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Constrained Spherical Deconvolution; WM: White Matter; FA: Fractional Anisotropy.

	 Optic	Radiations	(ORs)	are	two	white	matter	fiber	bundles	allowing	direct	connec-
tion	 between	 homolateral	Lateral	Geniculate	Nucleus	 (LGN)	 and	 visual	 cortex.	 From	 the	
anatomical point of view, ORs are conventionally divided in three different portions, namely 
anterior, middle and posterior; the Meyer’s loop represents the anterior portion, and it has 
been	shown	to	be	a	bundle	with	a	very	high	variability	in	human	brain.1-3 The latter aspect has 
to	be	taken	into	account	when	studying	ORs	in	clinical	and	surgical	contexts.	Indeed,	ORs	
represent	 eloquent	white	matter	 bundles	 often	 reconstructed	by	means	of	Magnetic	Reso-
nance	Imaging	(MRI)	based	approaches	in	order	to	assess	their	involvement	by	pathological	
conditions as well as to prevent post-surgical damages. Both these conditions can compro-
mise	visual	function	by	causing,	for	instance,	visual	field	deficits.4,5 Schematic representation 
of	ORs’	bundles	and	common	visual	field	deficits	associated	with	ORs’	lesions	is	shown	in	
Figure 1.

 

	 ORs	are	 largely	 studied	by	means	of	diffusion	MRI	based	modelling	 techniques,	
such	as	Diffusion	Tensor	Imaging	(DTI).	These	methods	allow	both	qualitative	evaluation	

Figure 1: Schematic representation of ORs, from their origin from LGN 
(yellow) to visual cortex (grey) and common visual field deficits associ-
ated with ORs’ lesions. Each bundle is colored separately. LGN’s dam-
age is followed by homonymous hemianopia (1). Lesions of the anterior 
bundle (blue) cause homonymous superior quadrantanopia (2) whereas 
damages of the posterior bundle (pink) are followed by homonymous 
inferior quadrantanopia (3). Middle bundle is shown in violet. Homony-
mous hemianopia with macular sparing can be seen after damages at 
visual cortex level (4).
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of	white	matter	bundles	as	well	as	quantitative	analysis	of	several	diffusion	parameters,	such	as	Fractional	Anisotropy.	The	non-
invasive	investigation	of	ORs	by	means	of	diffusion	MRI	has	provided	several	morphological	 information	regarding	ORs’	con-
nectivity.	In	particular,	moving	beyond	well	demonstrated	link	with	V1	and	V2,6	direct	connections	with	V3,7	V48	and	V58,9 have 
been	recently	shown.	Functional	implications	of	such	connectivity	include	both	primary	visual	signal	elaboration	as	well	as	more	
complex	functions;	for	example,	direct	connection	with	extra-striatal	areas	have	been	supposed	to	be	implicated	in	the	genesis	of	
complex	functional	phenomena	such	as	blindsight.10	Moreover,	other	studies	have	hypothesized	that	such	extra-striate	connectivity	
might	be	the	anatomical	basis	for	the	functional	compensation	performed	after	damages	of	striate	visual	cortex.11

	 In	the	context	of	tractographic	driven	investigation	of	ORs,	several	issues	should	be	considered,	especially	if	using	con-
ventional	DTI.	Indeed,	ORs	reconstruction	might	be	potentially	affected	by	well-known	DTI	limitations,	such	as	partial	volume	
effects.12,13	 Furthermore,	 several	 bundle-specific	 issues	may	 compromise	ORs	 tractographic	 reconstructions,	 e.g.	 complexity	 of	
ORs	anatomical	course	as	well	as	their	relationship	with	other	white	matter	bundles	and	brain	structures.1,2,8,14,15 From a technical 
perspective,	several	voxels	with	complex	geometriesmay	be	involved,	which	are	known	to	cause	an	inaccurate	analysis	when	apply-
ing	DTI	model.	These	potential	pitfalls	raised	several	criticisms	regarding	reliability	of	tractographic	findings	regarding	both	ORs	
detection	as	well	as	extrastriate	connectivity.16	To	overcome	these	limitations,	other	diffusion	models	have	been	tested	to	improve	
tractographic reconstructions, such as High Angular Resolution Diffusion-weighted Imaging (HARDI), Q Ball Imaging (QBI) and 
Diffusion	Spectrum	Imaging	(DSI)	algorithms.	Although	tractographic	output	provided	by	these	approaches	was	found	to	outper-
form	DTI	based	one,	these	algorithmsare	however	difficult	to	be	applied	in	clinical	contexts	because	they	are	really	scanner	demand-
ing and time-consuming or they showed poor angular resolution.17,18 From this point of view, Constrained Spherical Deconvolution 
(CSD)18	has	been	found	a	powerful	technique	feasible	in	clinical	settings.	Recently,	Arrigo	and	colleagues8 have shown how the use 
of	CSD	model	combined	with	probabilistic	tractography	provided	robust	ORs	detection	in	healthy	human	brain.	They	were	able	to	
provide	a	more	complete	reconstruct	of	all	ORs’	portion,	especially	in	case	of	Meyer’s	loop,	justifying	such	result	as	being	due	to	the	
higher	angular	resolution	reached	by	CSD	if	compared	to	other	models,	as	well	asits	ability	to	resolve	voxels	with	complex	fibers’	
configurations.8,13,18	These	voxels	are	indeed	known	to	represent	more	than	90%	of	the	total	number	in	each	brain,	thus	causing	DTI	
reconstruction	troubles	for	other	eloquent	bundles	of	White	Matter	(WM),	such	as	corticospinal	tract	and	arcuate	fasciculus.19 It is 
worthy	to	note	that	CSD	has	been	already	used	to	reconstruct	ORs,	providing	accurate	tracking	of	these	white	matter	bundles	and	
increasing	reliability	and	details	of	ORs	morphological	profile.20,21 

 Arrigo et al8	reinforced	the	hypothesis	of	ORs’	extrastriate	connectivity	as	well	as	their	involvement	in	higher	order	visual	
functions.	Moreover,	direct	LGN	connection	with	V4	was	shown	for	the	first	time	in	humans,	reinforcing	the	findings	provided	by	
previous analyses performed in animals.22,23	The	comparative	view	of	DTI	based	and	CSD	based	ORs	reconstructions	is	shown	in	
Figure	2.

 

 

	 	 If	benefits	provided	by	CSD	model	are	important	in	physiological	contexts,	they	become	extremely	important	in	
pathological	ones,	for	instance	during	pre-surgical	planning.	Indeed,	ORs	are	investigated	both	in	patients	with	brain	neoplasms	as	
well	as	for	surgical	treatment	of	drug-resistant	epilepsy,	the	latter	consisting	in	the	anterior	temporal	lobe	resection.3,24-27 Regarding 
brain	neoplasms,	many	additional	reconstruction’s	issues	have	been	shown	in	these	patients,	which	are	caused	by	neoplasm’s	effects	
on	diffusion	signal;	these	potential	pitfalls	may	be	overcome	by	using	more	advanced	diffusion	signal	modelling	techniques,	such	as	
CSD, as previously reported in other studies.28,29	Regarding	pre-surgical	planning	of	ORs,	the	use	of	CSD	based	tractography	may	
increase	definition	of	safety	resection	margins	and	it	might	have	a	good	impact	on	post-surgical	visual	deficits.
 
	 From	a	quantitative	point	of	view,	the	adoption	of	more	advanced	diffusion	based	approaches	might	have	an	impact	on	

Figure 2: OR stractographic reconstruction in healthy human brain. (A) Axial view of DTI based (left side of the 
image) and CSD based (right side of the image) tractographic reconstructions showed a more complete ORs 
detection provided by CSD. Each bundle was colored according to its main diffusion direction. (B) Tridimensional 
sagittal view of CSD based reconstruction of left ORs. The use of CSD based tractography allowed a good de-
tection of each ORs component. Anterior, middle and posterior ORs bundle, starting from LGN (yellow volume), 
were manually colored respectively in blue, red and green. 
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evaluation	of	diffusion	parameters.	Indeed,	when	performing	a	tract	based	quantitative	analysis,	it	should	be	taken	into	account	that	
DTI	would	exclude	voxels	with	complex	geometry,	since	they	often	show	Fractional	Anisotropy	(FA)	values	below	a	relative	cut-off	
used	for	conventional	tracking.13	FA	decrements	can	be	found	both	in	voxels	with	multiple	orientations	and	in	voxels	involved	by	a	
pathological process.30	The	result	of	this	DTI	limitation	is	the	loss	of	these	voxels	from	the	total	count,	determining	an	incomplete	
profiling	of	a	given	pathway.	With	respect	to	ORs,	this	issue	may	particularly	affect	Meyer’s	loop,	which	is	known	to	be	poorly	
detected	when	using	DTI	tractography;	moreover,	also	other	ORs’	portions	might	be	potentially	affected	due	to	the	presence	of	
crossing	fibers.8

	 Performing	diffusion	parameters	evaluation	on	the	basis	of	CSD	outcome	may	instead	allow	a	more	complete	quantitative	
profile	of	ORs,	thus	allowing	a	better	depiction	of	white	matter	integrity	loss,	like	it	has	already	been	previously	shown	for	other	
brain	pathways.13,28,29	A	reliable	quantitative	evaluation	is	required	for	ORs	evaluation	in	several	diseases.	Indeed,	if	ORs	are	directly	
involved	in	case,	for	instance,of	neoplasms	or	multiple	sclerosis,	there	exist	a	number	of	studies	showing	that	that	ORs	can	suffer	
from damages localized at other levels of the visual system as well, such as primitive optic nerve diseases. In particular, ORs diffu-
sion	parameters	were	found	altered	both	in	cases	of	glaucoma	and	optic	neuritis.31-33 These studies suggested that, although we are 
in	presence	of	a	localized	damage,	the	entire	visual	system	should	be	analyzed	in	order	to	assess	possible	negative	effects	on	other	
visual	structures.	From	this	point	of	view,	advanced	methods	such	as	CSD	based	tractography	can	be	considered	powerful	tools	for	
a deeper investigation of visual system damages.

	 This	brief	description	attempted	to	summarize	recent	anatomical	and	physiological	advances	regarding	ORs	detection	and	
analysis.	Moreover,	it	showed	how	advanced	diffusion	signal	modelling	techniques	may	improve	ORs’	investigation	both	in	healthy	
and	pathological	conditions,	describing	common	as	well	as	tract-specific	diffusion	issues.	Furthermore,	this	study	shows	that	the	
choice	of	diffusion	model	may	have	a	huge	impact	both	on	qualitative	and	quantitative	analysis	of	ORs.
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