
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 01, January 2014

www.ijcit.com 183

Automated Quality Assurance System

Kshirsagar Aniruddha P.

Computer Science & Engg. Deptt.

K. B. P. College Of Engg. & Poly.

Satara.

Email: ani.kshirsagar {at}
rediffmail.com

 Balekar Swapnaja S.
Computer Science & Engg. Deptt.

K. B. P. College Of Engg. & Poly.

Satara

Rasal Swati A.
Computer Science & Engg. Deptt.

K. B. P. College Of Engg. & Poly.

Satara.

.

Abstract— For maintaining the quality, a bug tracking system is a

software application that is designed to help quality assurance

and programmers keep track of reported software bugs in their

work. It may be regarded as a type of issue tracking system. Bug

Tracking Systems allow individual or groups of developers to

keep track of outstanding bugs in their product effectively.

Having complete information in the initial bug report helps

developers to quickly resolve the bug. So choosing a good bug

tracking system for your product helps you to reduce downtime,

increase productivity, raise customer satisfaction, and improve

communication between developers.

Keywords-bug, CUEZILLA, Bugzilla, bug tracking system.

I. INTRODUCTION

A major component of a bug tracking system is a database
that records facts about known bugs. Facts may include the
time a bug was reported, its severity, the erroneous program
behavior, and details on how to reproduce the bug; as well as
the identity of the person who reported it and any programmers
who may be working on fixing it [13]. Typical bug tracking
systems support the concept of the life cycle for a bug which is
tracked through status assigned to the bug. A bug tracking
system should allow administrators to configure permissions
based on status, move the bug to another status, or delete the
bug. The system should also allow administrators to configure
the bug statuses and to what status a bug in a particular status
can be moved. Some systems will e-mail interested parties,
such as the submitter and assigned programmers, when new
records are added or the status changes.

A. Bug Tracking System

 The main benefit of a bug-tracking system is to
provide a clear centralized overview of development requests
(including bugs and improvements, the boundary is often
fuzzy), and their state. The prioritized list of pending items
(often called backlog) provides valuable input when defining
the product road map, or maybe just "the next release".[9]

Concurrency bugs are synchronization problems in
multithreaded and multiprocessed programs. They are
extremely difficult to detect because they are nondeterministic.

The state of the art in concurrency bug detection focuses on
data races. A data race occurs when more than one thread

access the same memory location without proper
synchronization and at least one of them is a write. Three
classes of tools have been proposed to detect data races.

They are lockset race detection tools [2], [3], happens-
before race detection tools [4], [5], [6], and hybrid tools
combining the above two [7], [8]. The lockset algorithm
reports a race when it finds no common lock protecting
accesses to a shared memory location. This happens-before
algorithm reports a race when two conflicting memory accesses
do not have a strict happens-before relation.

II. EXISTING BUG TRACKING SYSTEMS

A. Bugzilla

Bugzilla is very popular, actively maintained and free bug
tracking system, used and developed together with Mozilla,
giving it considerable credibility. Bugzilla is based on Perl and
once it is set up, it seems to make its users pretty happy. It's not
highly customizable, but in an odd way, that may be one of its
features: Bugzilla installations tend to look pretty much the
same wherever they are found, which means many developers
are already accustomed to its interface and will feel they are in
familiar territory.

Bugzilla has a system that will send you, another user, or a
group that you specify the results of a particular search on a
schedule that you specify. Bugzilla has a very advanced
reporting system and you can create different types of charts
including line graph, bar graph or pie chart.

B. Mantis

Mantis is a free web-based bug tracking system. It is
written in the PHP scripting language and works with MySQL,
MS SQL, and PostgreSQL databases and a web server. Mantis
can be installed on Windows, Linux, Mac OS and OS/2.
Almost any web browser should be able to function as a client.
It is released under the terms of the GNU General Public
License (GPL).

The main complaint is its interface which doesn’t meet
modern standards. On the other hand, is easy to navigate, even
for inexperienced users. There not exist some advanced
features such as charts and reports. In short, the whole system
is sloppily done; there are plenty of bugs and very little
functionality.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 01, January 2014

www.ijcit.com 184

Table 1: Classification criteria. Legend: search, email notifications, reports, charts, time tracking, RSS/Atom Feed,

Configurable, Free. Explanation: This table summarizes criteria that are used in decision making process of choosing suitable

bug tracking system.

C. BugTracker.NET

 BugTracker.NET is a free, open-source, web-based

bug tracker or customer support issue tracker written using

ASP.NET, C#, and Microsoft SQL Server Express.

BugTracker.NET is easy to install and learn how to use. When

you first install it, it is very simple to setup and you can start

using it right away. Later, you can change its configuration to

handle your needs. It has a very intuitive interface for

generating lists of bugs.

 It has two very useful features. First of them is a

screen capture utility that enables you to capture the screen,

add annotations and post it as bug in just a few clicks. The
second feature is the fact that it can integrate with your

Subversion repository so that you can associate file revision

check in with bugs.

D. Redmine

 Redmine is a flexible web-based project management
web application. Written using Ruby on Rails framework, it is

cross-platform and cross-database. Redmine is open source

and released under the terms of the GNU General Public

License. Redmine is flexible issue tracking system. You can

define your own statuses and issue types. He support multiple

projects and subprojects. Each user can have a different role

on each project. Interface is very simple, intuitive and easy to

navigate. Shortly, this is very good product and our

recommendation.

E. Bugzero

 Bugzero is a web-based bug, defect, issue and

incident tracking software. Its single code base supports both
Windows and Unix (based on Java™) and supports database

systems including Access, MySQL, SQL Server, Oracle, and

etc. Bugzero can be customized for software bug tracking,

hardware defect tracking, and help desk customer support

issue and incident tracking. Bugzero have intuitive interface

but he lacks form features. The main drawback is the fact that

Bugzero is an commercial product and you can find much

better product for free.

III. BUG TRACKING SYSTEM AND BUG REPORT

A. What a good bug report should contain:

i. A descriptive title, one that contains specific key

words and terms to enable categorization.

ii. A summary of the situation, which describes the

problem at a high level, in a way that anyone familiar

with the project can understand.

iii. A set of steps to recreate the situation. These should

start with launching the app, include any relevant

configuration steps, be atomic, be specific, and end

with the action that causes the problem to be visible.

iv. The expected behavior and why the observed

behavior is different.

v. The severity of the issue.

 It’s important to be clear on your reasoning

as to why this is the worst bug you’ve seen in your

lifetime, so that others can understand and support

your decision.

vi. The frequency of the issue.

 The general nature of a problem is often not

enough to characterize that problem. One also needs

to know the frequency. Is a crash always a Critical

bug? No. Not if it was only seen once in 6 months of

development Frequency can make a big difference to

the overall severity of a problem.

vii. A description of the context in which the problem

was found - the specific system, device, or OS, and

any relevant configuration options for the test

environment.

o build # of the product under development

o type of hardware on which test was run, e.g.

iPhone, iPad, Mac

o configuration of hardware, e.g. 8Gb iPhone

3G, 32Gb iPad 3G

o OS version / build # on that hardware any

special conditions, e.g. on wifi, after low

battery warning.

 Search

Email

notifications

Reports

Charts

Time

Tracking

RSS/Atom

Feed

Configurable Free

Bugzilla yes yes yes yes yes no no yes

Mantis yes no no no yes yes no yes

BugTracker.NET yes yes yes yes yes no yes yes

Redmine yes yes yes yes yes yes no yes

Bugzero yes yes yes no no no no no

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 01, January 2014

www.ijcit.com 185

B. A better bug tracking system

Having complete information in the initial bug report (or as
soon as possible) helps developers to quickly resolve the bug.

The focus of our work is on improving bug tracking systems

with the goal of increasing the completeness of bug reports.

Specifically, we are working on improving bug tracking

systems in four ways.

Figure1. Four areas to improve Bug Tracking System

i. Tool-centric improvements are made to the features provided
by bug tracking systems. They can help to reduce the burden

of information collection and provision. An example of tool-

centric enhancements is capture/replay tools, which can

provide steps to reproduce automatically [9].

ii. Information-centric improvements focus directly on the

information being provided. As an example, the CUEZILLA

tool, this provides real-time feedback on the quality of a bug

report and what information can be added to increase value.

iii. Process-centric improvements to bug tracking systems focus

on administration of activities related to bug fixing. For

example, bug triaging, i.e., deciding which bugs get fixed and
determining which developer should resolve the bug, can be

automated [10], [12].

iv. User-centric improvements include both reporters and

developers. Reporters can be educated on what information

to provide and how to collect it. Developers too can benefit

from similar training on what information to expect in bug

reports and how this information can be used to resolve bugs.

C. SURVEY CONDUCTED AMONG DEVELOPERS AND

USERS

A survey was conducted among developers and users of
APACHE, ECLIPSE, and MOZILLA to find out what makes a
good bug report. The analysis of the 466 responses revealed an
information mismatch between what developers need and what
users supply. Most developers consider steps to reproduce,
stack traces, and test cases as helpful, which are, at the same
time, most difficult to provide for users. Such insight is helpful
for designing new bug tracking tools that guide users at
collecting and providing more helpful information.

In the first two parts of the developer survey and the first
part of the reporter survey, questions share the same items but
have different limitations (select as many as you wish versus

the three most important). We will briefly explain the
advantages of this parallelism using D1 and D2 as examples.

1. Consistency check. When fixing bugs, all items that
helped a developer the most (selected in D2) must have been
used previously (selected in D1). If this is not the case, i.e., an
item is selected in D2 but not in D1, the entire response is
regarded as inconsistent and discarded.

2. Importance of items. We can additionally infer the
importance of individual items. For instance, for item i, let ND1
(i) be the number of responses in which it was selected in
question D1. Similarly, N D1, D2 (i) is the number of responses
in which the item was selected in both questions D1 and D2.
Then, the importance of item i correspond to the conditional
likelihood that item i is selected in D2 when selected in D1:

 N D1, D2 (i)
Importance (i) = −−−−−−−−−−−−−−−−
 ND1 (i)
Other parallel questions were D3 and D4, as well as R1and

R2.

IV. MEASURING BUG REPORT QUALITY WITH

CUEZILLA

 The bug reporters can provide better reports with

similar assistance. As a first step toward assistance, we

developed a prototype tool called CUEZILLA that measures
the quality of bug reports. CUEZILLA also provides

suggestions on how to enhance the quality of a bug report, for

example, “Have you thought about adding a screenshot to

your bug report?” To encourage reporters to actually provide

additional information, CUEZILLA can show did you know

facts mined from bug databases; for example, “Bug reports

with stack traces are fixed N-times faster.” Possible usage

scenarios for CUEZILLA are to provide immediate feedback

while new bug reports are entered, to solicit information for

bug reports that are already in the bug database, or to prioritize

bug reports during bug triage. CUEZILLA tool measures the
quality of bug reports on the basis of their contents.

 For each feature, a score is awarded to the bug report,

which is either binary (e.g., attachment present or not) or

continuous (e.g., readability).

 Itemizations. In order to recognize itemizations in

bug reports, we checked whether several subsequent lines

started with an itemization character (such as—,*, or +).To

recognize enumerations, we searched for lines starting with

numbers or single characters that were enclosed by

parentheses or brackets or followed by a single punctuation

character.

 Keyword completeness. We reused the data set
provided by Ko et al. [16] to define a quality score of bug

reports based on their content. In a first step, we removed stop

words, reduced the words to their stem, and selected words

occurring in at least 1 percent of bug reports.

A. Recommendations by CUEZILLA

 The core motivation behind CUEZILLA is to help

reporters file better quality bug reports. For this, its ability to

detect the presence of information features can be exploited to

tip reporters about what information to add. This can be

achieved simply by recommending additions from the set of

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 01, January 2014

www.ijcit.com 186

absent information, starting with the feature that contributes to

the quality further by the largest margin.

 These recommendations are intended to serve as cues

or reminders to reporters of the possibility of adding certain

types of information likely to improve bug report quality.

 Figure 2(a) illustrates the concept. The text in the

panel is determined by investigating the current contents of the

report, and then determining that it would be best, for instance,
to add a code sample to the report. As and when new

information is added to the bug report, the quality meter

revises its score.

Figure 2. Mockup of CUEZILLA’s user interface.

 (a) It recommends improvements to the report.

 (b) To encourage the user to follow the advice, CUEZILLA provides facts that are mined from

history.

 The evaluation of CUEZILLA shows much potential

for incorporating such a tool in bug tracking systems.

CUEZILLA is able to measure quality of bug reports within
reasonable accuracy. However, the presented version of

CUEZILLA is an early prototype and we plan to further

enhance the accuracy before we will conduct user studies to

show CUEZILLA’s usefulness.

V. ADVANTAGES OF AN EFFECTIVE BUG-
TRACKING SYSTEM

 In software test management, bug reporting is a

complex and complicated process that requires precision,

detailing and a whole lot of information. Reporting and

tracking bugs manually works fine in case of small projects,

whereas for mission-critical or large projects, a paper-based
approach can result in chaos and confusion. QA test

management teams need an effective defect tracking

management system to log the identified bugs and to monitor

them.

 A bug-tracking system helps the project team to

successfully measure the project’s status. The measurements,

also known as metrics help the QA test management team to

assess the quality of the software and in taking business

decisions. The software metrics like project metrics, progress

metrics, defect metrics and testing metrics also help in

evaluating the success ratio of a tester or programmer.
 A defect tracking system not only tracks defects but

also tracks metrics to make sure everything is going according

to the software development plan.

VI. FUTURE SCOPE

Evaluation of a bug tracking system requires the

understanding of specific features [14]. These may include

configurable workflow and customizable fields. The papers

studied provided tips and guidelines for evaluating features of

a bug tracking system.

The various factors that must be considered in evaluating a

bug tracking system are as follows.
• Roles of the people who will use the system: The

understanding of the above point makes the features added to

the system relevant and hence increases productivity.

• Workflow for managing bugs: Every company has a

different way of doing work. The workflow of the

organization must be appreciated and system should work

accordingly [15], [14].

• One of the most important things to be seen when

developing a bug tracking system is who is responsible for

what. A bug tracking system should not ask a data entry

operator the expected root cause of the system failure [11],
[16].

• Most important is the information that is needed to track the

bug. This determines the reports and metrics to be developed.

• The last point is the need to provide different levels of access

to different users [16], [14]. This may change the design of the

system.

• Bug Tracking systems should have a facility that the Clients

have number of problems while executing or running the

particular software.If we will provide Change Request facility

in Bug Tracking systems so that client will add the problem

which he/she is facing while executing or running it,it will be

beneficial for us to satisfy customer.

ACKNOWLEDGMENT

Our thanks to Prof. Sayyed S. G. for her valuable guidance
regarding the subject.

REFERENCES

[1] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Computer Systems, vol. 15, pp. 391-411, 1997.

[2] J.-D. Choi et al., “Efficient and Precise Datarace Detection for

Multithreaded Object-Oriented Programs,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), 2002.

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Computer Systems, vol. 15, pp. 391-411, 1997.

[4] A. Dinning and E. Schonberg, “An Empirical Comparison of Monitoring

Algorithms for Access Anomaly Detection,” Proc. Second ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming

(PPoPP), 1990.

[5] R.H.B. Netzer and B.P. Miller, “Improving the Accuracy of Data Race

Detection,” Proc. Third ACM SIGPLAN Symp. Principles and Practice
of Parallel Programming (PPoPP), 1991.

[6] D. Perkovic and P.J. Keleher, “Online Data-Race Detection via

Coherency Guarantees,” Proc. Second USENIX Symp. Operating
Systems Design and Implementation (OSDI), 1996.

[7] R. O’Callahan and J.-D. Choi, “Hybrid Dynamic Data Race Detection,”

Proc. Ninth ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP), 2003.

[8] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: Efficient Detection of

Data Race Conditions via Adaptive Tracking,” Proc. ACM 20th Symp.
Operating Systems Principles (SOSP), 2005.

[9] Wikipedia, http://en.wikipedia.org/wiki/Bug_tracking

[10] S. Artzi, S. Kim, and M.D. Ernst, “Recrash: Making Software Failures

Reproducible by reserving Object States,” Proc. 22nd European Object-
Oriented Programming Conf., pp. 542-565, 2008.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 01, January 2014

www.ijcit.com 187

[11] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?”

Proc. 28th Int’l Conf. Software Eng., pp. 361-370, 2006.

[12] W. Cunningham, “Best of Bugzilla,” http://eclipse-projects.
blogspot.com/2005/12/best-of-bugzilla.html, 2005.

[13] Multiple (wiki). "Bug report". Docforge. Retrieved 2010-03-09

[14] Stephen Blair, A Guide To Evaluating a Bug Tracking System, White
Paper, MetaQuest Software, October, 2004

[15] P. Fritzson, T. Gyimothy, M. Kamkar, and N. Shahmehri. Generalized

algorithmic debugging and testing. In PLDI’91: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 317–326, 1991.

[16] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug
reports considered harmful ... really? In ICSM’08: Proceedings of the

24th IEEE International Conference on Software Maintenance, pages
337–345, 2008.

