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ABSTRACT

 Stroke is a leading cause of adult disability in the United States. However, limited 
number of molecularly targeted therapy exists for stroke. Recent studies have shown that Li-
pocalin-2 (LCN2) is an acute phase protein mediating neuroinflammation after ischemic and 
hemorrhagic strokes. This review is an attempt to summarize some LCN2-related research find-
ings and discuss its role in stroke.

KEYWORDS: Lipocalin-2; NGAL; 24p3; Stroke; Reperfusion injury; Neutrophil; PKC; Phos-
phorylation; Biomarker.

ABBREVIATIONS: LCN2: Lipocalin-2; tPA: tissue Plasminogen Activator; SAH: Subarachnoid 
hemorrhage; MMP: Matrix metalloproteinase; ROS: Reactive Oxygen Species; NGAL: Neu-
trophil gelatinase-associated lipocalin; tMCAO: transient Middle Cerebral Artery Occlusion; 
BBB: Blood-brain barrier.

INTRODUCTION

 Stroke is a sudden loss of neurological function due to ischemia or hemorrhage in 
the brain.1 It is the fifth leading cause of death and a major cause of long-term disability in the 
United States.2 There are two main types of stroke: ischemic and hemorrhagic strokes. Isch-
emic stroke accounts for approximately 87% of all strokes and results from blockage of blood 
flow into the brain by thrombus or embolus. Hemorrhagic stroke, caused by rupture of cerebral 
blood vessels, is less common (13%) than ischemic stroke but accounts for 50% of stroke 
death.3-6 Currently, there is no proven medical or surgical treatment for hemorrhagic stroke.

 Thrombolysis with fibrinolytic agents such as tissue Plasminogen Activator (tPA) is 
the only FDA approved therapy to reverse ischemic stroke.7 However, only 5% of patients 
receive the treatment because tPA must be given within 3 to 4.5 hours after the occurrence of 
stroke. Delayed treatment may increase the risk of serious side effects such as hemorrhagic 
transformation and reperfusion injury.8 Ischemia initiates cerebral infarction during ischemic 
stroke, but reperfusion after recanalization may promote secondary injury and worsen neuro-
logical outcomes.8,9 Reperfusion injury includes a series of inflammatory events with activa-
tion and infiltration of circulating neutrophils, macrophages, and T-cells into infarcted brain 
tissue.10,11 Post-stroke inflammation has detrimental effects, but may be needed for repairing 
processes.11 In order to reduce stroke-reperfusion injury and develop effective and balanced 
therapeutic methods, it is important to identify neurotoxic and neuroprotective molecules of 
post-stroke inflammation. In the acute stage of stroke (within 24 hours), infiltrating immune 
cells release proinflammatory cytokines (IL-1β, IL-6, TNF-α), chemokines (MCP-1, MIP-1α, 
IL-8), reactive oxygen species (ROS), and matrix metalloproteinase (MMP) (mainly MMP-9), 
which amplify neuroinflammatory responses and lead to brain edema, neuronal death, and dis-
ruption of blood-brain barrier (BBB).8,9,11 However, some of these molecules have a differ-
ent role in the later stage of stroke (after 24 hours). For example, MMP-9 enhances ischemic 
brain injury, BBB leakage, and hemorrhagic transformation in the acute stage, but facilitates 
regeneration and remodelling of brain tissues in the later stage of stroke.12 Therefore, detailed 
mechanistic studies of post-stroke inflammation are needed.
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LIPOCALIN-2 (LCN2) IN ISCHEMIC STROKE 

 Lipocalin-2 (LCN2), also known as 24p3 or neutrophil 
gelatinase-associated lipocalin (NGAL), is a 25 kDa protein se-
creted from activated neutrophils.13 Using a chemical-genetics 
approach, LCN2 was identified as one of PKCδ phosphoryla-
tion substrates in neutrophils.14-16 PKCδ directly phosphorylates 
LCN2 at Thr-115, and mediates the secretion of LCN2 from ac-
tivated neutrophils in vitro and after cerebral ischemia in vivo.16

 Plasma level of LCN2 is elevated at 1-3 days in pa-
tients with ischemic stroke.17-19 LCN2 is acutely induced after 
transient middle cerebral artery occlusion (tMCAO) in rodents 
(a model of ischemic stroke).20-23 LCN2 appears in mouse sera as 
early as one hour, peaks at 23 hours, and diminishes by 48 to 72 
hours after tMCAO.23 Due to the short time window for effective 
thrombolytic therapy, it is of great interest to diagnose stroke 
early and reduce the risk of cerebral hemorrhage.24,25 The early 
induction of LCN2 suggests the possibility of using LCN2 as an 
early blood biomarker to detect stroke.

 In addition to blood plasma, LCN2 is also induced in 
the penumbra of ipsilateral hemispheres after tMCAO.21-23,26 The 
induction of LCN2 in mouse brain initiates at 6 hours, reaches 
a peak at 24 hours, and reduces at 48 hours after reperfusion. 
Induced LCN2 protein is identified in a subset of reactivated 
astrocytes, cerebral endothelial cells, and infiltrated neutrophils 
after tMCAO.21,23,26 Cerebral infarction, neurological deficits, in-
filtration of immune cells, BBB permeability, proinflammatory 
cytokines, chemokines, and adhesion molecules are reduced af-
ter tMCAO in LCN2 null mice.21,23 Recombinant LCN2 protein 
is able to stimulate neutrophil migration as well as promote cell 
death in primary neurons but not in astrocytes, microglia and 
oligodendrocytes.21,23,27,28 These results suggest that LCN2 is a 
proinflammatory mediator during the acute stage of ischemic 
stroke. Therefore, LCN2 inhibitors or anti-LCN2 antibodies 
may prove useful to reduce post-stroke inflammation and brain 
injury. At later time point (3 days) after ischemic stroke in rats 
and humans, LCN2 is expressed in injured neurons and may be 
released as a “help me signal” to condition microglia and as-
trocytes for recovery.22 These studies demonstrate the diverse 
functions of LCN2 during the acute and later stages of ischemic 
stroke.

LIPOCALIN-2 (LCN2) IN HEMORRHAGIC STROKE

 Hemorrhagic stroke is a devastating form of stroke 
with high mortality.3-6 There are two major types of hemorrhagic 
stroke: intracerebral hemorrhage (ICH) and subarachnoid hem-
orrhage (SAH). ICH is associated with bleeding in the brain 
parenchyma.4-6 SAH is often caused by intracranial aneurysm 
with blood leakage in subarachnoid space.3 LCN2 is induced 
mainly in astrocytes after rodent models of ICH and SAH.29,30 
LCN2 induction was detected in the ipsilateral hemispheres at 1, 
3, 7 days after ICH in rats and 24 hours after SAH in mice.29,30 
Iron overload after ICH induces perihematoma edema and 

brain injury.4-6 LCN2 is capable of transporting irons through 
siderophore.31-33 Injection of iron upregulates the expression of 
LCN2 in the brain, while systemic treatment of an iron chelator 
(deferoxamine) reduces ICH-induced LCN2 upregulation.29 The 
results suggest that LCN2 may function as an important regula-
tor of iron homeostasis after ICH. White matter injury and mark-
ers for axonal damage and myelin degradation are increased af-
ter SAH in wild type mice, but scarcely developed in LCN2 null 
mice.30 The result suggests that LCN2 may facilitate the devel-
opment of white matter injury after SAH.

 Several studies we summarized in this review suggest 
that LCN2 promotes brain injury as a proinflammatory molecule 
in the acute stage of stroke.16,21,23,26,29,30 Interestingly, LCN2 may 
also support the neurovascular recovery by enhancing angio-
genesis and serving as a “help me signal” in the later stage of 
stroke.22,34 Therefore, a comprehensive understanding of time-
dependent functions of LCN2 is a prerequisite for developing 
effective therapeutic interventions for the treatment of ischemic 
and hemorrhagic strokes.

CONCLUSION

 LCN2 has been identified as an important mediator of 
stroke-reperfusion injury and white matter injury after ischemic 
and hemorrhagic strokes. Future studies are needed to reveal the 
detailed mechanisms of LCN2-mediated signaling and to devel-
op potential LCN2-based therapy.
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