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Abstract: Measures of association play a role in selecting 2×2 tables exhibiting strong dependence in high-dimensional binary data.
Several measures are in use differing on specific tables and in their dependence on the margins. We study a 2-dimensional group of
margin transformations on the 3-dimensional manifold  of all 2×2 probability tables. The margin transformations allow introducing
natural coordinates that identify  with the real 3-space such that the x-axis corresponds to  and margins vary on
planes x =const. We use these coordinates to visualise and compare measures of association with respect to their dependence on the
margins given the odds-ratio, their limit behaviour when cells approach zero and their weighting properties. We propose a novel
measure of association in which tables with single small entries are up-weighted but those with skewed margins are down-weighted
according to the relative entropy among the tables of the same odds-ratio.
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INTRODUCTION

2×2 tables of binary markers with random margins are intriguing in several respects:  First,  there is a confusing
plethora of measures of association in 2×2 tables with random margins that are used in statistical practice. Their relative
merit  is  unclear.  Some  of  them  were  developed  for  2×2  tables  with  fixed  margins  and  then  extended  to  the  case
considered here. Measures typically agree in the ordering by strength of association on 2×2 tables that have diagonal
symmetry and in case of independence. But they differ markedly in asymmetric tables or in tables which are ”far from
independence”. We develop a unified framework to analyse,  visualise and compare measures of association in 2×2
probability tables especially with respect to their dependence on the margins.

Second, 2×2 tables ”far from independence” may approximate logical forms like logical equivalence (one diagonal
is zero) or implication (one entry zero). The task of selecting particularly interesting and informative tables among a
large number of tables is often encountered in the analysis of data consisting of high dimensional binary patterns (e.g.
linkage disequilibrium of SNPs, patterns of aberration at various DNA loci, patterns of protein expression etc.). We
suggest  a  principled  approach  for  picking  tables  which  approximate  logical  relations.  This  approach  relies  on  an
entropy-based weighting of tables and aims to improve existing measures often used in Genetical Statistics.

Defining and justifying measures and estimating them from empirical data are radically different tasks. We have
investigated  methods  of  estimating  measures  of  association  in  a  separate  paper  [1].  Here  we deal  exclusively  with
abstract 2×2 probability models and their mathematical structure.
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RESULTS

Mathematical Structure of 2×2 Probability Models

2×2 tables of binary markers with random margins can be considered as tetranomial distributions with a symmetry
structure.  Symmetry of  2×2 tables  can be described by the dihedral  group D4  generated by the transposition of  the
binary markers (matrix transposition) and transposition of their values (transposition of columns or rows).

We consider the manifold  of all non-degenerate tetranominal probability models which we write in two by two
lay-out:  consists of all two by two matrices t with entries pij , (i, j  {0, 1}) subject to the constraints pij > 0, Σi,jpij =
1. The pij denote the probabilities of the corresponding combination of the states of two binary markers i and j. In the
following, we abbreviate  The margins pi. and p.j give the marginal
distributions of the marker i and j respectively.

In  we have several relevant submanifolds. There is a marked point m, namely the midpoint .  There is

the  1-dimensional  submanifold  of  all  tables  with  diagonal  symmetry  of  the  form  .  And  there  is  the  2-
dimensional submanifold  of independent tables with pij = pi. • p.j i, j.

By   we  denote  the  closure  of  .  The  border  ∂  =   ‒   consists  of  tables  with  at  least  one  zero:  four  two
dimensional sides {pij = 0} for any i, j, six one dimensional edges of vanishing rows {p .j  = 0}, vanishing columns {pi.  =
0} and two vanishing diagonals {p00 = p11 = 0}, {p01 = p10 = 0} as well as four triple zero vertices {pij = 1}.

Manipulating the margins defines an additional structure on .  We can multiply rows or columns with positive
numbers and renormalise: Formally, consider the group G = ( + × +, •) with component-wise multiplication.

For every (µ, ν) + × + we define a map: g(µ, ν) :  → 

(1)

Since g(µ, ν) ◦ g(µ', ν') = g(µ · µ', ν · ν') and g(1, 1) = Id  this defines a G-group action on .

Lying in the same group orbit defines an equivalence relation on : We say two elements t1, t2  are equivalent 
t1 ~ t2 if and only if there are (µ, ν) + × + with g(µ, ν)(t1) = t2. G-Orbits are diffeomorph to + × +.

A real function η :  →  is G-invariant if η(t) = η(g(µ, ν)(t)) for all (µ, ν) + × +.

Proposition 1 (odds-ratio):

a) The odds-ratio  is G-invariant.

b) The odds-ratio classifies the G-orbits. Let  be the quotient space of  by the equivalence relation induced by G.
λ induces a bijective map λ̃ :  → +.

c) The inverse mapping λ̃-1 : + →  can be described by 

d) Every G-invariant function η :  →  can be written as a function of λ, namely η = (η̃ ◦ λ̃-1) ◦ λ.

Proof:  a)  is  easily  verified.  b)  Every  equivalence  class  [t]  in   has  a  representant  with  margins  ½  ,  namely

 which has the form given in c). d) is trivial.

We next define new coordinates on  to make use of this insight.
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Proposition 2 (Margin transformation coordinates on T highlighting the G-action and its invariant):

The map Θ : 

(2)

is a diffeomorphism.

The inverse Ψ = Θ‒1 :  →  is given by

In  these  new  coordinates,  x  corresponds  to  the  logarithmized  odds-ratio  [2],  while  y  and  z  determine  the  G-
transformation that maps the table to diagonal symmetry. In addition, the midpoint m0 corresponds to the origin (0, 0, 0).
G-orbits (odds-ratio = constant) correspond to planes {a} × . In particular, the submanifold of independent tables

 maps  to  {0}  ×
 

.  The  tables  with  diagonal  symmetry   form  the  line  R×{0}×{0}.  Transposing  rows  and
columns of a table is equivalent to transformations y → ‒y and z → ‒z, while matrix transposition is equivalent to the
transformation y ↔ z.

eight vertices V = {(± ± ±)} split into two sets of four: Vg = {(+ + +), (+ ‒ ‒), (‒ + ‒), (‒ ‒ +)} and Vb = {(‒ ‒ ‒), (‒ + +),
(+ ‒ +), (+ + ‒)}.

Proposition 3 (Extension to the borders):  Ψ and Θ considered as set valued functions can be extended to 
respectively  . They remain inverse to each other. The mappings of the borders can be characterized as follows:

The vertices Vg together with their respective adjacent edges map to the vertices in .
The faces of  correspond to the vertices Vb.
The faces (± * *) of the cube map to the diagonal edges p00 = p11 = 0 and p01 = p10 = 0 in .
The faces (* ± *), (* * ±) correspond to tables with vanishing rows {p.j = 0} or vanishing columns {pi. = 0} in 
respectively.

This behaviour is illustrated in Fig. (1). These different compactifications will later be used to characterise the limit
behaviour of association measures. It will turn out that the limit behaviour can be easier described using the margin
transformation coordinates.

Measures of Association

We will now investigate various measures of associations between two binary markers. First we define the objects
of interest.

Definition (Measures of association): A measure of association between binary markers is a continuous function 
η :  →  with the following properties:

a) η is zero on independent tables.

b) η is a strictly increasing function of the odds-ratio when restricted to tables with fixed margins.

c) η respects the symmetry group D4, namely:

 c1) η is symmetric in the markers, i.e. invariant to matrix transposition.
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 c2) η changes sign when states of a marker are transposed (row or column transposition).

d) The range of the function is restricted to (−1, 1).

The first two conditions are equivalent to basic properties proposed by Piatetsky-Shapiro [3]. Condition c) is added
to acknowledge that associations between interchangeable markers are of interest here. Finally, condition d) is added to
define a unique scale for all measures of association which is often referred as standardization.

Fig. (1). Illustration of the maps θ and Ψ on the boundaries of  and : ”~” represents positive numbers adding up to 1.

Measures Based on the Odds-Ratio

The odds-ratio Odds-ratio λ:

can be used to define measures of association. As λ is G-invariant, monotone transformations automatically fulfill
condition b) of the definition.

Measures of association derived from the odds-ratio include Yule’s Q [4]:

and Yule’s Y [4]:

Obviously, both Q and Y are measures of association in our sense. Similar to the odds-ratio, both are extremal if one
of the pij tends to zero.

Measures Based on Additive Deviations from Independence Given the Margins

Fixing  margins  results  is  a  one  dimensional  submanifold  of  tables  that  can  be  additively  parametrised  by  a
parameter D.
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D = p00p11 ‒ p01p10 = p00 ‒ p0 .p.0 describes the additive deviation from the independent table with the given margins.
This measure is zero in case of independence of the markers but extremal values depend on the margins.

Lewontin’s D′ [5]: The measure D′ is a standardisation of the original measure D:

Lewontin’s D′ ranges from −1 to 1 and tends to these values if at least one of the pij tends to zero.

D′ is widely used in genetics to measure linkage disequilibrium. When a new SNP emerges in a population by a
single mutation event, the new allele is exclusively found in conjunction with only one of the two alleles of already
existing SNPs. As long as no recombination events occurs, the new SNP remains in complete linkage disequilibrium
with the other SNPs. The corresponding 2×2 tables feature a single zero cell. Thus in this context a measure is needed
that is extremal whenever a single entry tends to zero.

Since Dmax is constant for tables with fixed margins and D increases with increasing odds-ratio, D′ is a monotone
function of the odds-ratio for constant margins.  Symmetry is obvious. Hence, D′  is  a measure of association in our
sense.

Correlation coefficient r [6]: The correlation coefficient applied to binary data has similar popularity in genetics as
D′. It ranges also from −1 to 1, but, in contrast to D′, the absolute value 1 is obtained when a diagonal of t tends to zero:

With reasoning similar as for D′, r is a measure of association.

Proposition  4  (Equality  of  r,  D′  and Y  on  diagonal  tables):  The  measures  r,  D′  and  Y  coincide  on  the  set  of
diagonal tables, i.e. tables with pair-wise equal diagonal elements.

Proof: This follows directly after calculating these measures for the tables 

Measures Based on Information Theory

The  mutual  information  [7]  is  defined  as  the  difference  between  the  information  of  the  given  table  and  the
independent table with the same margins.

10

Proposition 5: sMutInf is a measure of association.

Proof: The symmetry of this measure is clear. To show that sMutInf is a monotone function of the odds-ratio, we

consider the tables  for a sufficiently small ε > 0. These tables have the same margins as the
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MutInf takes values only in (0, 1).  In order to make it  a measure of association according to our definition, we
define a signed version:
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table  but higher odds-ratios.  Assume that λ > 1, we see that  sMutInf (tε ) = log2 λ > 0.
Hence sMutInf is monotone, and thus, a measure of association.

MutInf  approaches  1  only  if  tables  approach  ;  while  r  approaches  1  if  tables  approach  the  form

.

Counter Example

Kappa coefficient [8]: The Kappa coefficient which is useful in quantifying the agreement between two raters is
defined as:

Kappa  is  not  a  measure  of  association  in  our  sense.  Although  it  fulfils  the  condition  of  monotonicity,  it  is  not
symmetric.

Comparing Measures of Association

We use the coordinates introduced in Proposition 2 in order to describe and visualise how measures of association
depend on the margins. In particular we study measures of association η restricted to x=const i.e. for fixed odds-ratios.
The restricted functions will be denoted ηx and called margin weighting functions. We characterise the shape of the
margin  weighting  functions  and  study  their  limiting  behaviours  and  extensibility  to  the  compactification   in
comparison to .

The association measure r expressed in margin transformation coordinates reads:

(3)

The margin weighting function of r for odds-ratio λ = 40 is shown in Fig. (2).

Fig. (2). Margin-weighting function of r.
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Proposition 6 (Margin weighting function for r): For all x  \ {0}:

a) rx has exactly one extremum at the origin (y, z) = (0, 0), corresponding to the diagonal symmetric table with the
fixed odds-ratio.

b) lim‖(y,z)‖→∞rx = 0.

c) limx→±∞rx = ±1

a) Dx
′ has a non-differentiable edge along the diagonal y = z for D′ > 0 and along the diagonal y = −z for D′ < 0.

There is a non-smooth saddle point in the origin.

d) r can be extended to     except for the lines (±,±, *) and (±, *,±) and the vertices V.

e) r can be extended to  except for the vertices.

Proof: see Supplement Material.

The measure r down-weights tables with skewed margins.

The association measure D′ expressed in margin transformation coordinates reads:

(4)

The margin weighting function of D′ for odds-ratio λ = 40 is shown in Fig. )3).

Proposition 7 (Margin weighting function for D′): For all x  {0}:
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b)

Thus, limit functions have a range of (0, 1 ‒ e‒2x) for x > 0 and (e2x ‒ 1, 0) for x < 0, where 0 is obtained for y → ±∞,
z → ±∞, x > 0 and y → ∞, z → ±∞, x < 0.

c) limx→±∞Dx′ = ±1

d) D′ can be extended to  except for the vertices Vg.

e) D′ can be extended to  except for the edges and vertices.

Proof: see Supplement Material.

D′  gives higher weights to certain tables without diagonal symmetry. The measure up-weights or down-weights
tables  with  skewed  margins  depending  on  the  position  of  zeros  which  occur  in  the  limiting  tables  (see  Fig.  3).
Comparing d) and e) one recognizes that the introduction of the odds-ratio as coordinate allows extending D′ to limit
tables with vanishing colums or rows.

The association measure sMutInf can also be written in margin transformation coordinates but this is skipped due to
the lengthy formula. The margin weighting function of sMutInf for odds-ratio λ = 40 is shown in Fig. (4).

Fig. (4). Margin-weighting function of sMutInf.
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c) limx→±∞ sMutInfx = 

Thus sMutInfx → ±1 for y = z and x → ±∞ respectively.

d) sMutInf can be extended to  except for the vertices Vb.

e) sMutInf can be extended completely to .

Proof: see Supplement Material.

Thus, similarly to r, sMutInf down-weights tables with skewed margins (see Fig. 4).

The association measure Y in margin transformation coordinates can be simply written as:

(5)

Proposition 9 (Margin weighting function for Y ): For all x :

a) Yx is constant.

b) lim‖(y,z)‖→∞Yx = tanh 

c) limx→±∞Yx = ±1

d) Y can be extended completely to .

e) Y can be extended to  except for edges and vertices corresponding to vanishing rows or columns.

Proof: is trivial.

Entropy

Among tables of a fixed odds-ratio, we look for a principled approach to prefer interesting tables and down-weight
obscure ”junk” tables. As a candidate we study the table entropy on . The entropy function H :  →   is defined as
the negative expectation of the loglikelihood of the tables:

Why is  entropy  a  candidate  to  select  among  tables?  It  can  be  characterised  in  multiple  ways:  For  general  finite
discrete distributions the entropy was introduced by Shannon (1948) [9]. Shannon characterised H by a set of postulates
to measure the uncertainty in a discrete distribution:

Shannon’s Characterisation of Entropy: If functions Hn(p1, ..., pn) with pi ≥ 0, ∑pi = 1, n ≥ 2 satisfy the conditions

a) H2(p, 1 − p) is a continuous positive function of p.
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Tables with high entropy are interesting as they have high uncertainty and ”surprise value”.
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we  obtain  a  vector  of  observations  of  length  N  ,  which  we  summarise  as  a  frequency  table
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are  more  plausible  than  those  that  can  be  realised  only  by  few  sequences.  We  can  use  Stirlings  formula  for  n!  to
approximate W ( ). In the limit N → ∞,  → t in probability and 1/N · log(W(tN)) → H(t). Thus the entropy describes
the combinatorial plausibility of a table.

Given a set of distributions fulfilling certain constraints, Jaynes [10] proposes to pick the corresponding maximum
entropy distribution as the most uncommitted and prototypical distribution. Looking at the margin weighting function of
the entropy leads to a surprise (see Fig. 5):

Recall that Lambert’s W-function is defined as the inverse function to  exp  W is a multi-branch function since y
= x exp(x) has two solutions for y  (−1/e, 0). We can prove the following:

Fig. (5). Margin-weighting function of entropy: The margin-weighting function of the entropy is shown, conditioned to the odds-
ratios λ = 5 which results in a single maximum, λ = 12.896 at which the maximum splits into two and λ = 40 with two maxima and a
saddle point.

Theorem 1 (magic odds-ratio): Define the ”magic odds-ratio” by Lmagic = W (1/e)−2 ≈ 12.89. Let L > 1. The entropy
H restricted to the submanifold of constant odds-ratio L in 

has a single maximum at the diagonal table of odds-ratio L if 1 < L ≤ Lmagic.
has a saddle point at the diagonal table of odds-ratio L and two ”L-shaped” tables as maxima which transpose
with matrix transposition if Lmagic < L.

”L-shaped” means  that  for  L  → ∞ one of  the  maxima approaches  the  table  .  For  the  case  L  <  1  a
similar result can be derived by transposing principal and secondary diagonals.

Proof: There are two constraints to be considered, one of them not linear in pij :

(6)

(7)

Using Langrange multipliers,  critical  tables  of  H restricted  to  odds-ratio  equals  L  can  be  expressed in  terms of
Lambert’s W function. The bifurcation occurs for Lmagic < L because Lambert’s W is multibranched. See supplement
material for details.

This theorem suggests that the ”magic odds-ratio” is a natural cutpoint between weak and strong association. For
weak association L < Lmagic, interesting tables are those near . For strong association Lmagic < L, particularly interesting
tables are those that approach ”L-shape”, i.e. those in which one cell differs in magnitude from the three others.
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An Entropy-Based Measure of Association

Using these insights on the entropy of a table, in this section we aim to define a measure of association with similar
properties to D′, Y but better limit behaviour, i.e. the measure should down-weight tables with almost vanishing rows or
columns or single entries. These tables are denoted as junk tables in the following. We have seen in the last sections that
D′ and Y could be large for these tables.

We also like to recall that both, D′ and Y become extremal if the table features a single entry equals zero while r,
sMutInf require a vanishing diagonal. We like to retain this property for a new measure to be defined. Another feature
to be retained is the agreement of measures for diagonal tables which holds for Y , D′ and r.

According to our definition, an important property of a measure of association is that it is a monotone function of
the odds-ratio when the margins are kept fixed. For the entropy, one can prove the following lemma:

Lemma  1  (Monotony  of  the  entropy  difference):  Let  H  be  the  entropy  of  t  and  Hdiag  be  the  entropy  of  the
corresponding diagonal table of the same odds-ratio λ. Then, Hdiag − H is monotonically decreasing for increasing λ > 1
and constant margins.

Proof: see supplement material.

As a direct consequence of this lemma, it is easy to see that:

Corollary:

(8)

is a measure of association for arbitrary n ≥ 0.

This newly defined measure fulfils all above mentioned properties: It coincides with Y , D′, r at diagonal tables, is
extremal for tables with a single zero, up-weights L-shaped tables for large odds-ratios in the sense that HSn > Y and
down-weights junk-tables in the sense that HSn < Y at the margins (proof see below). However, the down-weighting is
imperfect as HSn > 0 for junk-tables.

The  parameter  n  can  be  chosen  in  order  to  define  the  degree  of  up-  and  down-weighting.  According  to  our
observations, n = 4 is a reasonable choice resulting in a satisfactory down-weighting of junk tables (see later).

The measure HSn can be written in margin transformation coordinates using

At Fig. (6) we present the margin weighting functions of HSn for λ = 5 and λ = 40. These functions can be easily
characterised using the results of the previous section:

Proposition 10 (Margin weighting function for HSn): For all x  \ {0}:

a) For  x   (−1 − W (1/e) ,  1 + W (1/e)),   HS nx   has   exactly   one   maximum  at   the   origin   (y, z) =   (0, 0).   If
x < −1 − W (1/e) or x > 1 + W (1/e), HS nx

 has a saddle-point at the origin and two extrema elsewhere. At these extrema,
the elements of one diagonal are equal while at the other diagonal there is one (small) element.

b) HS nx
 has the following limit functions

where p =  (1 + ex±z )−1  for y → ±∞ or p = (1 + ex±y ) −1 for z → ±∞ respectively. Thus, the limit functions have an
extremum at p = 0.5 that is z = x for y → ±∞ and y = x for z → ±∞ respectively.

HSn := signY |Y |expn(Hdiag−H)

Hdiag (x, y, z) = 1 + log2 (1 + ex)− x

ln 2 (e−x + 1)

H (x, y, z) = log2
(

ex+y+z + ex + ey + ez
)

− (x+ y + z) ex+y+z + xex + yey + zez

ln 2 (ex+y+z + ex + ey + ez)

lim
‖(y,z)‖→∞

HSnx = sign
(

tanh
x

2

) ∣
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expn

{
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c) limx→±∞ HS nx
 = ±1

d) HS nx
 < Yx at the margins, i.e. HSn down-weights junk-tables.

e) HSn can be extended completely to .

f) HSn can be extended to  except for edges and vertices corresponding to vanishing rows or columns.

g) For all x , HSn coincides with Y , D′, r at diagonal tables.

Proof: a) follows  from Theorem 1. b)  is  easy   to see   taking the   limit   of the  tables first. c)   is clear   since
 limx→±∞ tanh x/2 = ±1 and the exponent is finite. d) holds since Hdiag > 1 and H ≤ 1 at the margins of finite x. e) and f) are
consequences of b) and c). g) is obvious.

Examples of Tables and Corresponding Association Measures

We now study the behaviour of the measures Y , r, D′ and the newly proposed measure HS4 for a variety of selected
tables (see Table 1). For this purpose, we study the odds-ratios λ  {1, 2, 5, 10, 20, 50, 100} and consider the following
tables for x = ln 

The diagonal table (y = z = 0).
An L-shaped table, characterized by y = x, z = ‒x.
A junk table with y = 10, z = −y corresponding to p01 ≈ 1.
A junk table with y = 10, z = −x corresponding to p00 ≈ p01 ≈ 0.5.
A junk table with y = 10, z = y corresponding to p00 ≈ 1.

We also like to remark that the table with three equal entries has maximum entropy if λ → ∞.

Per definition of a measure, for λ = 1 all measures equals zero independent of the concrete realization of the table.
Since Y is based on the odds-ratio, Y is constant for all tables of the same odds-ratio. Y , r, D′ and HS4 always coincide at
diagonal tables. r is maximal at diagonal tables and becomes small for all kinds of junk tables. D′ is always greater for
L-shaped tables than for diagonal tables. D′ is close to zero in case of p00 ≈ 1 but could become large for p01 ≈ 1 which is
highly  counter-intuitive.  HS4  also  becomes  larger  for  L-shaped  tables  compared  to  diagonal  tables  if  λ  is  large.  In
contrast to D′, HS4 is close to zero for both junk configurations p00 ≈ 1 and p01 ≈ 1 respectively. The limit tables have a
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maximum of the entropy at p00 = p01 = 0.5. This induces a maximum of HS4 for limit tables which increases with λ (see
Table 1, fourth rows of each odds-ratio).

Table 1.  (Measures of association for selected tables):  All  values are rounded to three decimals.  To allow discrimination
between  hard  zeros  and  small  values,  all  values  within  (0,  0.0005)  are  presented  as  ”<  0.001”.  Entries  of  2x2  tables  are
presented in columns 1 to 4. The fifth columns presents the odds-ratio of the tables. For each odds-ratio, we studied five
tables: the diagonal table (first row of the corresponding odds-ratio), a table with three equal entries (second row), a table for
which it holds that p01 ≈ 1 or p00 ≈ 1 (third and fifth row respectively) and a table for which p00 ≈ p01 ≈ 0.5 (fourth row). The last
four columns contain the corresponding measures of association rounded to three decimals.

p00 p01 p10 p11 λ Y r D′ HS4

                 
0.25 0.25 0.25 0.25 1 0 0 0 0
0.25 0.25 0.25 0.25 1 0 0 0 0
< 0.001 1 < 0.001 < 0.001 1 0 0 0 0
0.5 0.5 < 0.001 < 0.001 1 0 0 0 0
1 < 0.001 < 0.001 < 0.001 1 0 0 0 0
                 
0.293 0.207 0.207 0.293 2 0.172 0.172 0.172 0.172
0.286 0.286 0.143 0.286 2 0.172 0.167 0.222 0.139
< 0.001 1 < 0.001 < 0.001 2 0.172 < 0.001 0.5 < 0.001
0.5 0.5 < 0.001 < 0.001 2 0.172 0.002 0.333 < 0.001
1 < 0.001 < 0.001 < 0.001 2 0.172 < 0.001 < 0.001 < 0.001
                 
0.345 0.155 0.155 0.345 5 0.382 0.382 0.382 0.382
0.312 0.312 0.062 0.312 5 0.382 0.333 0.556 0.282
< 0.001 1 < 0.001 < 0.001 5 0.382 < 0.001 0.8 < 0.001
0.5 0.5 < 0.001 < 0.001 5 0.382 0.005 0.667 < 0.001
1 < 0.001 < 0.001 < 0.001 5 0.382 < 0.001 < 0.001 < 0.001
                 
0.38 0.12 0.12 0.38 10 0.519 0.519 0.519 0.519
0.323 0.323 0.032 0.323 10 0.519 0.409 0.744 0.441
< 0.001 1 < 0.001 < 0.001 10 0.519 < 0.001 0.9 < 0.001
0.5 0.5 < 0.001 < 0.001 10 0.519 0.007 0.818 < 0.001
1 < 0.001 < 0.001 < 0.001 10 0.519 < 0.001 < 0.001 < 0.001
                 
0.409 0.091 0.091 0.409 20 0.635 0.635 0.635 0.635
0.328 0.328 0.016 0.328 20 0.635 0.452 0.862 0.627
< 0.001 1 < 0.001 < 0.001 20 0.635 < 0.001 0.95 < 0.001
0.5 0.5 < 0.001 < 0.001 20 0.635 0.009 0.905 0.001
1 < 0.001 < 0.001 < 0.001 20 0.635 < 0.001 < 0.001 < 0.001
                 
0.438 0.062 0.062 0.438 50 0.752 0.752 0.752 0.752
0.331 0.331 0.007 0.331 50 0.752 0.48 0.942 0.821
< 0.001 0.999 < 0.001 < 0.001 50 0.752 < 0.001 0.98 < 0.001
0.5 0.5 < 0.001 < 0.001 50 0.752 0.012 0.961 0.086
1 < 0.001 < 0.001 < 0.001 50 0.752 < 0.001 < 0.001 < 0.001
                 
0.455 0.045 0.045 0.455 100 0.818 0.818 0.818 0.818
0.332 0.332 0.003 0.332 100 0.818 0.49 0.97 0.904
< 0.001 0.999 < 0.001 < 0.001 100 0.818 < 0.001 0.99 < 0.001
0.5 0.5 < 0.001 < 0.001 100 0.818 0.015 0.98 0.316
1 < 0.001 < 0.001 < 0.001 100 0.818 < 0.001 < 0.001 < 0.001
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DISCUSSION

In this paper we studied measures of association of 2×2 contingency tables. We defined our measures of interest by
four conditions: The first two of them (zero in case of independence, monotonicity with odds-ratio in case of fixed
margins)  are  basic  properties  according  to  Piatetsky-Shapiro  [3].  There  is  an  ongoing  debate  regarding  desired
properties of association measures [11]. Here, we additionally postulate a standardization and symmetry under matrix
transposition, i.e. interchangeability of markers to be associated. In contrast to traditional independence analysis, we
asked for the selection of tables which are far away from independence. This objective was motivated by the analysis of
high-dimensional molecular genetic data such as SNP array data in which a high number of 2×2 tables occur from
which one would like to select cases of high dependence called linkage disequilibrium.

In  contrast  to  detecting  a  (moderate)  deviation  from  independence,  quantifying  the  strength  of  association  is
multiform as pointed out for example by Tan et al. [12]. A large number of possible measures were proposed in the
literature. Those fulfilling our conditions are shortly reviewed. Most of these measures (r,  D′,  Y  ) agree at diagonal
tables. Some of them become extremal for a vanishing diagonal (r, sMutInf) while for others it suffices that a single cell
becomes zero (D′,  odds-ratio based measures). The measures also markedly differ in cases were one of the rows or
columns of the table becomes small. Since in practice, it can hardly be decided for these tables whether the dependence
is strong or not, these tables are not really of interest and are considered as junk tables here. Nevertheless, the measure
D′  can  become  large  in  these  cases  which  is  undesirable  to  our  opinion.  D′  also  varies  markedly  in  a  small
neighbourhood  of  the  vertices  of  .

To  study  the  properties  of  measures  of  association,  we  introduced  coordinates  on  the  manifold   of  all  tables
mapping it to 3-dimensional space such that the x-axis corresponds to the logarithmized square root of the odds-ratio.
We study the measures on the hyperplanes of constant odds-ratio, looking at the so called margin weighting functions.
These functions are constant for all measures based on the odds-ratio which is known to be independent of the margins
of the table. For other measures, these functions describe the dependence of the measure on the margins for tables with
constant  odds-ratio.  Hence,  our  construction  acknowledges  the  fact  that  the  odds-ratio  completely  captures  the
information of the joint distribution of the two markers except for those contained in the margins [13]. Our margin
weighting functions  illustrate  major  properties  of  the  association measures  considered.  It  also  helps  designing new
measures with desired properties, which we demonstrated in the second part of the paper.

The mathematical  properties  of  the margin weighting functions were derived for  three measures of  association,
namely r, sMutInf and D′. It revealed that r and sMutInf behave very similarly by up-weighting diagonal tables but
down-weighting tables with small rows or columns. In contrast, D′ is not maximal for diagonal tables. Furthermore, it
expresses a strange weighting behaviour for tables with small rows and columns, up-weighting or down-weighting these
tables in dependence on the position of the structural zeros. Such tables occur frequently e.g. in SNP data. This property
also explains, why the estimation problem for D′ is not well behaved [1]. On the other hand, D′ as well as odds-ratio
based  measures  are  constructed  to  up-weight  tables  which  feature  a  single  small  entry.  These  tables  represent  a
prototype of a logical table for which one can conclude the state of the column for one row but not for the other row.
These  kinds  of  tables  are  interesting  in  genetical  statistics  since  they  correspond  to  situations  at  which  no
recombinations occurred between two SNPs, i.e. only three of the four theoretically possible haplotypes are observed.
Therefore, we aimed to define an alternative measure also highlighting L-shaped tables but with a better behaviour at
the margins than D′ or odds-ratio based measures.

For this purpose, the entropy [9] as another canonical structure at 2×2 tables was studied. We proved that the margin
weighting function of this quantity is maximal at the diagonal for odds-ratios within a critical range, namely (W (1/e)2,
W (1/e)‒2). Outside this range, there are two maxima at L-shaped tables, i.e. tables with a single small cell while the
others are (almost) equal. More precisely, the elements of the opposite diagonal are equal for the maxima.

The difference between the entropy of a non-diagonal table and the corresponding diagonal table of the same odds-
ratio is a monotone function of the odds-ratio for fixed margins. A new measure of association called HSn is defined,
which is essentially Yule's Y weighted by the exponential of this entropy difference. This quantity fulfils all requirements
of an association measure, i.e. ranges between -1 and 1, is zero in case of independence, is symmetric and a monotone
function of the odds-ratio for fixed margins. In addition, it agrees with Y , D′ and r at diagonal tables, up-weights tables
with an L-shape and large odds-ratio and is extremal in case of a single zero in the table. Hence, the measure has similar
properties  than D′  except  for  a  better  limit  behaviour.  Since the entropy difference of  tables  with vanishing row or
column is smaller than the entropy of the corresponding diagonal table, degenerated tables are markedly down-weighted

T

T
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relative to the diagonal table. The free constant n allows tuning the degree of this down-weighting. For practical issues
we recommend using n  = 4 which yields satisfactory results  to our experiences.  However,  our procedure of  down-
weighting junk tables is neither unique nor perfect in the sense that the junk tables are down-weighted to zero. The latter
one  is  not  possible  within  the  framework  of  weighting  by  entropy  without  loosing  other  desired  properties  of  the
measure, because the minimum of the absolute differences between the diagonal table and the degenerated tables of the
same odds-ratio approaches zero if the odds-ratio tends to 0 or ∞.

We recommend using HS4  instead of  D′  when interested in  selecting L-shaped tables  from a  large  set  of  tables
mostly  far  away  from  independence  and  when  tables  with  small  marginal  frequencies  are  common.  When  HS4  is
estimated from count data, we recommend using Bayesian plug-in estimators of the frequencies of single cells showing
a good compromise between accuracy and computational burden [1].
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