
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

20

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2013, IJARCST All Rights Reserved

The Design Issues in Web Services and Security
with Service-Oriented Architecture

IR. Kamal Krishnan, IIDr. R. Selvam, IIIDr. R. Prabakaran
IGuest Lecturer, IIAssistant Professor, IIIProfessor

I,IIDept. of Computer Science, Sri Subramanyaswamy Government Arts College, Tiruttani,
Thiruvallur District, Tamil Nadu, India

IIIDept. of Computer Applications, Arignar Anna Institute of Management Studies and Computer
Applications, Pennalur, Kancheepuram District, Tamil Nadu, India

I. Introduction
Web services security requirements also involve credential
mediation, and service capabilities and constraints. Web Services
have to be suitable for secure communication A Web service is
most commonly implemented as a wrapper – that is, as an interface
between clients consuming the service and back-end business
logic components doing the actual work. A Web service acts as a
trust boundary in the application architecture. By its nature, a Web
service acts as a gateway between trusted business components
and less trusted or un-trusted client components. For this reason, it
is impossible to think about the security of a Web service without
also thinking about authentication, authorization, protection of
sensitive data on the network, and handling potentially malicious
input. Each of these areas represents key decisions, will need
to make in order to maintain the security of the application. By
following security best practices in the design of Web service, can
use proven practices to improve the decision-making capabilities
and make a cascading positive impact on the overall security of
the application. Use the following design guidelines to reduce
wasted effort trying to solve security problems for which there are
already best practices in place to improve the security of service.
Security is a path, not a destination. As analyze of infrastructure
and applications, identify potential threats and understand that
each threat presents a degree of risk. Security is about risk
management and implementing effective countermeasures. One
of the most important concepts in security is that effective security
is a combination of people, process, and technology.

II. Service Oriented Architecture
Service Oriented Architecture (SOA) is architecture of loosely
coupled components that can be distributed across platform,
technology and physical topology. Service components can be
combined to provide a business process or provide more complex
services for a client application. The key attributes of service
oriented architecture are:

Interoperable.•	 Components can be interoperable across
platform and technology boundaries.

Componentized.•	 Services are exposed as autonomous
components that can be versioned and managed
independently.
Composable.•	 Services can be composed by an application
to perform more complex operations.
Message-based	interfaces.•	 Interfaces are defined by message
contracts and schemas.
Distributable.•	 Service components can be consumed from the
same machine or can be distributed to remote machines.
Discoverable.•	 Services publish their metadata as WSDL so
that client applications can discover the interfaces, schemas,
and generate a client-side proxy to consume the service.

Services are the preferred communication technique to use across
application boundaries, including platform, deployment, and trust
boundaries. In this table describes some comparison of service
orientation and object orientation.

Table 1:
Object Orientation Service Orientation
Assumes a homogeneous
platform and execution
environment.

Assumes a heterogeneous
platform and execution
environment.

Shares types, not schemas. Shares schemas, not types.
Assumes cheap, transparent
communication.

Assumes variable cost, explicit
communication.

Objects are linked: object
ident i ty and l i fe t ime
are maintained by the
infrastructure.

Services are autonomous:
security and failure isolation
are a must.

Ty p i c a l l y r e q u i r e s
synchronized deployment of
both client and server.

Allows continuous, separate
deployment of client and
server.

Abstract
A Web service is a software application that can be accessed remotely using XML-based languages. It represents a communication
interface offered by the server, through that the clients may require different information. Designing a Web service with security
in mind presents developers and architects with an interesting set of challenges. Some are unique to service-oriented architecture
and some are similar to the challenges that face enterprise Web application development teams. In this analysed various guideline
like Authentication, Authorization, Configuration Management, Exception Management, Message Protection, Message Validation,
Message Validation, Sensitive Data, Session Management before deploying the Web service and each of these guidelines is briefly
described.

Key words
Components, schemas, client, gateway, effective, Validation

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

21

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2013

Is easy to conceptualize and
thus provides a natural model
to follow.

Builds on ideas from
component software and
distributed objects. Dominant
theme is to manage/reduce
sharing between services.

Provides no explicit guidelines
for state management and
ownership.

Owns and maintains state or
uses the reference state.

Assumes a predictable
sequence, timeframe, and
outcome of invocations.

Assumes message-oriented,
potentially asynchronous,
a n d l o n g - r u n n i n g
communications.

Goal is to transparently use
functions and types remotely.

Goal is to provide inter-
service isolation and wire
interoperability based on
standards.

III. Security Architecture and Design Issues for Web
Services
During the design phase, it is important to think like an attacker
and consider potential vulnerabilities that can impact of service.
A clear understanding of attacks and vulnerabilities will put in the
right mindset to mitigate potential problems and create a design
that is resistant to malicious attack. The following table outlines
key problem areas for each category in the Web service security
frame.

Table 2 :
Vulnerability category Potential problem due to bad design
Auditing and logging Failure to observe signs of intrusion;

Inability to prove a user’s actions;
Difficulties in problem diagnosis

Authentication Identity spoofing; Password cracking;
Elevation of privileges; Unauthorized
access

Authorization Access to confidential or restricted
data; Tampering; Execution of
unauthorized operations

C o n f i g u r a t i o n
management

Unauthorized access to administration
interfaces; Unauthorized ability
to update configuration data;
Unauthorized access to user accounts
and account profiles

Exception management Denial of service (DoS) attacks;
Disclosure of sensitive system level
details; Elevation of privilege.

Message encryption Sniffing of confidential data off the
network; Stealing users’ credentials
or session information.

M e s s a g e r e p l a y
detection

Replaying user messages to gain
unauthorized access to resources or
data

Message signing Tampering with messages on the
network without detection. Failure to
mutually authenticate allows attacker
to send messages as if they were a
legitimate user.

Message validation Messages containing malicious
input.; Cross-site scripting or SQL
injection attacks on the service or
clients that rely on the service.

Sensitive data Confidential information disclosure
and data tampering.

Session management Session hijacking and/or identity
spoofing due to Capture of session
ID.

A. Deployment Considerations
During the application design phase, should review corporate
security policies and procedures together with the infrastructure
on which the application is to be deployed. Frequently, the target
environment is rigid, and the application design must reflect its
restrictions

Identify	security	policies	and	procedures•	 . A security policy
determines what applications are allowed to do and what the
users of the application are permitted to do.
Understand	network	infrastructure	components•	 . Make
sure understand the network structure provided by the target
environment, as well as the baseline security requirements
of the network in terms of filtering rules, port restrictions,
supported protocols, and so on.
Identify	how	firewalls	and	firewall	policies	are	likely	to	•	
affect	application’s	design	and	deployment. If present,
firewalls separating the Internet-facing applications from the
internal network, as well as additional firewalls in front of
the database, can affect of possible communication ports and
consequently authentication options from the Web server to
remote application and database servers.
Identify	protocols,	ports,	and	services•	 . At the design stage,
consider what protocols, ports, and services are allowed
to access internal resources from the Web servers in the
perimeter network.
Communicate	 assumptions•	 . Communicate and record
any assumptions made about network and application-layer
security and which component will handle what task.
Analyze	deployment	topologies•	 . Application’s deployment
topology, and whether a remote application tier have, are key
considerations that must be incorporated into of design.
Consider	 identity	 flow•	 . Also consider identity flow
and identify the accounts that will be used for network
authentication when the application connects to remote
servers.
Understand	intranet,	extranet,	and	Internet	considerations•	 .
Intranet, extranet, and Internet application scenarios each
present design challenges. Questions that should consider
include:
How will flow caller identity through multiple application *
tiers to back-end resources?
Where will perform authentication? *
Can trust authentication at the front end and then use a trusted *
connection to access back-end resources?

B. Auditing And Logging
Auditing and logging are used to monitor and record important
activities, such as transactions or user management events, on
both the client and the service. Ensure that logging design allows
for the effective auditing of security-critical operations such as

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

22

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2013, IJARCST All Rights Reserved

user management events or important business operations such
as financial transactions.
Consider the following guidelines:
Audit	and	Log	Access	Across	Application	Tiers-Audit and log
access across the tiers of the application for the purpose of non-
repudiation. Use a combination of application-level logging and
platform auditing features.
Back	Up	and	Analyze	Log	Files	Regularly	-	There is no point
in logging activity if the log files are never analyzed. Log files
should be removed from production servers on a regular basis.
The frequency of removal depends on the application’s level of
activity.
Consider	Identity	Flow	-	Consider how the application will flow
caller identity across multiple application tiers. Here two basic
choices:

Flow the caller’s identity at the operating system level by •
using the Kerberos protocol delegation. This allows to the
use operating system–level auditing. The drawback to this
approach is that it affects scalability because it means there
can be no effective database connection pooling at the middle
tier.
Alternatively, it can flow the caller’s identity at the application •
level and use trusted identities to access back-end resources.
With this approach, they have to trust the middle tier, which
brings a potential repudiation risk. This should generate audit
trails in the middle tier that can be correlated with back-end
audit trails.

Do	Not	Log	Sensitive	Information - Do not include sensitive
information in the log entries. The access rights for the log files
may be different than the access rights for sensitive operations
and data in the service.
Instrument	 for	 Significant	 Business	 Operations - Track
significant business operations. For example, instrument the
application to record access to particularly sensitive methods
and business logic.
Instrument	for	Unusual	Activity	-	Instrument the application and
monitor events that might indicate unusual or suspicious activity.
This enables them to detect and react to potential problems as
early as possible.

Instrument	 for	User	Management	Events - Instrument the
application and monitor user management events such as password
resets, password changes, account lockout, user registration, and
authentication events.
Know	The	Baseline - Before deploying the application, audit the
log files so what normal application behavior looks like.

Log	Key	Events - The types of events that should be logged
include successful and failed logon attempts, modification of data,
retrieval of data, network communications, and administrative
functions such as the enabling or disabling of logging.
Protect	and	Audit	Log	Files	-Protect and audit and log files
using Windows access control lists (ACLs), and restrict access
to the log files. If the log events to Microsoft SQL Server® or to
some custom event sink, use appropriate access controls to limit
access to the event data.
Additional	Considerations	-	Also keep in mind the following
additional considerations:

Log application events on a separate, protected server. •
Assign appropriate permissions to the log files.•
Log application events in sufficient detail. •

Use performance counters for high-volume, per-request •
events.
Use Log Throttling•

C. Authentication
Authentication is the mechanism by which the clients can establish
their identity with service using a set of credentials that prove
that identity. Protect the user’s credentials when they are sent
over the network, as well as when they are stored on the client
or the server.
Be	Able	to	Disable	Accounts
If the system is compromised, being able to deliberately invalidate
credentials or disable accounts can prevent additional attacks.
Do Not Send Passwords over the Wire in Plaintext
Plaintext passwords sent over a network are vulnerable to
eavesdropping. To address this threat, secure the communication
channel; for example, by using Secure Sockets layer (SSL) to
encrypt the traffic.
Do	Not	Store	Passwords	in	User	Stores
If verify passwords, it is not necessary to actually store the
passwords. Instead, store a one-way hash value and then recomputed
the hash using the user-supplied passwords. To mitigate the threat
of dictionary attacks against the user store, use strong passwords
and incorporate a random salt value with the password.
Protect	Authentication	Cookies
A stolen authentication cookie is a stolen logon. Protect
authentication tickets using encryption and secure communication
channels.
Require	Strong	Passwords
Do not make it easy for attackers to crack passwords. There are
many guidelines available, but a general practice is to require
a minimum of eight characters and a mixture of uppercase and
lowercase characters, numbers, and special characters.
Support	Password	Expiration	Periods
Passwords should not be static and should be changed as part
of routine password maintenance through password expiration
periods. Consider providing this type of facility during application
design.
Use	Account	Lockout	Policies	for	End-user	Accounts
Disable end-user accounts or write events to a log after a set
number of failed logon attempts.

D. Authorization
Authorization is the mechanism by which the control the operations
and resources an authenticated client can access. Where possible,
authenticate the users on the same application tier where authorize
the users. Run the application in a least-privileged account and
use impersonation to increase privileges only when necessary and
for the shortest time possible.
Tie	Authentication	to	Authorization	on	the	Same	Tier
Where possible, authenticate the users on the same application
tier where authorize the users. The further to separate the time of
check (authentication) from the time of use (authorization), the
larger window of opportunity the give an attacker to subvert the
authorization mechanism.
Consider	Authorization	Granularity
There are three common authorization models, each with varying
degrees of granularity and scalability:

The	 most 	 granular	 approach	 rel ies 	 on	•	
impersonation. Resource access occurs using the security
context of the caller. Windows ACLs on the secured resources

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

23

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2013

determine whether the caller is allowed to access the resource.
If the application provides access primarily to user-specific
resources, this approach may be valid.
The	least	granular	but	most	scalable	approach	uses	the	•	
application’s	process	identity	for	resource	access. This
model is referred to as the trusted subsystem or sometimes
as the trusted server model. Although this approach supports
database connection pooling, it means that the permissions
granted to the application’s identity in the database are
common, irrespective of the identity of the original caller.
The	third	option	is	to	use	a	limited	set	of	identities	for	•	
resource	access	based	on	the	role	membership	of	the	caller.
This is really a hybrid of the two models described earlier.

Know	The	Authorization	Options
Know the authorization options and choose the most appropriate
one for the scenario. First decide if they want to use resource-based
or role-based authorization. Resource-based authorization uses
ACLs on the resource to authorize the original caller. Role-based
authorization allows them to authorize access to service operations
or resources based on the group a user is in.
Restrict	User	Access	to	System-level	Resources
System-level resources include files, folders, registry keys, Active
Directory objects, database objects, event logs, and so on. Use
ACLs to restrict which users can access what resources and the
types of operations that they can perform.
Use	Least-privileged	Accounts
In this might need to create a custom service account to isolate
the application from other applications on the same server, or to
be able to audit each application separately.
Use	Multiple	Gatekeepers
On the server side, the can use IP Security Protocol (IPSec)
policies to provide host restrictions to restrict server-to-server
communication. For example, an IPSec policy might restrict any
host apart from a nominated Web server from connecting to a
database server.

E. Configuration Management
Security settings, authentication, authorization, logging, and other
parameters can be set in configuration files. Encrypt configuration
sections that contain sensitive data such as connection strings to
the SQL database. Protect access to the configuration settings so
that an attacker cannot modify security settings for the service.
Consider the following guidelines:
Consider	The	Key	Storage	Location
If it need to store keys, choose platform features over rolling the
own mechanism. The Data Protection API (DPAPI)– and RSA-
protected configuration providers used to encrypt sensitive data
in configuration files can use either machine stores or user stores
for key storage.
Encrypt	Sensitive	Sections	of	Configuration	Files
Configuration files may contain sensitive information, such as
connection strings to the database. Encrypt sensitive information in
the configuration files using the DPAPI provider with the machine-
key store. This can use the aspnet_regiis command-line tool to
encrypt sections of the configuration file.
Use	ACLs	to	Protect	The	Configuration	Files
Use ACLs to lock the configuration files down and restrict
inappropriate access. Modifications to the configuration settings,
especially binding options, can have a major impact on the security
of the service.

Use	Secure	Settings	for	Various	Operations	of	Web	Services
Set the configuration options to take advantage of features such as
message and transport security, which protect the communication
channel between the client and the service.

F. Exception Management
Exception management is the means by which the expose
and consume exception information within the service and
send it back to the clients. Be careful not to reveal internal
application details to the clients as this information could assist
an attacker trying to exploit the service. Catch and handle
exceptions so that error conditions do not lead to a service
crash and a DoS condition for the clients. Fail to a secure state
so that an error condition does not result in the application
running at higher privilege or accessing resources insecurely.
Consider the following guidelines:
Catch	Exceptions
Use structured exception handling and catch exception conditions
with try/catch blocks. Doing so avoids leaving the application in
an inconsistent state that may lead to information disclosure.
Do	Not	Log	Private	Data	Such	as	Passwords
Exception handlers often will result in an error log entry. Be careful
not to log sensitive information such as passwords, credit card
numbers, or privately identifiable information (PII).
Do Not Reveal Sensitive System or Application Information
In the event of a failure, do not expose information that could lead
to information disclosure.
Log	Detailed	Error	Messages
Send detailed error messages to the error log. Send minimal
information to the consumer of the service or application, such as
a generic error message and custom error log ID that subsequently
can be mapped to a detailed message in the event logs. Make sure
that do not log passwords or other sensitive data.

G. Message Protection
Message protection covers the mechanisms used to protect
sensitive data in-transport over the network from unauthorized
access or modification. Use message or transport security to protect
the messages in transit. Consider the following guidelines:
Use	Message	Security	or	Transport	Security	to	Encrypt	and	
Sign	The	Messages
Use message security or transport security to encrypt the messages
on the network. Message security encrypts each individual message
to protect sensitive data.
Use	Platform-Provided	Cryptography
Cryptography is notoriously difficult to develop. The Windows
crypto APIs have been proven to be effective. These APIs are
implementations of algorithms derived from years of academic
research and study.
Use	Platform	Features	for	Key	Management
Use platform features where possible to avoid managing keys
them self
Periodically	Change	The	Keys
In this should change the encryption keys from time to time because
a static secret is more likely to be discovered over time.

H. Message Validation
Message validation is used to protect the service from malformed
messages & message parameters. Message schemas can be used to
validate incoming messages, and custom validators can be used to
validate parameter data before the service consumes it. Consider

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

24

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2013, IJARCST All Rights Reserved

the following guidelines:
Do	Not	Trust	Input
An attacker passing malicious input can attempt SQL injection,
cross-site scripting, and other injection attacks that aim to exploit
the application’s vulnerabilities. Check for known good data
and constrain input by validating it for type, length, format, and
range.
Verify	the	Message	Payload	Against	a	Schema
If the need to validate parameters, message contracts, or data
contracts passed to operations, use schemas to validate the incoming
message. Schemas provide a wide range of input validation without
the need for custom code or validation routines.
Verify	the	Message	Size,	Content,	and	Character	Sets
Validate incoming messages to ensure that they match the
expectations regarding size, content, and character encoding.
Filter,	Scrub,	and	Reject	Input	and	Output	Before	Additional	
Processing
Filter and reject input before allowing the data to be processed by
downstream components. Because malicious input may target the
routines that process the input, it is important to detect and reject
malformed input early before additional processing occurs.

I. Sensitive Data
Sensitive data refers to confidential information that the
service processes, transmits, or stores. Protect sensitive data
on the network, in configuration files, in local memory or file
storage, and in databases and log files. Ensure that aware of
all sensitive information the service transmits or processes.
Sensitive data includes user identity and credentials as well as
any personally identifiable information (PII) such as social security
number. Consider the following guidelines:

Do not store database connections, passwords, or keys in •
plaintext.
Do not store secrets if can avoid it.•
Do not store secrets in code.•
Encrypt sensitive data in configuration files.•
Encrypt sensitive data over the network.•
Retrieve sensitive data on demand.•

J. Session Management
Sessions are the means by which an application maintains state
full communication with a client over time. Protect the session
tokens or identifiers so that an attacker cannot gain access and
steal a user’s session. Reduce the timeouts on the sessions to
lower the chances of an attacker being able to steal a session after
a user has finished using the application. Consider the following
guidelines:

Authenticate & authorize access to the session store.•
Avoid storing sensitive data in session stores.•
Reduce session timeouts.•
Secure the channel to the session store.•

IV. Conclusion
The Web services describes a standardized way of integrating
Web-based applications using the XML, SOAP, WSDL and
UDDI open standards over an Internet protocol backbone. It allow
organizations to communicate data without intimate knowledge of
each other’s IT systems behind the firewall. In this discussed various
guidelines like Authentication, Authorization, Configuration
Management, Exception Management, Message Protection,
Message Validation, Message Validation, Sensitive Data, and

Session Management before deploying the Web service and each
of these guidelines is briefly described. Security is about risk
management & implementing effective countermeasures. One of
the most important concepts in security is that effective security
is a combination of people, process, and technology.

References
 Leonard Richardson, Sam Ruby Web services for the real [1].
world

 [2]. Ralph Moseley, M.T. Savaliya: Developing Web
Applications

 Bates: Web Programming Building Internet Applications [3].
 Chris Bates:Web Programming: Building Internet [4].
Applications The Dafydd Stuttard Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws

 Bryan Sullivan: Web Application Security, A Beginner’s [5].
Guid

 [6]. http://www.infosec.gov.hk/english/technical/files/webss.pdf

 h[7]. ttps://msdn.microsoft.com/en-us/library/ff649737.aspx
 [8]. https://wcfsecurityguide.codeplex.com/
 K.-J. Lin; J.-Y. Chung: Service Oriented Computing and [9].
Applications -Web Services

