problems 

with clustering high dimensional data sets, at least in 

cases where the data distribution causes the 

distances between points to become relatively 

uniform. However, things are sometimes not as bad 

as they might seem, for it is often possible to reduce 

the dimensionality of the data without losing 

important information. For example, sometimes it is 

known apriori that only a smaller number of 

variables are of interest. If so, then these variables 

can be selected, and the others discarded, thus 

reducing the dimensionality of the data set. More 

generally, data analysis (clustering or otherwise) is 

often preceded by a “feature selection” step that 

attempts to remove “irrelevant” features. This can be 

accomplished by discarding  

features that show little variation or which are 

highly correlated with other features. (Feature 

selection is a complicated subject in its own right.)  

 

Another approach is to project points from a higher 

dimensional space to a lower dimensional space. 

The idea here is that that often data can be 

approximated reasonably well even if only a 

relatively small number of dimensions are kept, and 

thus, little “true” information is lost. Indeed, such 

techniques can, in some cases, enhance the data 

analysis because they are effective in removing 

noise. Typically this type of dimensionality 

reduction is accomplished by applying techniques 

from linear algebra or statistics such as Principal 

Component Analysis (PCA) or Singular Value 

Decomposition (SVD)  

To make this more concrete we briefly illustrate 

with SVD. (Mathematically less inclined readers can 

skip this paragraph without loss.) A singular value 

decomposition of an m by n matrix, M, expresses M 

as the sum of simpler rank 1 matrices as follows: 

 

 

 
 

 

singular vector, and v
i 
is the i

th 

right singular vector. 

All singular values beyond the first r, where r = 

rank(M) are 0 and all left (right) singular vectors are 

orthogonal to each other and are of unit length. A 

matrix can be approximated by omitting some of the 

terms of the series that correspond to non-zero 

singular values. (Singular values are non-negative 

and ordered by decreasing magnitude.) Since the 

magnitudes of these singular values often decrease 

rapidly, an approximation based on a relatively 

small number of singular values, e.g., 50 or 100 out 

of 1000, is often sufficient for a productive data 

analysis.  

 

Furthermore, it is not unusual to see data 

analyses that take only the first few singular values. 

However, both feature selection and dimensionality 

reduction approaches based on PCA or SVD may be 

inappropriate if different clusters lie in different 

subspaces. Indeed, we emphasize that for many high 

dimensional data sets it is likely that clusters lie only 

in subsets of the full space. Thus, many algorithms 

for clustering high dimensional data automatically 

find clusters in subspaces of the full space. One 

example of such a clustering technique is 

“projected” clustering which also finds the set of 

dimensions appropriate for each cluster during the 

clustering process. More techniques that find 

clusters in subspaces of the full space will be 

discussed in Section 4.  

In summary, high dimensional data is not like low 

dimensional data and needs different approaches. 

The next section presents recent work to provide 

clustering techniques for high dimensional data. 

While some of this work is represents different 

developments of a single theme, e.g., grid based 

clustering, there is considerable diversity, perhaps 

because of high dimensional data, like low 

dimensional data is highly varied.  

 

A “Concept-Based” Approach to 

Clustering High Dimensional Data  
 
A key feature of some high dimensional data is that 

two objects may be highly similar even though 

commonly applied distance or similarity measures 

indicate that they are dissimilar or perhaps only 

moderately similar [GRS99]. Conversely, and 

perhaps more surprisingly, it is also possible that an 

object’s nearest or most similar neighbors may not 

be as highly “related” to the object as other objects 

which are less similar. To deal with this issue we 

have extended previous approaches that define the 

distance or similarity of objects in terms of the 

number of nearest neighbors that they share. The 

resulting approach defines similarity not in terms of 



shared attributes, but rather in terms of a more 

general notion of shared concepts. The rest of this 

section details our work in finding clusters in these 

“concept spaces,” and in doing so, provides a 

contrast to the approaches of the previous section, 

which were oriented to finding clusters in more 

traditional vector spaces.  

Concept Spaces 

 
For our purposes, a concept will be a set of 

attributes. As an example, for documents a concept 

would be a set of words that characterize a theme or 

topic such as “Art” or “Finance.” The importance of 

concepts is that, for many data sets, the objects in 

the data set can be viewed as being generated from 

one or more sets of concepts in a probabilistic way. 

Thus, a concept-oriented approach to documents 

would view each document as consisting of words 

that come from one or more concepts, i.e., sets of 

words or vocabularies, with the probability of each 

word being determined by an underlying statistical 

model. We refer to data sets with this sort of 

structure as concept spaces, even though the 

underlying data may be represented as points in a 

vector space or in some other format. The practical 

relevance of concept spaces is that data belonging to 

concept spaces must be treated differently in terms 

of how the similarity between points should be 

calculated and how the objects should be clustered.  

 

To make this more concrete we detail a concept-

based model for documents. Figure 14a shows the 

simplest model, which we call the “pure concepts” 

model. In this model, the words from a document in 

the i
th 

class, C
i
, of documents come from either the 

general vocabulary, V
0
, or from exactly one of the 

specialized vocabularies, V
1
, V

2
, …, V

p
. For this 

model the vocabularies are just sets of words and 

possess no additional structure. In this case, as in the 

remaining cases discussed, all vocabularies can 

overlap. Intuitively, however, a specialized word 

that is found in a document is more likely to have 

originated from a specialized vocabulary than from 

the general vocabulary.  

 

Figure 14b is much like Figure 14a and shows a 

slightly more complicated (realistic) model, which 

we call the “multiple concepts” model. The only 

difference from the previous model is that a word in 

a document from a particular class may come from 

more than one specialized vocabulary. More 

complicated models are also possible. 

 

 

 

 

 

 

 

 

 

 

 

A statistical model for the concept-based models 

shown above could be the following. A word, w, 

in a document, d, from a cluster Ci, comes with 

one or more vocabularies with a probability given 

by P(w | Ci ) = Σ P(w | Vj ) * P(Vj | Ci). For the 

pure concepts model, each word of a document 

comes only from the general vocabulary and one 

of the specialized vocabularies. For the multiple 

concepts model, each word of a document comes 

from one or more specialized vocabularies. 

Our Clustering Approach 

 

We begin by calculating the document similarity 

matrix, i.e., the matrix which gives the cosine 

similarity for each pair of documents. Once this 

similarity matrix is calculated, we find the first n 

nearest neighbors for each document. (Every object 

is considered to be its own 0
th 

neighbor.) In the 

nearest neighbor graph, there is a link from object i 

to object j, if i and j both have each other in their 

nearest neighbor list. In the shared nearest neighbor 

graph, there is a link from i to j if there is a link from 

i to j in the nearest neighbor graph and the strength 

of this link is equal to the number of shared nearest 

neighbors of i and j.  

At this point, we could just apply a threshold, and 

take all the connected components of the shared 

nearest neighbor graph as our final clusters [JP73]. 

However, this threshold would need to be set too 

high since this is a single link approach and  

 
 

 

 

 

 

 

 

 

  

Figure 16: Different types of parameters 

 

will give poor results when patterns in the dataset 

are not very significant. On the other hand, when a 

high threshold is applied, a natural cluster will be 

split into many small clusters due to the variations 

in the similarity within the cluster. We address these 



problems with the clustering algorithm described 

below.  

There are two types of parameters used in 

this algorithm: one type relates to the strength of the 

links in the shared nearest neighbor graph, the other 

type relates to the number of strong links for an 

object. If the strength of a link is greater than a 

threshold, then that link is labeled as a strong link.  

The details of our shared nearest neighbor clustering 

algorithm are as follows:  

1) For every point i in the dataset, calculate the 

connectivity, conn[i], the number of strong links 

the point has.  

2) For a point i in the dataset, if conn[i] < noise 

threshold, then that point is not considered in the 

clustering since it is similar to only a few of its 

neighbors. Similarly, if conn[i] > topic 

threshold, then that point is similar to most of its 

neighbors and is chosen to represent its 

neighborhood.  

3) For any pair of points (i, j) in the dataset, if i and j 

share significant numbers of their neighbors, i.e. 

the strength of the link between i and j is greater 

than the merge threshold, then they will appear 

together in the final clustering if either one of 

them (or both) is chosen to be a representative. 

Our algorithm will not suffer from the effects of 

transitivity since every other point on a chain of 

links has to be chosen to be a representative. In 

other words, two objects that are not directly 

related will be put in the same cluster only if  

 there are many other objects between them that 

are connected with strong links, half of which 

must        represent their own neighborhood.  

4) Labeling step: Having defined the representative 

points and the points strongly related to them, 

we can bring back some of the points that did 

not survive the merge threshold. This is done by 

scanning the shared nearest neighbor list of all 

the points that are part of a cluster, and checking 

whether those points have links to points that 

don’t belong to any cluster and have a link 

strength greater than the labeling threshold.  

 

After applying the algorithm described above, there 

may be singleton clusters. These singleton clusters 

are not equivalent to the singleton clusters obtained 

using the JP method. Note that if only a threshold is 

applied after converting the nearest neighbor graph 

to the shared nearest neighbor graph, there will be 

several clusters (which are the connected 

components after applying the threshold), and the 

rest will be singletons. By introducing the topic 

threshold, we are able to mark the documents that 

have similar documents around. In the end, if a 

document that is labeled as a topic remains as a 

singleton, this does not mean that it is a noise 

document. For that document to be labeled as a 

topic, it must have enough number of strong links, 

which means that it has many similar neighbors but 

the strength of those links were not strong enough to 

merge them.  

 

Singleton clusters give us some idea about the less 

dominant topics in the dataset, and they are far more 

valuable than the singletons that are left out (labeled 

as background). To the best of our knowledge, there 

is no other algorithm that produces valuable 

singleton (or very small) clusters. Being able to 

make use of the singleton clusters can be very 

useful. If we’re trying to detect topics in a document 

set, we don’t have to force the parameters of the 

algorithms to the edge to find oend up getting a 

singleton cluster, that document will give us an idea 

about several other documents, whereas noise 

documents do not give us any idea about any other 

document.  

The method described above finds communities of 

objects, where an object in a community shares a 

certain fraction of its neighbors with at least some 

number of neighbors. While the probability of an 

object belonging to a class different from its nearest 

neighbor’s class may be relatively high, this 

probability decreases as the two objects share more 

and more neighbors. This is the main idea behind 

the algorithm.  

Some Final Comments on Concept 

Based Clustering 

While we have restricted our discussion here to 

concept based clustering for documents, the shared 

nearest neighbor approach to similarity on which it 

is based can be applied to many different sorts of 

data. In particular, the shared nearest neighbor 

approach from which concept-based is derived, was 

originally used for two-dimensional spatial data, and 

we have also successfully applied our data to such 

data. A major task ahead of us is to more precisely 

define those situations in which is it applicable 

Conclusions 
In this paper we have provided a brief introduction 

to cluster analysis with an emphasis on the challenge 

of clustering high dimensional data. The principal 

challenge in extending cluster analysis to high 

dimensional data is to overcome the “curse of 

dimensionality,” and we described, in some detail, 

the way in which high dimensional data is different 

from low dimensional data, and how these 

differences might affect the process of cluster 

analysis. We then described several recent 

approaches to clustering high dimensional data, 

including our own work on concept-based 

clustering. All of these approaches have been 



successfully applied in a number of areas, although 

there is a need for more extensive study to compare 

these different techniques and better understand 

their strengths and limitations.  

In particular, there is no reason to expect that one 

type of clustering approach will be suitable for all 

types of data, even all high dimensional data. 

Statisticians and other data analysts are very 

cognizant of the need to apply different tools for 

different types of data, and clustering is no different.  

Finally, high dimensional data is only one issue that 

needs to be considered when performing cluster 

analysis. In closing we mention some other, only 

partially resolved, issues in cluster analysis: 

scalability to large data sets, independence of the 

order of input, effective means of evaluating the 

validity of clusters that are produced, easy 

interpretability of results, an ability to estimate any 

parameters required by the clustering technique, an 

ability to function in an incremental manner, and 

robustness in the presence of different underlying 

data and cluster characteristics. 
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