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Abstract

We prove common coincidence point in fuzzy metric space
.We extend result of Sharma and others for multivalued
mappings introduced by Kubiaczyk and Sharma . Servet
and Sharma further extended this result to intuitionistic
fuzzy metric space.
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Introduction

In 1965, the concept of fuzzy sets was introduced initially
by Zadeh [xxxvi] since then to use this concept in topology
and analysis many authors have expansively developed the
theory of fuzzy sets and applications. Especially, Deng [vi] ,
Erceg [vii] , Kaleva and Seikkala [xvii] , Kramosil and
Michalek [xviii] have introduced the concept of fuzzy
metric spaces in different ways. Many authors have also
studied the fixed point theory in these fuzzy metric spaces
are , Chang, Cho, Lee, Jung and Kangliii] , Fang[viii] ,
Grabiec[x] , Hadzic[xi],[xii] , Jung, Cho and Kim [xiv] ,
Jung, Cho, Chang and Kang [xv], Sharma
[xxiii],[xxiv],[xxv], Mishra [xxviii], Sharma and Singh ,
Sharma and Bamboria [xxvi] , Sharma and Deshpande
[xxviii],[xxix],[xxx],[xxxi] , Sharma and Bagwan [xxvii], ,
Sharma and Tiwari [xxxiii],[xxxiv] , Sharma and Patidar
[xxxii] and for fuzzy mappings are Bose and Sahani [i] ,
Butnariu [ii] , Chang[iv] Chang, Cho, Lee and Lee [v],
Heilpern [xiii] , Sharma [xxiii] .

In this note we extend results of Sharma [xxiii] and others
for multivalued mappings introduced by Kubiaczyk and
Sharma [xix] . Servet and Sharma [xxii] further extended
this result to intuitionistic fuzzy metric space.

Preliminaries

Definition 1.[21] . A binary operation * : [0,1]x[0,1]
->[0,1] is called a continuous t-norm if ([0,1],*) is an
abelian topological monoid with unit 1 such that a*b <
c*d whenevera < cand b < dforalla,b,c,d e [0,1]
Example of t-norm are a*b = ab and a*b = min{a,b}.

Definition 2.[18] . The 3-tuple (X, M,*) is called a fuzzy
metric space if X is an arbitrary set, * is a continuous t-norm
and M is a fuzzy set in X% x [0,c0) satisfying the following
conditions: for all x ,y ,z eXand s, t > 0,

(FM-1) M(x,y, 0) =0,

(FM-2) M(x,y,t)=1,forallt>0ifand only if x =y,
(FM-3)  M(x,y, 1) = M(y x, 1),

(FM-4) M(X,y,t) * M(y, z,8) < M(X, z, t +3),
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(FM-5)  M(x,y, .):[0,1)>[0,1] is left continuous .

Note that M(x, vy, t) can be thought of as the degree of
nearness between x and y with respect to t . We identify x =
y with M(x, y, t) = 1 for all t > 0 and M(X, y, t) = 0 with «©
and we can find some topological properties and examples
of fuzzy metric spaces in [9].
In the following example, we know that every metric
induces a fuzzy metric.
Example 1.[9] Let (X,d) be a metric space . Define a*b = ab
(or a*b = min{a,b}) and forall x,yeXandt> D0,
t
M(x,y,t) = (1.a)
t+d(xy)
Then (X,M,*) is a fuzzy metric space . We call this fuzzy
metric M induced by the metric d the standard fuzzy metric.
Lemma 1[10]. For all x,y € X, M(X,y,.) is non decreasing.

Definition 3[10]. Let (X,M,*) is a fuzzy metric space :

(1) A sequence {x,} in X is said to be convergent to a
point XxeX (denoted by lim,, X, = x ), if lim
M(xn x,t) =1, forallt>0.

(2) A sequence {x,} in X is called a Cauchy sequence if
My M(Xnep,Xn t) = 1,
forallt>0and p>0.
(3) A fuzzy metric space in which every Cauchy sequence is
convergent is said to be complete.
Remark 1. Since * is continuous, it follows from (FM-4)
that the limit of the sequence in FM-space is uniquely
determined.
Let (X,M,*) is a fuzzy metric space with the following
condition:
(FM-6) lim,,, M(xyt) = 1 forallxy e X.

Lemma 2 [20] . Let {y,} be a sequence in a fuzzy metric
space (X,M,*) with the condition (FM-6). If there exists a
number ke (0,1) such that

M(yn+21yn+1ykt) 2 M(yn+11yn,t) (1b)
forallt>0and n=1,2,... then {y,} is a Cauchy sequence in X.

Lemma 3 [16] . If for all x,yeX ,t> 0 and for a number
ke(0,1),

M(x,y,kt) > M(x,y,t)
thenx =y.

Page 780



International Journal of Scientific Engineering and Technology
Volume No. 2, Issue No. 8, pp : 780-782

(ISSN : 2277-1581)
1 Aug. 2013

'_‘-
-

1J5CET

Definition 4[19].Two maps A and B are said to be weakly

compatible in fuzzy metric space if they commute at

coincidence point.

Definition 5 [19]. Let (X, M, *) be a fuzzy metric space

with t*t > t forall t  [0,1]. Consider S: X —» Xand P : X

— CB(X). A point z € X is called a coincidence point of S

and P if and only if Sz € Pz.

Kubiaczyk and Sharma [xxxiii] introduced the following

concept of multivalued mappings in the sense of Kramosil

and Michalek [xviii].

We denote by CB(X) the set of all non-empty, bounded and

closed subsets of X. We have

MY(B,y,t) =max{ M(b,y,t):beB}

My(A, B, t) =min{ min M"(a, B, t), min MY(A, b, t) }
acA beB

forall A,BinXand t > 0.

Main Results

Kubiaczyk and Sharma [xxxv] proved the following :

Theorem A. Let (X,M,) be a complete fuzzy metric space

with t*t > t for all t € [0,1] and condition (FM-6). Let P,Q :

X — CB(X) be continuous and there exists mappings S, T :

X — X satisfying :

(i) SP =PS, QT = TQ,

(i) P(X) < S(X)and Q(X) < T(X),

(iiif)  the pairs {P,S} and {Q,T} are compatible,
(iv) there exists a number k  (0,1) such that
My(Px, Qy, kt) > min{MY(Sx, Tx, t), MY(Px, Sx, 1),
MY(Qy, Ty, 1),
MY(Px, Ty, (2- a)t), M¥(Qy, Sx, 1)}
forall x,y e X, a € (0,2),t>0.
Then P, Q, S and T have a common coincidence point, i.e.
Sz € Pz and
Tz € Qz.
In this chapter we improve Theorem A, by removing
condition (i) and continuity of the mappings. We prove the
following:
Theorem 1: Let (X,M, *) be a complete fuzzy metric space
with t*t > t for all t € [0,1] and condition (FM-6).
Let P,Q : X —» CB(X) be mappings and there exists
mappings S, T : X — X satisfying :
(1.1) P(X) < S(X)and Q(X) c T(X),
(1.2)  The pairs {P,S} and {Q, T} are weakly compatible,
(1.3)  there exists a number k € (0,1) such that
My(Px, Qy, kt) > min{MY(Sx, Tx, t), M (Px, Sx, t), MV(Qy, Ty, 1),
MY(Px, Ty, (2- a)t), M(Qy, Sx, t)}
forallx,y e X, a € (0,2),t>0.
Then P, Q, S and T have a common coincidence point, i.e.
Sz e Pzand Tz € Qz.
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Proof . Let X, be arbitrary point in X and x; € X is such
that, Sx; € Pxg and y; = Sx; , k € (0,1) and the
inequality hold
M(Xo, Y1, kt) = M(Xo, Sy, kt) > MY(Xo, Pxq, kt) - €
X, € Xissuchthat Tx, € Qx; ,y, = Tx, and
M(Y1,Y2, Kt) = M(SxXy, TXo, kt) > MY(y1, Qxq, kt) - €/2.
Inductively
M(Yane1,Y2n, Kt) = M(SXoner, TXon K) = MY(Yane1 ,QXon, Kt) -
g2t
and M(Yane1,Yans2, Kt) = M(SXans1, TXane2, Kt) = MY (Yans1 ,QXanea, Kt) - €/22™
Now we show that {y,} is a Cauchy sequence.
By (1.3), forallt>0and o = 1-qwith g € (0,1), we write
M(YanYzne1, Kt) = MY (Y2 , PXan, kt) - €/2°"
> My(PXan, QXan1 , kt) - /2"
> min{M"(SXzn , TXon1, 1), MY(PXon, SXon,
1), MY(QXon-1, TXon1, 1), MY (PXan, TXant, (2- at),
MY(QXan1, SXon, )} - €/27"
2 min{M(an v Yon-1s t), M(an+1. Yo t)M(an, Yan-1,
£), M(Yans1, Yan1, (2= 0)t), M(Yan, Yan, )} - €/2%°
> Mi{M(Yzn , Yon1, 1), M(Yanez, Yono 1),
M(Yzns1, Yons, (1+K)), 1} - €/2%"
Now using (FM-4), we have
= min{M(an y Yon-1, t), M(anm Yon t), M(an+1, Yon t)*
(1.4) M(Yzn, Yon, Kt),} - €/2°"
Since t-norm * is continuous and M(Xy, .) is left
continuous, letting k — 1 in (1.4), we have
(1.5) M(YanYans1, Kt) = Min{M(Y2n.1 , Yon, 1), M(Yan, Yanet, 1)} -
ef2™
similarly we also have
(L1.6) M(Yzne1,Yane2, Kt) = min{M(Yzn, Yons1,t), M(Yanst,Yoneo )} - €/22™
Thus from (1.5) and (1.6) it follows that
M(yn+1:yn+Zv kt) 2 min{M(yn: yn+1vt)v M(Yn+11yn+21t)} -
e/2™!
forn= 1,2,... and so for positive integers n,p,
M(Yne1.Ynez KO = Min{M(Yn, Y1), M(Ynes,Ynso, VKP)} - €/2™
Thus, since M(Yns1,Yni2, t/k?) = 1 as n — oo, we have
M(Yne1,Yne2, Kt 2 M(Yn, Yoert) - el2™.
Since e is arbitrary making € — 0, we obtain
M(yn+1:)/n+2’ kt) = M(ym Yn+l:t)
Therefore, by Lemma 2, {y,} is a Cauchy sequence in X.
Since X is complete , {y,} converges to a point z in X.
We observe that
lim, e SXons1

z e lim_., PXo
and
My TXonsz = Z € limy,.e QXone
Hence by weak compatibility of S and P we have Sz € Pz.
Similarly, Tz € Qz.
Thus z € X is a coincidence point of P, Q, Sand T.
This completes the proof of the theorem.

Page 781



1J5CET

' -\
N >
iy Volume No. 2, Issue No. 8, pp : 780-782

Yildiz, Sharma and Servet [xxxv] , further extended this
definition of multivalued function for intuitionistic fuzzy
metric space.
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