

Context-Awareness Meta-model for User Interface
Runtime Adaptation

Nesrine Mezhoudi, Jorge Luis Perez Medina and Iyad Khaddam
{nesrine.mezhoudi, jorge.perezmedina, iyad.khaddam}@uclouvain.be

Université Catholique of Louvain, Belgium

Summary
Effective adaptation of User Interfaces (UI) is still a main
requirement to improve system usability and enhance the user
experience. The heterogeneity in contexts of use augmented the
complexity of such a task. Several requirements should be
accommodated in order to meets users’ expectations. Design time
adaptations are no more sufficient to guarantee context-
awareness. A user satisfaction’s shortcoming is still revealed
backed by the lack of support of user’s preferences and
interventions at run-time, which decreases user-centeredness and
usability. In order to improve the UI contextualization and user-
centeredness, deeper research on how to adapt efficiently and
effectively the UI at runtime should be directed.
This paper proposes a Context-Awareness Model (CAM) that
consists of modeling UI, context and adaptation by addressing
user’s involvement at runtime. The CAM model is aimed to
support user interface designers to develop and conceptualize
system that accommodate context-awareness, and user-
centeredness requirements.
Key words:
Framework, runtime adaptation, context-awareness, user
involvment.

1. Introduction

Current advancements in the technological landscape and
their rapid growth are creating competitive challenges, as
well as new opportunities for HCI communities. Such a
progress seems promising for the user interface (UI) to
offer tailored interfaces and interaction scenario that
correspond to end-user’s specific expectations and
preferences. Accordingly, adaptation approaches are
evolving with technologies with the purpose to increase
user’s satisfaction and enhanced interaction experience.

Adaptation of UI is an active domain of research in HCI.
Adaptation methods are evolving to fulfill new
requirements to increase the UI efficiency. By attempting
to cut with earlier interfaces that often needed
recompilation for upgrades, which incurred increased cost,
delay, and risk, UIs shift to a runtime paradigm. UIs turn
out to be adaptive rather than being user-centered and
carry out adaptation in accordance with the end-user
preferences as well as the context of use.

Model based user interface benefits were widely discussed
in the literature [2, 3, 14, 19]. The advantageous cost’s
reduction and facility of interchange are challenges the
HCI community. The aim is to develop UIs with higher
usability and enhanced interaction. However, such
solutions lack the runtime context-awareness.

Most of existing approaches follow the Cameleon
Reference Framework (CRF)[3]. (CRF) considers that
once the abstract specification is defined, several
instantiations could be derived. In the same way, contexts
of use were defined through predefined meta-models
(abstraction). However such a solution should be
enhanced to support runtime context-awareness and user
intervention in order to improve their usability levels and
meet present-day requirements.

The purpose of this research is to support runtime
adaptation while considering user intervention by means of
model-based UI reification at runtime. We achieve this
propose by proposing a state transition process, that is
conceptualized in the model, that enhances context-
awareness runtime adaptation.

This paper is structured as follows: section one presents a
review of existing works on adaptation and system
context-awareness.
Section two describes CAM: a conceptual model
supporting UI runtime context awareness and end-users
involvement.
Section three shows two implementations for a car rental
case study. The first implementation is a Flippable UI for
internationalization developed in accordance with
UsiXML project specifications [23]. The second
implementation demonstrates an adaptive UI. Finally, we
conclude and explain future work in section four.

2. Related works and key challenges

2.1 Adaptation frameworks
Different theoretical frameworks and models to support
systematic context-awareness are developed by researchers.
These works aim at supporting design decisions and
requirements for different contexts of use. In the following,

NNGT Int. J. on Software Engineering, Vol. 2, Feb 2015

© N&N Global Technology 2015
DOI : 02.IJSE.2015.1.2

Full Paper

1

we conduct a comparative analysis based on the following
criteria:

• UI models employed: levels of abstractions and
supported models at each level in the framework.

• Support for transformation engines: capability to
generate final user interfaces from UI models.

• Support for the context of use: it denotes what
dimensions of the context of use are supported. The
context of use is a triplet: platform, user and
environment [23].

• Adaptation model: does the framework propose an
adaptation model?

• User involvement: Does the framework/model address
the user involvement in the adaptation process/model?

• Adaptation autonomy: refers to the level in which
adaptation is implemented, i.e., designed applications
do not perform adaptation at all, adaptable
applications rely on users to trigger and perform the
adaptation, adaptive systems rely on the adaptation to
be automatically performed, and self-modifying
means evolutionary systems able to adapt their own
adaptation engines.

• Adaptation techniques: does the framework/model
explicit the supported adaptation techniques?
(Adaptable/ adaptive/ mixed initiative/ run
time/design time).

CRF [3] was introduced as a unified approach to structure
model-based UI. It provides a unified understanding of
context-sensitive UIs rather than a prescription of various
ways or methods of tackling different steps of
development. CRF outlines four abstraction levels beside
the different transformations between models. However
there is no consideration for user involvement and
feedbacks. As well, adaptation concerns were not fully
supported. Although the model driven engineering of
Cameleon allow different types of adaptive behavior to be
implemented such as: Using the task model to adapt the
feature-set and using the concrete UI model to adapt the
layout [1].

Knutov [14] suggests a general-purpose adaptive
hypermedia AH framework (GAF) providing reference
architecture and defining system criteria to distinguish
between adaptation elements. It provides a modular
structure to enhance adaptation of web-based systems
capabilities.

GAF provides a basic understanding of adaptation
questions. Supported adaptation concepts are determined
through a composition of the system layers. Mainly three
abstraction levels are supported: task, abstract and the
presentation models, besides the context models.

Moreover, GAF provides an Adaptation Model that refers
to the Search Engine and Ranking mechanisms. The
adaptation autonomy is limited to the UI adjustment in two
ways with regards to user observations: user model update

and system adaptation in which the adaptation is
performed (adaptation of presentation, content or
navigation) utilizing the state of the user model.

UsiXml [23,2] Supports a MDE approach and covers all
CRF models. UsiXml adaptations are focused on the
platform model. Users are supported through stereotypes,
however there is no involvement of users during
adaptation. Regarding adaptation concerns, there are no
information about deployed adaptation models and
autonomy.

Motti [19] proposes TriPlet, a computational framework
that covers a broad view to support the implementation of
multi-dimensional CAA. Three conceptual methods
(CADS [19], CARF [19] and CAMM [19]) have been
integrated within a general computational framework that
considers, in a structured way, both context information
and adaptation concepts [20].

CAMM cover different UI models, context of use and
adaptation models. However transformation engines were
not supported as well as user involvement. Sottet proposal
[21] is close to CAMM and considers same models.
However, many concepts were supported through generic
classes. The framework supports transformations and
generation of UIs.

Ganneau [10] and Karen [12] proposals were oriented to
adaptation concerns. The proposal of [10] consists of a
meta-model for adaptation rules supporting adaptation
models and different adaptation techniques. Adaptation
autonomy is not directly supported, however the meta-
model outlines two event types triggering adaptation:
context change and system event. On the other hand, there
is no support of user involvement.

Karen framework [12] is aimed to categorize the two key
elements of an adaptive system: the aspects of automated
systems open to adaptation (Taxonomy of Adaptations)
and the methods to trigger those adaptations (Taxonomy of
Triggers). Adaptation autonomy is not directly supported.
The framework taxonomies provides a systematic way to
organize research on specific adaptations or triggers.

Despite the broad scope of frameworks, their extensible
facets can lead to an incoherent instantiation in addition to
confused synchronization of different supported aspects.

2

Table 1:This table represents the analysis of related works based on Adaptation concepts and concerns. The dimensions were ranked
regarding their support “�” fully explicit support, “º” implicit support, and empty “ ” when it is not supported or there is no information about.

Related
works

Adaptation concepts Adaptation concerns
UI models Context model User

Involvement
(feedbacks)

Adaptation
model

Adaptation
autono

my

Adaptation
technique Task AUI CUI Transformation User Platform Environment

Cameleon[1] � � � � � � � º

Usixml[24] � � � � � � � � �

GAF
(Knutov)

[2,7]

� º � � � � º � º º

Triplet[4] � � � � � � � �

Karen [7] � º �

Sottet[15] � � � � � � � �

Ganneau[14] º º º � º �

CAM � � � � � � � � � � �

2.2 Adaptation requirements
Several analyses and studies targeted adaptive systems
from a different point of view, most of them focused on
the dimensions of adaptation in systems and are specific to
distinctive domains such as: medical [12, 15, 17] (medical,
hypermedia).

One of the most underlined issues with adaptation is the
lack of user-centeredness. A user-centered adaptation is a
key to reach user’s satisfaction, improve usability and
upgrade the UI quality. Considering the user dimension
during adaptation might be addressed through user profiles,
however ontological user representation is not enough to
define user preferences and needs. Context-awareness
requires an enhanced consideration of user preferences,
needs and expectations at runtime. Such shortcoming
should be overcome through enhancing the end user
involvement within the adaptation process.

Moreover, most commonly cited issues with adaptive UI
are the lack of predictability, control, and privacy [6, 16],
mainly because UI adaptations consider prior interaction
knowledge (explicit context, domain models) [4, 6]. Such
criteria were of paramount importance to the assessment of
the literature and expected to contribute the improvement
of their success: Controllability, Predictability and
Transparency.

The controllability (defined as interface’s customizability)
represents the capacity and tolerance of system to support
user-initiated customization of the interface. Accordingly
users have the opportunities to prevent or actively accept
adaptations, and to undo or override adaptations (cf. [24]).
Many works (e.g. [5]) argues for providing users full
control over automatic adaptations as a major requirement
of acceptable adaptive systems.

The predictability (interface’s non-perceptiveness) focuses
on the extent to which past and present interface allows
user to determine the outcome of future interactions, it is
about actions and effects. Gajos [9] considers that an
adaptive system is predictable if it follows a strategy users
can easily model in their heads, and then he evaluates
predictability effects on user’s satisfaction.

The transparency (comprehensibility) concerns the honesty
of the system. It presents the capacity of user to understand
adaptation and interpret perceived information.

All above-mentioned criteria agreed on the fact that
successful interaction must not result in a confusing
situation and should avoid the trouble of losing control
over the user interface for end-users. Users must be at the
heart of adaptation. Their involvement could be achieved
by providing non-technical designers and typical users
with user-friendly techniques for managing interfaces
depending on their aptitudes.

To our knowledge, there are no frameworks that match
with user-centeredness and agile principles (such as:
incremental, iterativity, user-centered) for adaptation.
Most of them were focused mainly on the conventional
adaptation mode or consider just some fragments. For
instance, to adapt a UI to a user model without being user
centered [3, 8, 10, 21]. Moreover supporting recent and
usual adaptation strategies from different perspectives
allowing full understanding and comparison of techniques
is still partially fulfilled.

An iterative progressive adaptation enhanced by intelligent
techniques can meet this shortcoming. The intent is to
advance the adaptations and provide systems with the
ability to learn and build novel knowledge in an
incremental way with regard to changes in the context.

3

3. A Conceptual Model for runtime Context-
awareness
So far, we focused on two paths to discuss the context of
the study and to outline the need for advancing adaptation
topics and presenting Context-Awareness Model (CAM).

Several models address the adaptation process. Most of
them conceptualize adaptation rules in a specific way [10]
such as the conceptual model proposed in [21]. Broader
conceptual models are presented by [20]. They cover
context, adapter, model and adaptation rules.

The reviewed literature allowed an analysis of involved
concepts and their characterization. Along with above
detailed researches, we propose a conceptual model for
adaptation aimed to cover main involved features. The
model (figure 2) is aimed at supporting an explicit,
comprehensible and complete configuration of adaptation
concerns and allowing advances and improvements. It is
intended to cover the whole involved concepts and
determines their relationship and dependency.

Three main packages were identified to distinguish
involved classes belonging to different adaptation
dimensions (figure 1).

Fig. 1 Adaptation main concepts

The Adaptation package is the heart and engine of
contextualization, linking all key elements involved for UI
adaptation. The “UIModel” package defines the user
interface independently of both adaptation and the context
of use. The context of use package corresponds adaptation
triggers and all contextual factors. In what follows a
detailed description of involved elements is presented.

3.1 The Adaptation Package
The model of the adaptation package (figure 2) establishes
the adaptation as a model separate from context and
interface definitions. This dimension includes all classes
related to the adaptation itself. It is intended to give an
abstract conceptualization for the adaptation process in
term of UI states and transitions.

Fig. 2 An Unified Adaptation model for runtime context-awareness

A “UIState” remains a characterization of a UI model
consistent with a context assessment. The state terms
values of UI attributes with consideration of the context of
use. For instance at a concrete abstraction level, for a

phone device context the choice interaction unit for a
values number up to 30 is assessed to a Drop-down list.

4

UI adapted features (for instance, Interactors, Task,
AbstractUnit, Widgets, etc.) depend of the considered
abstraction levels from defined UI Models and the values
depend on the current context. The “UIState” changes
during an adaptation process through a set of
“Transitions“ recapitalizing the interface changes. A
transition presents a set of adaptation rules targeting a set
of UI attributes and accommodating a context change.

The “AdaptationRule” is a part of the “Transformation
Model” which consists on different mapping models such
as reification, translation, reflexion [3]. It consists of one
or more “TriggerEvent” initiating an adaptation and a set
of action performed to change the “UIState”. For example,
we can imagine that an end-user could have an explicity
control on the UI definition via his feedback.

The adaptation could be also triggered automatically based
on an autonomous decision making process regarding a
context assessments.

3.2 The Context Of Use package
The Context of Use has been modeled as a specialization
of User, Platform and Environment. The figure 2 gives an
overview of the main entities modeled by the Context of
Use. These entities are intended to identify attributes and
proprieties influencing the adaptation process and
providing a trigger event for an adaptation.

The “ContextElement” class determines the set of
descriptors that can be considered to define context
dimensions; in some cases of adaptive UI, features values
are determined via “ContextSensors”. As the context is a
composition of information gathered regarding different
dimensions, it contributes to the definition of adaptation
rules conditions. The “ContextElement” defines the
context of use as well they present the trigger for all
“AdaptationRules”.

The “UserModel” class is expanded with the “Feedback”
class and the “UserProfile” class. The “Feedback” class
defines the evaluated behaviors of the user during
interaction. It is aimed to enhance the user involvement
during the adaptation.

The “UserProfile” class (figure 3) has been modeled as a
composition of Language, Knowledge, Country and
PreferredRepresentationStyle.

The “Language” class consists of the base language used
by the user. The “knowledge” class defines expertise level
of user. This class can be used to organize the information
on the interface. For instance, and advanced user might
require less guidance to accomplish the tasks. Instead a
novice user will require a friendlier interface that will
support and guide them to the accomplishment of tasks.

The “Preferred representation style” can be video, text
and/or audio. Theses preferences help to the system to
determinate the best adaptation of the information. The
meta-model outline an enumeration stating potential styles.

Fig. 3 The User Model

The “Feedback” class as a “ContextElement” allows
handling adaptations priorities that must be assigned to
prevent conflicts, for instance user feedbacks could be
considered to evaluate an adaptation rule and promote or
demote it. The “Feedback” is involved for different
purposes, for instance control trigger and/or evaluate
adaptation decisions. This class is an aggregation of the
user model; it is a specialization of the “TriggerEvent”
class as well as the “ContextTriggering”. The “Feedbacks”
class is intended to assess the “UIState” that depends on
the current context of use defined by “ContextBinding”
class. An adaptation is triggered by a change in this
context surrounding the interaction.

Fig. 4 The Platform Model

The “Platform” class determines the set of information that
can be considered to define the hardware used by the user.
Figure 4 gives an overview of the main entities modeled
by the Platform. The root entity is the “Platform” class
with is linked to the Operating System and Device.

The information considered includes the characteristics of
the Device and the operating system used to access the

5

application. The “Device” considers integrate sensors, the
screen size, the battery level, the language and the network
providing the connection. For instance, a GPS that permits
to acquire the geographical coordinates of the user. In the
case of a battery low level, the adaptation can’t be
considerate as a multimedia element.

The environment model (figure 5) provides the
characteristics of the environment in which user interact
with the device. The environment can be represented as
different aspects (Time, Date, Noise Level, Movement
Status, Language, Weather, Direction and Location)
considered by [22].

Fig. 5 The Environment Model

The climate conditions like the “Weather” can determinate
how the information can be presented on the screen. The
“Location” of the user and the “Noise Level” determine
the more adequate type of interaction to the user.

3.3 The UI Model Package
The proposal of the “UIModel” package can be related to
any UI approach, such as Model-based approach showing
a combination of UI models defined in the Cameleon
reference frameworks [3] and PIM model which could be
considered a model-based approach considering only the
Final UI Model.

The “UIModel” is decomposed mainly into four step
organizing four abstraction levels:

• “TaskModel” providing a goal-oriented description of
interactive systems suitable for reviewing temporal
relationships between tasks, and their decomposition
into elementary tasks.

• “AbstractUIModel” outlining an expression of a UI in
terms of interaction units without making any
reference to implementation.

• “ConcreteUIModel” presenting the UI in term of
concrete interaction object that are modality-
dependent, but implementation technology
independent,

• “FinalUIModel” that represents the final
implementation realized in a programing language.

The “UIModel” support the execution of model throughout
transformation. A “TransformationModel” links involved
models during generation process. Commonly
transformation was merged with adaptation, however, we
argue for separating them improve the transformer engine
performance and reduce their complexity. [24] and [25]
identifies tree main transformation: reification: form a high
abstraction level to more concrete one , abstraction: from
an level to more abstract one (reverse engineering) and
translation wich regards transformation, within the same
abstraction level.

3.4 Examples

In this section, we illustrate by few concrete examples
some relevant aspects of the above detailed meta-model.
The context of use is represented by a set of categorized
context elements: the user, the platform and the
environment. Some context elements could be assessed via
sensors such as environment luminosity, platform screen
size user state etc. Assessment of context elements could
be considered as a context binding allowing to recognize a
specific context accommodated by a particular UI state. In
the typical case, the context assessment acts in the role of a
triggering event. For instance the detection of a low
battery level on the device, trigger an economy mode
defining a particular UI state. The transition to the
economy state is assured via a set of adaptation rules. Such
as:

If battery level < 15% Then (1) reduce screen brightness /
change the background color and (2) deactivate Wi-Fi /
Bluetooth, Etc.

Further, the proposed meta-model considers an additional
relevant trigger event: the user feedback recognizing the
user feedback and interventions during interaction. Such
feedbacks are valuable for UI and interaction context-
awareness because it incorporates user preferences and
needs during execution. The CAM considers user’s
feedback as part of the user modeling. However supporting
feedbacks cannot be merged with the user profile, since
feedbacks has a dynamic aspect that is likely to change
frequently during the use.

The support for the user’s feedback is illustrated in the
following scenario:

Applying adaptation rules mentioned above regarding the
battery level, the user should be asked to approve
modifications before applying the rules. The rules
represent a static aspect of the adaptation, while asking the
user for his feedback represents the run-time aspect.
Feedbacks assess adaptation rules; in this case user’s
feedbacks are considered as promoting/demoting factors
for adaptation rules.

Moreover feedbacks could be used as an evaluation for a
UI state, at this level user provide information about their

6

preference and their satisfaction that could allows the
refinement of adaptation in case of intelligent systems.

4. Implementation

In this section, we account for the convenience and
applicability of the above detailed model. We outline two
implementations of the model presented in the previous
section. The first implementation regards a Flippable UI
for internationalization developed in accordance with
UsiXML project specifications [13]. The second
implementation consists on an adaptive UI.

Fig. 6 An XMI Context Model instantiation

Both implementations show a car rental case study. It
serves as a preliminary guideline to work on a common
scenario. A set of key functional requirements must be
considered for implementing the car rental example.

The users must be able to:

• Select the city of interest to pick up the car;
• Specify the period for the car rental;
• Access a set of possible cars and select one;
• See details about selected car;
• Access and select additional car features (e.g.

GPS);
• Provide personal information before renting the

car;
• Access details about the car rental before

submitting the request;
• Change the car rental parameters anytime before

confirming the rental.

At a first time, the adaptation focuses on user-related
contextual facts, specifically the user’s culture. Figure 6
shows an XMI instantiating the contexts of use. Each

context instantiation considers the triplet user, platform
and the environment.

Adaptations are outlined via a set of transformations that
consists of a models transformation at the Concrete UI
levels. The implementation of adaptation rules was based
on the Java Expert System Shell (Jess) [18]. Jess is an
open rule-based engine integrated in the Java platform. An
adaptation rule consisted of two main parts: a condition
denoting the trigger event and an action. Figure 7 outlines
an example of an adaptation rule that defines different
facts related to cultures adaptations.

Fig. 7 A Jess Adaptation Rule example

The implementation architecture looks is depicted in figure
8. The CUI model is instantiated into a UIState. This UI
state is firstly transformed into FUI (Java Swing). A
change in the context may trigger an adaptation. This
adaptation modifies the UIState and thus leads to another
transformation to a final UI. The newly transformed FUI
represents the adapted version that accommodates the
change in the context.

The example follows the unified adaptation model in
figure 2. It works as follows: the user sends his feedback
through the handler tool (depicted in figure 10, to the left).

The user chooses to change the culture (explicitly set in his
profile). This feedback is a TriggerEvent to an
AdaptationRule. In the case of passing from a western to
Arabic culture, two rules are triggered: translate the
language and change the UI layout direction. In the later
case, both rules are triggered and conduct a transition on
the UI state to a state that is assessed by the
ContextAssessment for Arabic culture.

The complete process is depicted in figure 9 illustrating
the distribution of the process activities on the three
packages of the unified adaptation model.

7

Fig. 8 The implementation architecture

The figure 10 shows a visualization of the execution of
adaptation. Adaptations are triggered explicitly by end-
users via a control panel. The control panel consists of an
implementation of users’ feedbacks aimed at adapting the
interface regarding theirs evaluation. In the picture at le

left area, we present the control panel allowing the
manipulation of adaptation.

Fig. 9 Case study adaptation steps

Fig. 10 The Flippable Car Rental example

8

By moving the handles horizontally, the end user is able to
manipulate the geometry in order to adapt the UI.

In this case, the adaptation consists on reversing the UI,
and accordingly to change the UI language and orientation
regarding cogitated culture facts. In the right area the
picture shows how adaptations are visualized in the
graphical UI.

A further illustrative mock-up was implemented
considering specific contexts, aspects and sharing the same
theoretical models. The prototype is based on the same
case study presented in the above illustration. It shows
another situation for adaptation that considers the platform
of interaction. Two platforms were considered: desktop
and smartphone.

User can interact with both applications. The screen of the
device is the main aspect that permits activate the
adaptation of the application. The figure 9 shows the
desktop version.

To shift from one platform to another adaptation rules are
defined to meet different platform requirement. When a
consistent set of requirements are identified, the adaptation
process should carry out suitable actions to meet these
requirements.

Two levels are considered to accomplish adaptation:

 (1) At the interactive level, the interaction workload has
been restructured by selecting interaction objects with
higher guidance and accessibility. For instance the select
color task (illustrated in the green box) is represented by a
dropdown list to replace the selection list. This choice is
justified by the adequacy with the screen size, the
dropdown list allow more visibility and avoid the scrolling
to visualize next tasks.

(2) At the presentation level, the formatting instructions
have been suitably rewritten for the device. The
arrangement and position of interface’s elements is defined
with regards to the propriety of each device. Such as, for
the category specification task, and the disposition of tabs
(Horizontal-Vertical).

Next, figure 12 shows the screen layout after the
adaptation process. It illustrates how the elements were
adapted. For instance, the menu identified on the figure 11
by the red box has been changed by a scrollable menu (see
figure 10). Also the select color task represented by the
select list (identified by the green box) has been changed
by a dropdown list. Both adaptations are realized at
runtime according to the screen size of device used by the
user.

Fig. 11 Car Rental case study for desktop

Fig. 12 Car Rental case study for smartphone

5. Conclusion

This article presents a Conceptual Model for Agile
Adaptation designed to supporting an explicit,

9

comprehensible and complete configuration of adaptation
concerns at runtime. It permits developing adaptive and
adaptable user interfaces supporting end-user involvement.

The proposed model involves users and end-users for
adaptation triggering. It is instantiated via a flippable UI
allowing users to adapt the UI at runtime by a control
panel.

We will consider realize a methodological framework that
considers structural and procedural views. As well we will
take into account the study of different solutions to analyze
and evaluate the information capture by the model to
produce and present the UI adaptation.

A platform prototype for the implementation of runtime
context-aware adaptation is foreseen to validate the model.
With this prototype, we will be able to easily evaluate the
interest and the usability of our proposal by conducing
user experiments.

Acknowledgements

We are grateful to the “Jounum Project”, the Louvain
School Management and the Catholic University Of
Louvain for their financial support.

References
[1] Akiki, P. A., Bandara, A. K., & Yu, Y. (2015). Adaptive

model-driven user interface development systems. ACM
Computing Surveys, 47(1), In-press.

[2] Assad, M., Carmichael, D. J., Kay, J. and Kummerfeld, B.
PersonisAD: distributed, active, scrutable model framework
for context-aware services. International conference on
Pervasive computing (PERVASIVE'07). Springer-Verlag,
Berlin, Heidelberg, (2007), pp 55-72.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers 15, 3 (June 2003), pp. 289-308.

[4] Chang, K., Hightower, J., and Kveton, B. Inferring Identity
Using Accelerometers in Television Remote Controls. In
Pervasive (2009), 151-7.

[5] Evers, Christoph, Kniewel, Romy, Geihs, Kurt, et al.
Achieving user participation for adaptive applications. In
Proc. Ubiquitous Computing and Ambient Intelligence.
Springer Berlin Heidelberg, 2012. p. 200-207.

[6] Order of references
[7] Findlater, L., and McGrenere, J. Impact of screen size on

performance, awareness, and user satisfaction with adaptive
graphical user interfaces. Proc. SIGCHI Conference on
Human Factors in Computing Systems CHI, ACM Press
(2008), 1247-1256.

[8] Froehlich, J. et al. UbiGreen: investigating a mobile tool for
tracking and supporting green transportation habits. In CHI
(2009), 1043-1052.

[9] Fox, D., Sillito, J., & Maurer, F. Agile methods and user-
centered design: How these two methodologies are being
successfully integrated in industry. In Agile, 2008.
AGILE'08. Conference (2008, August), pp. 63-72.

[10] Gajos, K. Z., Everitt, K., Tan, D. S., Czerwinski, M., &
Weld, D. S. Predictability and accuracy in adaptive user
interfaces. In Proc. the SIGCHI Conf. on Human Factors in
Computing Systems, ACM, 2008. p. 1271-1274.

[11] Ganneau, V., Calvary, G., & Demumieux, R. (2007,
November). Métamodèle de règles d'adaptation pour la
plasticité des interfaces homme-machine. In Proceedings of
the 19th International Conference of the Association
Francophone d'Interaction Homme-Machine (pp. 91-98).
ACM.

[12] Hill, Ernest Friedman. Jess in Action: Java Rule-Based
Systems. Manning Publications Co., Greenwich, CT, USA,
2003.

[13] Karen M. Feigh, Michael C. Dorneich, Caroline C. Hayes,.
Toward a Characterization of Adaptive Systems Framework
for Researchers and System Designer In. Human Factors:
The Journal of the Human Factors and Ergonomics Society
(2012) 1008-1024.

[14] Khaddam, I., & Vanderdonckt, J.Flippable User Interfaces
for Internationalizatio. Third international conference on
effective interactive computing systems (EICS) 2011, Pisa,
Italy.

[15] Knutov, E., De Bra, P., Pechenizkiy, M. Generic Adaptation
framework: a process-Oriented perspective. Journal of
Digital Information, (2012).

[16] Knutov, E., De Bra, P., Pechenizkiy, M. AH—12 years
later: a comprehensive survey of adaptive hypermedia
methods and techniques. New Rev. Hyperme’d. Multime’d.
15(2009), 5–38.

[17] Lavie, Talia and Meyer, Joachim. Benefits and costs of
adaptive user interfaces. International Journal of Human-
Computer Studies, 2010, vol. 68, no 8, p. 508-524.

[18] Lim, B. Y., Dey, A. K. & Avrahami, D. Why and why not
explanations improve the intelligibility of context-aware
intelligent systems. CHI (2009), 2119-2128.

[19] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
& López-Jaquero, V. (2005). USIXML: a language
supporting multi-path development of user interfaces. In
Engineering human computer interaction and interactive
systems (pp. 200-220). Springer Berlin Heidelberg.

[20] Motti, V.. A computational framework for multi-
dimensional context-aware adaptation. In Proceedings of the
3rd ACM SIGCHI symposium on engineering interactive
computing systems (2011, June) pp. 315-318.

[21] Motti, V,. Mezhoudi, N, Vanderdonckt, J (Machine
Learning in the Support of Context-Aware Adaptation.
Proceedings of the Workshop on Context-Aware Adaptation
of Service Front-Ends (2012).

[22] Sottet, J. S., Ganneau, V., Calvary, G., Coutaz, J., Demeure,
A., Favre, J. M., & Demumieux, R. Model-driven
adaptation for plastic user interfaces. In Human-Computer
Interaction–INTERACT (2007). pp. 397-410. Springer
Berlin Heidelberg.

[23] Sotsenko A., Jansen M., Milrad M. Discussion About
Contextualization of Learning Objects. In: Proceedings of
the 12th World Conference on Mobile and Contextual
Learning, 2013.

[24] UsiXML User Interface eXtensible Markup Language:
http://www.w3.org/2005/Incubator/model-based-
ui/wiki/UsiXML

10

[25] Vanderdonckt, J. M., & Bodart, F. Encapsulating knowledge
for intelligent automatic interaction objects selection. In
Proc. INTERACT and CHI conf. on Human factors in
computing systems 1993.

 Nesrine Mezhoudi she is a Ph.D.
student at Université catholique of Louvain (UCL) and member
of Lilab (Louvain Interaction Lab). She’s currently investigating
intelligent UI adaptation and recommendation systems. She
worked as a research assistant for the EU-funded FP7 Serenoa
project and Jounum project. She collaborated with the working
group of W3C on the standardization of Model-based User
Interfaces (MBUI).

 Jorge Luis Pérez Medina
received the M.S. degree in Computer Science from the
Centrocidendal Lisandro Alvarado University at Barquisimeto,
Venezuela in 2004. He also received the Ph.D. in Computer
Science degree from the Grenoble University, France in 2010.
He is an IT researcher with a wide knowledge in Computer
Science. Passionate about design based on models, processes,
Java-based technologies and Human-Computer Interaction. He
capitalizes a long track record on academics environments and a
strong passion for Modeling Tools and Software Development.

 Iyad Khaddam He is a Ph.D.
student at Université catholique de Louvain (UCL), and a
member of LILab (Louvain Interaction Lab). He’s a teaching
assistant at UCL. My research focuses on investigating cultural
adaptation of user interfaces.

11

