
                                  Heart Research

Open Journal
http://dx.doi.org/10.17140/HROJ-2-111

Heart Res Open J

ISSN 2377-164X

Autonomic Dysfunction, Sympathetic  
Hyperactivity and the Development of 
End-Organ Damage in Hypertension:  
Multiple Benefits of Exercise Training

Gustavo Santos Masson* and Lisete Compagno Michelini

Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao 
Paulo, Sao Paulo, SP, Brazil

Review
*Corresponding author 
Gustavo Santos Masson, PhD 
Department of Physiology and 
Biophysics, Institute of Biomedical 
Sciences, University of Sao Paulo 
Av. Prof. Lineu Prestes, 1524 - ICB-I 
05508-000 Butantan - Sao Paulo/SP 
Brazil 
E-mail: gsmasson@icb.usp.br

Article History
Received: April 10th, 2015
Accepted: April 22nd, 2015
Published: April 23rd, 2015

Citation
Masson GS, Michelini LC. Autonomic 
dysfunction, sympathetic hyperactiv-
ity and the development of end-organ 
damage in hypertension: Multiple 
benefits of exercise training. Heart 
Res Open J. 2015; 2(2): 60-69. doi: 
10.17140/HROJ-2-111

Copyright
©2015 Masson GS. This is an 
open access article distributed un-
der the Creative Commons Attribu-
tion 4.0 International License (CC 
BY 4.0), which permits unrestricted 
use, distribution, and reproduction 
in any medium, provided the origi-
nal work is properly cited.

Volume 2 : Issue 2
Article Ref. #: 1000HROJ2111

Page 60

ABSTRACT

 Autonomic dysfunction is closely related to the development of hypertension, which 
is characterized by increased sympathetic activity, decreased vagal tonus and baroreflex dys-
function. The hypertension-induced maladaptive changes progressively lead to heart failure, 
myocardial infarction and stroke. Hypertrophic remodeling of brain arterioles, chemoreceptors 
activation, blood-brain barrier abnormalities, oxidative stress and pro-inflammatory cytokines 
production in autonomic brain areas increase neuronal activity and sympathetic outflow. These 
responses, together with increased baroreflex dysfunction-induced pressure variability, renin-
angiotensin system hyperactivation and capillary rarefaction, increase blood pressure levels 
and act as a positive feedback mechanism to perpetuate hypertension and development of end-
organ damage. Exercise training, a non-pharmacological tool, has been used as an adjuvant 
therapy to treat hypertension. Our recent data showed that moderate aerobic training in adult 
SHR completely normalizes oxidative stress and inflammation in autonomic brain areas in-
volved in cardiovascular control and promptly corrects baroreflex dysfunction and increases 
cardiac vagal activity. The early (2-weeks) training-induced beneficial responses improve auto-
nomic control even in the persistence of hypertension, since a partial reduction of pressure lev-
els was observed after 8 weeks of exercise training, which was related to reversion of arteriolar 
hypertrophic remodeling and consequent decrease of peripheral vascular resistance.

KEYWORDS: Hypertension; Oxidative stress; Inflammation; Central nervous system; Barore-
flex; Aerobic exercise training.

ABBREVIATIONS: ANG II: Angiotensin II; HMGB1: High-mobility group protein 1; HPLC: 
High Performance Liquid Chromatography; IL-1β: Interleukin 1 beta; MAPK: Mitogen-acti-
vated protein kinases; NADPH oxidase: Nicotinamide Adenine Dinucleotide Phosphate-ox-
idase; NF-Κb: Nuclear factor kappa-light-chain-enhancer of activated B cells; NOS: Nitric 
Oxide Synthase; NTS: tractussolitarii nucleus; PKC: Protein Kinase C; PVN: hypothalamic 
paraventricular nucleus; RAS: Renin-angiotensin system; RVLM: Rostroventrolateral medul-
la; SFO: Sub-fornicial organ; SHR: Spontaneously Hypertensive Rat; TGF-β: Transforming 
Growth Factor beta; TNF-α: Tumoral Necrosis Factor alpha.

INTRODUCTION

 Central nervous system continuously monitors cardiovascular function through differ-
ent types of receptors, which allow immediate and chronic hemodynamic adjustments evoked 
by endogenous and environmental stimuli. These adjustments are generated by the activation 
and/or inhibition of autonomic brain circuitry in the brain stem and the hypothalamus. Barore-
ceptors, chemoreceptors and cardiopulmonary receptors encode arterial pressure, partial pres-
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sure of blood gases and cardiac filling changes in frequency of 
action potentials of respective afferents. This information is in-
tegrated in the central nervous system, which modifies vagal and 
sympathetic activity to heart and vasculature and, consequently, 
corrects the initial alterations and keeps arterial pressure, PO2 
and PCO2 and stroke volume at relatively constant levels. The 
imbalance between activation/inhibition of autonomic control 
areas promotes chronic adaptations in cardiovascular effectors 
that contribute to the establishment of arterial hypertension and 
the development of end-organ injuries.1 The mechanisms under-
lying the establishment of autonomic dysfunction, sympathetic 
hyperactivity and the appearance of hypertensive dysfunctions 
will be briefly reviewed. In addition, we will address the benefits 
of aerobic training in an experimental model of primary hyper-
tension, the Spontaneously Hypertensive Rat (SHR). 

AUTONOMIC DYSFUNCTION IN ARTERIAL HYPERTENSION

 Although hypertension per sec does not induce death, 
the pathological mechanisms associated with chronic arterial 
pressure elevation contribute to the development of end-organ 
injuries, as cardiac hypertrophy, stroke and glomerular sclerosis, 
which increase cardiovascular mortality. Since arterial hyperten-
sion is a multifactorial syndrome, many mechanisms overlapped 
to produce a positive feedback that facilitates cardiovascular 
dysfunction. Among these mechanisms, autonomic dysfunction 
seems to be a key factor in the pathophysiology of primary hy-
pertension2 and consists an important pharmacological target for 
blood pressure control and for the reduction of morbimortality.3 

 Autonomic dysfunction is characterized by the in-
creased sympathetic nerve activity, decreased vagal nerve activi-
ty and abnormal reflex control of cardiovascular function, which 
are mediated by baroreceptors, chemoreceptors and cardiopul-
monary receptors. Causative relation between autonomic dys-
function and elevated arterial pressure was primarily suggested 
in the 80’s by Minami and co-authors4 that identified reduced re-
flex bradycardia on juvenile SHR with normal arterial pressure. 
This finding indicated that autonomic dysfunction preceded the 
arterial pressure rise.

 Many hypothesis have been proposed to explain the 
central nervous system abnormalities conditioning autonomic 
dysfunction in primary hypertension: baroreflex dysfunction it-
self, increased chemoreflex activation induced by reduced cere-
bral blood flow associated with arteriolar remodeling,5 activation 
of peripheral chemosensitive cells,6,7 increased brain Renin-an-
giotensin system (RAS),8,9 as well increased blood-brain barrier 
permeability.10 An elegant series of experiments developed by 
Julian Paton’s group at the Bristol University identified the con-
tribution of brain arteries/arterioles hypertrophic remodeling in 
the establishment of sympathetic hyperactivity. It was observed 
that neonates SHR had greater arterial wall thickness and el-
evated vertebral artery wall/lumen ratio with increased vascu-
lar resistance in the vertebro-basilar circuit, which determined 
reduced blood flow and, consequently, the rise of sympathetic 

activity and peripheral vasoconstriction.5,11

 Although not well characterized as the role of brain 
vasculature hypertrophic remodeling, it was also suggested that 
activation of chemosensitive afferents by pro-inflammatory cy-
tokines contributed to the activation of sympathetic activity.6,12 
Indeed, several studies demonstrated a direct correlation between 
plasma pro-inflammatory cytokines, increased arterial pressure13 

and autonomic dysfunction.14 Mkrtchian and co-authors15 identi-
fied, in humans, some inflammatory mediators (toll-like receptor 
1 and 4, HMGB1, TNF-α and IL-1β receptors and transcription 
factor NF-κB) within the carotid bodies, where chemosensitive 
cells are located. Hyperactivity of chemosensitive afferents was 
also observed in young SHR, since denervation of the carotid 
body caused reduction of arterial pressure, sympathetic activ-
ity and macrophages infiltration in the smooth muscle tissue.7 

Together, these findings suggested that pro-inflammatory cytok-
ines-induced activation of chemoreceptors contributed to estab-
lishment of autonomic dysfunction and, consequently, of hyper-
tension.

 Another contributor factor to the genesis of sympa-
thetic hyperactivity is ANG II-induced AT1 receptors activation 
in brain areas without blood-brain barrier, as the Sub-fornicial 
organ (SFO), which modulates other pre-autonomic areas, such 
as the hypothalamic Paraventricular nucleus (PVN) and the 
Rostroventrolateral medulla (RVLM). RAS inhibition in these 
areas abolishes arterial pressure increase, renal sympathetic hy-
peractivity, baroreflex dysfunction and attenuates the dipsogenic 
response. RAS inhibition also corrects the expression of pro-
inflammatory cytokines and AT1 receptors and reduces reactive 
oxygen species content in ANG II-dependent hypertension.8,9,16 

renovascular hypertension17 and primary hypertension.18 These 
data show that increased AT1 receptor activation, via reactive ox-
ygen species and pro-inflammatory cytokines, contribute to the 
development of autonomic dysfunction, sympathetic hyperac-
tivity and hypertension. Activation of AT1 receptors also disrupts 
blood brain barrier and facilitates the migration of monocytes and 
T cells into brain, thus contributing to local inflammation and to 
a further increase in sympathetic activity and arterial pressure.10 
It was demonstrated that hematopoietic cells bind to juncional 
adhesion molecule-1 to enter into the neural tissue, where they 
behaved as resident macrophages (activated microglia), acting 
as another important source for pro-inflammatory cytokines.19

MOLECULAR MECHANISMS OF SYMPATHETIC HYPERACTIV-
ITY: THE IMPORTANCE OF REACTIVE OXYGEN SPECIES AND 
PRO-INFLAMMATORY CYTOKINES

 Several mechanisms that induce autonomic dysfunc-
tion exhibit common factors: increased reactive oxygen species 
and pro-inflammatory cytokines in autonomic brain areas as the 
SFO, PVN, RVLM and tractus solitarii nucleus (NTS). The main 
intracellular signaling pathways in neurons and glia are activat-
ed by ANG II via AT1 receptor, which activates NADPH oxi-
dase through the Protein Kinase C (PKC) with the subsequent 
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release of superoxide.20-23 Increased superoxide production ac-
tives redox-sensitive pathways, as the Mitogen-Activated Pro-
tein Kinases (MAPK) that stimulate nuclear transcription fac-
tors (NF-κB and AP-1), thus increasing the gene expression of 
pro-inflammatory cytokines, as well as subunits of the NADPH 
oxidase and others RAS components.22,24,25 Therefore, AT1 recep-
tors activation, oxidative stress and inflammation constitute im-
portant positive feedback mechanisms in autonomic dysfunction 
and sympathetic hyperactivity.

 Besides the regulation of nuclear factors, reactive oxy-
gen species directly increase sympathetic neuronal activity. In 
ANG II-dependent hypertension, Robin Davisson and Consta-
tine Iadecola’s groups, at the Cornell University, identified that 
NADPH oxidase-induced superoxide production increases the 
calcium influx and neuronal activation via glutamatergic NMDA 
receptors activation.21,23,26 As calcium influx was abolished by 
antioxidant agents or nitric oxide donors,26 the authors proposed 
that increased reactive oxygen species production decreased 
nitric oxide bioavailability and, consequently, NMDA receptor 
NR1 subunit nitrosylation,27 thus increasing both neuronal activ-
ity and sympathetic activity. Several studies in ANG II-depen-
dent hypertension,28-30 renovascular hypertension31-33 and prima-
ry hypertension,34-36 identified that oxidative stress attenuation 
inhibits both arterial pressure and renal sympathetic activity el-
evation, decreases tissue RAS, pro-inflammatory cytokines and 
NADPH oxidase expression and reduces NF-κB e AP-1 tran-
scriptional activity. These studies confirm the functional role of 
reactive oxygen species in autonomic dysfunction, sympathetic 
hyperactivity and, subsequently, in the development/establish-
ment of arterial hypertension. In addition to sympathetic hyper-
activity, reactive oxygen species also mediates lower parasym-
pathetic activity and reduced baroreflex sensitivity after ANG II 
administration into the NTS.37

 Tissue inflammation is another mechanism related to 
the establishment of autonomic dysfunction. It was described that 
healthy rats that received pro-inflammatory cytokines (TNF-α, 
IL-1β and IL-6) into the PVN and NTS or through intracarotid 
injection,38-40 exhibited autonomic dysfunction, increased renal 
sympathetic activity and elevated arterial pressure. In addition to 
these acute effects of cytokines, Joseph Francis’s group, at Loui-
siana State University, demonstrated that chronic blockade of 
pro-inflammatory cytokines expression into autonomic control 
areas attenuated cardiac hypertrophy, renal sympathetic hyper-
activity and the elevation of arterial pressure in ANG II-induced 
hypertension.8,25

SYMPATHETIC HYPERACTIVITY AND END-ORGAN DAMAGE IN 
HYPERTENSION

 Adrenergic hyperactivity in hypertension was origi-
nally described by Amann, et al.41 which identified increased 
forearm blood flow after α-adrenergic receptors blockade. The 
interaction between norepinephrine and α-adrenergic recep-
tors in smooth muscle cells induced vasoconstriction through 

increased calcium influx and decreased nitric oxide bioavail-
ability that elevated the peripheral vascular resistance and the 
arterial pressure.42 Increased vascular sympathetic activity pro-
duced hypertrophic remodeling of arteries and arterioles,43 since 
α-adrenergic stimulation increases the expression of adhesion 
molecules, leukocyte migration, activation of NADPH oxidase 
with reactive oxygen species formation and MAPKs stimula-
tion, which drive hypertrophic vascular effects.44

 In our group, neuronal recordings, dosage of norepi-
nephrine content in vessels (HPLC) and tyrosine hydroxylase 
immunoreactivity in different tissues were used to demonstrate 
that increased sympathetic vasomotor tonus in SHR is not ho-
mogenous, since we observed increased sympathetic activity in 
cardiac and renal, but not in skeletal muscle arterioles.45 Dif-
ferent sympathetic activation patterns, as increased renal and 
cardiac sympathetic nerve activity and unchanged lumbar nerve 
activity,46 were described in others hypertensive models, defin-
ing a differential sympathetic signature. Interestingly the sym-
pathetic signature of the SHR coincides with the sympathetic 
activation pattern observed in hypertensive patients. 

 Besides vascular hypertrophy, increased peripheral 
vascular resistance and elevated arterial pressure, sympathetic 
hyperactivity contributes significantly to the development of 
end-organ injuries. In the myocardium, the higher metabolic de-
mand caused by sympathetic hyperactivity (increased vascular 
resistance and elevated heart rate) is an important factor to deter-
mine ventricular hypertrophy. Neurohormonal direct effects of 
sympathetic hyperactivity were described in the myocardium. It 
was observed that cardiac α- and β-adrenergic activation induced 
cardiac hypertrophy, augmented matrix metalloproteinase-2 ac-
tivity, increased the expression of TGF-β and the synthesis of 
collagen I and III, in addition to intensify the production of reac-
tive oxygen species and the infiltration of hematopoietic mono-
nuclear cells.47-49 Accordingly, Schlaich and co-authors50 identi-
fied in hypertensive patients a direct correlation between cardiac 
norepinephrine spillover and cardiac hypertrophy.

 Similar to cardiac and vascular tissues, adrenergic hy-
peractivation, by modifying sodium/water reabsorption51 and 
renin secretion,52 causes abnormalities in the renal function. 
Graham and co-authors53 described increased renal α-adrenergic 
receptor concentration in the SHR. It was also demonstrated 
that subpressor doses of α- and β-adrenergic blockers decreased 
glomerular sclerosis and urinary albumin excretion in partial ne-
phrectomized rats.54 Besides these direct effects, increased renal 
sympathetic activity determined tissue and plasma RAS activa-
tion through juxtaglomerular cells that release renin. Acting in 
AT1 receptors, ANG II induced reactive oxygen species and pro-
inflammatory cytokines production that enabled renal remodel-
ing and injury, as the glomerular sclerosis.55 Renin also interacts 
with pro-renin receptors in several tissues being associated with 
additional activation of oxidative and inflammatory signaling 
pathways, and, consequently, with the worsening of end-organ 
injuries.56,57 ANG II systemic and local effects in the cardiac58 
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and renal59 tissues add to brain RAS effects,8,9,16,17,18,21,28,29 to fa-
cilitate sympathetic hyperactivity and to amplify the deleterious 
effects of hypertension.

 Other mechanism closely related to end-organ injuries 
is the reduction of baroreflex sensitivity, which strengthens sym-
pathetic hyperactivity. In this sense, Nosaka and co-authors60 
demonstrated that RVLM activation inhibited baroreceptors ac-
tivation-induced reflex bradycardia, thus aggravating baroreflex 
dysfunction that is considered an independent prognostic marker 
in hypertension.61 Baroreflex dysfunction decreases the abil-
ity of arterial baroreceptors to promptly correct venous return, 
heart rate, ventricular contractility and peripheral vascular re-
sistance changes, which aggravate arterial pressure oscillations. 
High pressure variability, which increases hydrostatic pressure 
oscillations in the capillaries, expose tissues to brief periods of 
hyperperfusion or hypoperfusion interfering with normal tissue 
oxygenation. Hypoxia or partial oxygen pressure fall is a strong 
stimulus to drive endothelial cell injury and capillary apoptosis, 
which determine extensive capillary rarefaction and the conse-
quent development of lesions in the various target organs.62,63

 
 In summary, as illustrated in Figure 1, hypertension is 
associated to brain RAS hyperactivation, increased reactive oxy-
gen species and pro-inflammatory cytokines in the autonomic 
brain areas that determine baroreflex dysfunction, decreased va-
gal cardiac activity and increased sympathetic activity to cardi-
ac, vascular and renal tissues and increased pressure variability. 
These effects cause sympatho-vagal imbalance in the heart, ac-
tivation of systemic and local RAS in peripheral tissues, vascu-
lar and tissue hypertrophic remodeling and end-organ damage. 

The deleterious adaptive responses potentiate the development/
maintenance of hypertension and constitute a positive feedback 
mechanism to perpetuate the hypertensive disease. 

AEROBIC TRAINING: AUTONOMIC BENEFITS TO HYPERTEN-
SIVE INDIVIDUALS

 Moderate intensity exercise training is one of the most 
important non-pharmacological strategies to decrease arterial 
pressure in hypertensive patients. A recent meta-analysis dem-
onstrated that aerobic training decreases systolic and diastolic 
arterial pressure by 8 and 5 mm Hg, respectively.65 Other works 
also recognized that aerobic training corrects autonomic dys-
function associated with hypertension, which contributes to the 
reduction of end-organ damage and cardiovascular mortality.66-68 

 Clinical69 and experimental70-74 studies have indicated 
that aerobic training is extremely efficient to revert autonomic 
dysfunction and to attenuate sympathetic hyperactivity, to nor-
malize arterioles wall/lumen ratio and to decrease peripheral 
vascular resistance. On never-treated hypertensive patients, Lat-
erza and co-authors69 identified that aerobic training normalized 
reflex control of heart rate and decreased sympathetic activity. 
On SHR, several studies from our group demonstrated that aero-
bic training decreases sympathetic neuronal excitability into the 
PVN75 and increased PVN density of oxytocin neurons and the 
density of oxytocinergic projections from PVN to NTS-DMV 
complex,76 whose activation increase both baroreflex sensitiv-
ity and cardiac vagal activity and decrease peripheral vasomotor 
sympathetic activity. It was also demonstrated that the training-
induced adaptive responses are significantly correlated with de-

Figure1: Positive feedback mechanisms perpetuating hypertension. Increased RAS activa-
tion, reactive oxygen species and pro-inflammatory cytokines in autonomic brain areas of 
hypertensive individuals augments neuronal activity and sympathetic outflow and decreases 
both vagal activity and baroreflex sensitivity. The autonomic dysfunction increases arterial 
pressure variability and facilitates peripheral RAS activity and vascular and tissue remodel-
ing, all these effects contributing to end-organ damage and to the maintenance of hyperten-
sion. NTS: Nucleus of the solitary tract; PVN: Paraventricular nucleus of the hypothalamus; 
RAS: Renin-angiotensin system; RVLM: Rostroventolateral medulla. Modified from Masson 
& michelini, 2014.64
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creased resting heart rate and exercise tachycardia.77,78

 In a recent study,70 we identified the sequential changes 
of autonomic and cardiovascular adaptations induced by aerobic 
training in SHR (Figure 2). Only 2-weeks of aerobic training 
were enough to normalize cardiac vagal activity and baroreflex 
sensitivity in the SHR. There was, at the same experimental 
time, a complete normalization of the oxidative stress and in-
flammatory profile into the PVN, which are the most prominent 
molecular mechanisms to normalize baroreflex dysfunction 
and sympathetic hyperactivity. It is important to note that these 
benefits were observed even in the persistence of hypertension, 
since a partial decrease of arterial pressure (~9%) was identified 
only after 8-weeks of aerobic training (Figure 2).70 The tempo-
ral coincidence between the reversion of pro-inflammatory pro-
file and oxidative stress in the PVN and the correction of auto-
nomic dysfunction,70 associated with previous findings proving 
the relationship among oxidative stress,8,31,34 inflammation,8,25 

baroreflex dysfunction and sympathetic hyperactivity,39,40 sug-
gest a cause-effect relationship. In other words, aerobic train-
ing normalizes baroreflex function and decreases sympathetic 
hyperactivity through the correction of pro-inflammatory profile 
and oxidative stress within the PVN, an important autonomic 
area in cardiovascular control. This statement is corroborated by 
another study from our group that observed that aerobic training 
decreases neuronal excitability in the PVN of the SHR.75

 It is important to note the temporal dissociation between 
a prompt normalization of both baroreflex function and cardiac 
vagal activity (significant at 2-weeks) and arterial pressure fall, 
which appeared only after 8-weeks of exercise training.70 This 
dissociation suggests that training-induced normalization of 
baroreflex function is independent of pressure reduction, but may 

contribute to the subsequent pressure fall through the decrease 
of sympathetic vasomotor activity and the regression of vascu-
lar hypertrophy. Indeed, the contribution of increased baroreflex 
sensitivity to pressure fall was identified in clinical studies79,80 

that used chronic baroreflex stimulation to control refractory 
hypertension. The importance of augmented baroreflex func-
tion for a better cardiovascular control after aerobic training was 
also proved by other studies71,72,77 demonstrating that sinoaortic 
denervation completely blocked autonomic and cardiovascular 
benefits induced by aerobic training in the SHR.

 Besides the autonomic adaptive responses, arterial 
pressure fall observed in trained hypertensive individuals is also 
dependent on training-induced structural changes in the periph-
eral vasculature. Previous data from our group demonstrated that 
8-12 weeks of moderate aerobic training normalize the wall/lu-
men ratio of skeletal muscle, heart and diaphragm arterioles that 
contributed to the attenuation of total peripheral resistance, thus 
reducing arterial pressure.68,73,74 Increased nitric oxide and tetra-
hydrobiopterin bioavailability and decreased NOS uncoupling, 
superoxide formation and inducible NOS gene expression, were 
described as the cellular mechanisms related to vascular benefits 
of aerobic training in the SHR.81

CONCLUSIONS

 Autonomic dysfunction, characterized by sympatho-
vagal unbalance associated with baroreflex dysfunction, contrib-
utes widely to the establishment/maintenance of hypertension. 
Increased oxidative stress and pro-inflammatory profile ob-
served in the SHR contribute to baroreflex dysfunction, augment 
sympathetic activity and cause vascular and tissue deleterious 
remodeling. Reduced baroreflex sensitivity implies in increased 

Figure2: Training-induced time-course adaptive changes on autonomic control and cardiovascular param-
eters in the SHR. Only 2 weeks of aerobic training (T) were enough to normalize oxidative stress and 
pro-inflammatory profile within the Paraventricular nucleus of the hypothalamus (PVN) and to correct both 
cardiac vagal activity and baroreflex dysfunction. These training-induced responses precede the augmenta-
tion of heart rate variability and the appearance of resting bradycardia (at the 4th week) as well as the partial 
reduction of peripheral vascular resistance (related to the reversion of arteriolar hypertrophic remodeling in 
exercised tissues) and a 9% fall in the arterial pressure (both occurring at the 8th week of training). Modified 
from Masson & Michelini, 2014.64
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arterial pressure variability, sympathetic and RAS activation and 
the appearance of end-organ damage, which potentiate the devel-
opment/maintenance of hypertension and constitute a positive 
feedback mechanism to perpetuate the hypertensive disease. 

 In the treatment of hypertension, it is crucial to prompt-
ly normalize autonomic dysfunction that decreases tissue inju-
ries. It is important to note that aerobic training blocks oxidative 
stress and inflammation in the autonomic brain areas, normal-
izes baroreflex function and attenuates others autonomic and 
cardiovascular dysfunctions related to hypertension, even in the 
persistence of elevated arterial pressure. Thus, aerobic training 
constitutes an important therapeutic tool to decrease cardiovas-
cular mortality in hypertensive patients.
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