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Abstract 

We prove common coincidence point in fuzzy metric space 

.We extend result of Sharma  and others for multivalued 

mappings introduced by Kubiaczyk and Sharma . Servet 

and Sharma further extended this result to intuitionistic 

fuzzy metric space. 
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Introduction  

In 1965, the concept of fuzzy sets was introduced initially 

by Zadeh [xxxvi] since then to use this concept in topology 

and analysis many authors have expansively developed the 

theory of fuzzy sets and applications. Especially, Deng [vi] , 

Erceg [vii] , Kaleva and Seikkala [xvii] , Kramosil and 

Michalek [xviii]  have introduced the concept of fuzzy 

metric spaces in different ways. Many authors have also 

studied the fixed point theory in these fuzzy metric spaces 

are , Chang, Cho, Lee, Jung and Kang[iii] , Fang[viii] , 

Grabiec[x] , Hadzic[xi],[xii] , Jung, Cho and Kim [xiv] , 

Jung, Cho, Chang and Kang [xv], Sharma 

[xxiii],[xxiv],[xxv], Mishra [xxviii], Sharma and Singh , 

Sharma and Bamboria [xxvi] , Sharma and Deshpande 

[xxviii],[xxix],[xxx],[xxxi] , Sharma and Bagwan [xxvii], , 

Sharma and Tiwari [xxxiii],[xxxiv] , Sharma and Patidar 

[xxxii]  and for fuzzy mappings are Bose and Sahani [i] , 

Butnariu [ii] , Chang[iv] Chang, Cho, Lee and Lee [v], 

Heilpern [xiii] , Sharma [xxiii] . 

In this note we extend results of Sharma [xxiii] and others 

for multivalued mappings introduced by Kubiaczyk and 

Sharma [xix] . Servet and Sharma [xxii] further extended 

this result to intuitionistic fuzzy metric space. 

Preliminaries 

Definition 1.[21] .  A binary operation  * : [0,1]×[0,1] 

[0,1]   is called a continuous t-norm if ([0,1],*) is an 

abelian topological monoid  with unit 1 such that a*b     

c*d whenever a    c and  b    d for all a ,b, c, d  [0,1] 

Example of t-norm are a*b = ab   and a*b  =  min{a,b}. 

Definition 2.[18] . The 3-tuple (X, M,*) is called a fuzzy 

metric space if X is an arbitrary set, * is a continuous t-norm 

and M is a fuzzy set in X
2 

× [0,) satisfying the following 

conditions: for all x ,y ,z X and s, t  >  0, 

(FM-1)    M(x, y, 0) = 0,
      

 

(FM-2)    M(x, y, t) = 1, for all t > 0 if and only if x = y, 
      

   

(FM-3)    M(x, y, t) = M(y x, t), 

(FM-4)    M(x, y, t) * M(y, z, s)     M(x, z, t +s), 

(FM-5)    M(x ,y, .):[0,1)[0,1] is left continuous . 

 

 

Note that M(x, y, t) can be thought of as the degree of 

nearness between x and y with respect to t . We identify x = 

y with M(x, y, t) = 1 for all t > 0 and M(x, y, t) = 0 with  

and we can find some topological properties and examples 

of fuzzy metric spaces in [9].  

In the following example, we know that every metric 

induces a fuzzy metric. 

Example 1.[9] Let (X,d) be a metric space . Define a*b = ab 

(or a*b = min{a,b}) and   for all  x,yX and t > 0,  

t  

  M(x,y,t) =     (1.a)
      

 

           t + d(x,y) 

Then (X,M,*) is a fuzzy metric space . We call this fuzzy 

metric M induced by the metric d the standard fuzzy metric.  

Lemma 1[10]. For all x,y  X,  M(x,y,.) is non decreasing. 

Definition 3[10]. Let (X,M,*) is a fuzzy metric space :  

(1) A sequence {xn} in X  is  said  to  be  convergent  to  a  

point  xX (denoted  by limn xn  = x ), if lim n 

M(xn,,x,t)  = 1,  for all t > 0. 

(2) A sequence {xn} in X is called a Cauchy sequence if  

 lim n  M(xn+p,xn,t) = 1, 
   

for all t > 0 and p > 0. 

(3) A fuzzy metric space in which every Cauchy sequence is 

convergent is said to be complete. 

Remark 1. Since * is continuous, it follows from (FM-4) 

that the limit of the sequence in FM-space is uniquely 

determined. 

Let (X,M,*) is a fuzzy metric space with the following 

condition: 

(FM-6)  lim n   M(x,y,t)  =  1  for all x,y    X . 

 

Lemma 2 [20] . Let {yn} be a sequence in a fuzzy metric 

space (X,M,*)  with the condition (FM-6). If there exists a 

number k(0,1) such that  

M(yn+2,yn+1,kt)  M(yn+1,yn,t)     (1.b)
                                                

for all t > 0 and n = 1,2,... then {yn} is a Cauchy sequence in X. 

 

Lemma  3 [16] . If for all x,yX , t > 0 and for a number 

k(0,1), 

M(x,y,kt)    M(x,y,t) 

then x = y. 
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Definition 4[19].Two maps A and B are said to be weakly 

compatible in fuzzy metric space if they commute at 

coincidence point.  

Definition 5 [19]. Let (X, M, *) be a fuzzy metric space 

with t*t    t  for all t  [0,1]. Consider S : X  X and P : X 

 CB(X). A point  z  X  is called a coincidence point of S 

and P if and only if Sz  Pz. 

Kubiaczyk and Sharma [xxxiii] introduced the following 

concept of multivalued mappings in the sense of Kramosil 

and Michalek [xviii]. 

We denote by CB(X) the set of all non-empty, bounded and 

closed subsets of X. We have 

M

(B, y, t)   = max{ M(b, y, t) : b  B }

 
 

M(A, B, t)  = min{ min M

(a, B, t) ,  min M


(A, b, t)  }        

                 aA        bB  

for all  A, B in X and  t  >  0. 

Main Results  

Kubiaczyk and Sharma [xxxv] proved the following : 

Theorem  A.   Let (X,M, ) be a complete fuzzy metric space 

with t*t  t for all t  [0,1] and condition (FM-6). Let P,Q : 

X  CB(X) be continuous and there exists mappings S,T : 

X  X satisfying : 

(i)      SP  =  PS,  QT  =  TQ, 

(ii)     P(X)  S(X) and  Q(X)  T(X), 

(iii)    the pairs {P,S} and {Q,T} are  compatible, 

(iv)    there exists a number k  (0,1) such that 

M(Px, Qy, kt)    min{M

(Sx, Tx, t), M


(Px, Sx, t), 

M

(Qy, Ty, t), 

M

(Px, Ty, (2- )t), M


(Qy, Sx, t)} 

for all x,y  X,   (0,2), t > 0.  

Then P, Q, S and T have a common coincidence point, i.e. 

Sz  Pz and  

Tz  Qz. 

In this chapter we improve Theorem A, by removing 

condition (i) and continuity of the mappings. We prove the 

following: 

Theorem 1:  Let (X,M, *) be a complete fuzzy metric space 

with t*t  t for all t  [0,1] and condition (FM-6). 

Let P,Q : X  CB(X) be mappings and there exists 

mappings S,T : X  X satisfying : 

(1.1) P(X)  S(X) and  Q(X)  T(X), 

(1.2) The pairs {P,S} and {Q,T} are weakly compatible, 

(1.3) there exists a number k  (0,1) such that 

M(Px, Qy, kt)  min{M(Sx, Tx, t), M(Px, Sx, t), M(Qy, Ty, t), 

 M

(Px, Ty, (2- )t), M


(Qy, Sx, t)} 

for all x,y  X,   (0,2), t > 0.  

Then P, Q, S and T have a common coincidence point, i.e. 

Sz  Pz and Tz  Qz. 

Proof .  Let x0  be arbitrary point in X and x1  X is such 

that,  Sx1  Px0  and    y1   =  Sx1  , k  (0,1) and the 

inequality hold 

M(x0, y1, kt)  =  M(x0, Sx1, kt)    M

(x0 , Px0, kt) -   

x2  X is such that Tx2  Qx1  , y2  =  Tx2  and  

M(y1,y2, kt)  =  M(Sx1, Tx2, kt)    M

(y1 , Qx1, kt) - /2. 

Inductively   

M(y2n+1,y2n, kt) = M(Sx2n+1, Tx2n, kt)   M(y2n+1 ,Qx2n-1, kt) - 

/22n-1 

and M(y2n+1,y2n+2, kt) = M(Sx2n+1, Tx2n+2, kt)  M(y2n+1 ,Qx2n+1, kt) - /22n+1 

Now we show that {yn} is a Cauchy sequence. 

By (1.3), for all t > 0 and   =  1 – q with q  (0,1), we write 

M(y2n,y2n+1, kt)    M

(y2n , Px2n, kt) - /2

2n
 

                  
   M(Px2n , Qx2n-1 , kt)  -  /2

2n 

                            min{M

(Sx2n , Tx2n-1, t), M


(Px2n, Sx2n, 

t),  M

(Qx2n-1, Tx2n-1, t), M


(Px2n, Tx2n1, (2- )t),  

       M

(Qx2n-1, Sx2n, t)}   -   /2

2n
  

  min{M(y2n , y2n-1, t), M(y2n+1, y2n, t),M(y2n, y2n-1, 

t), M(y2n+1, y2n-1, (2- )t), M(y2n, y2n, t)} - /2
2n  

 min{M(y2n , y2n-1, t), M(y2n+1, y2n, t), 

M(y2n+1, y2n-1, (1+k)t),1} - /2
2n 

Now using  (FM-4), we have 

  min{M(y2n , y2n-1, t), M(y2n+1, y2n, t),  M(y2n+1, y2n, t)*                    

 (1.4)                      M(y2n, y2n-1, kt),} - /2
2n

 

Since t-norm * is continuous and M(x,y, .) is left 

continuous, letting k  1 in (1.4), we have 

(1.5)  M(y2n,y2n+1, kt)    min{M(y2n-1 , y2n, t), M(y2n, y2n+1, t)} - 

/22n 

similarly we also have  

(1.6) M(y2n+1,y2n+2, kt)   min{M(y2n, y2n+1,t), M(y2n+1,y2n+2,t)} - /22n+1 

Thus from (1.5) and (1.6) it follows that 

M(yn+1,yn+2, kt)      min{M(yn, yn+1,t), M(yn+1,yn+2,t)} - 

/2
n+1

, 

for n =  1,2,… and so for positive integers n,p,     

M(yn+1,yn+2, kt)      min{M(yn, yn+1,t), M(yn+1,yn+2, t/k
p)} - /2n+1 

Thus, since  M(yn+1,yn+2, t/k
p
)  1 as n  , we have         

M(yn+1,yn+2, kt)      M(yn, yn+1,t) - /2
n+1

 . 

Since  is arbitrary making    0, we obtain 

 M(yn+1,yn+2, kt)      M(yn, yn+1,t)     

Therefore, by Lemma 2 , {yn} is a Cauchy sequence in X. 

Since X is complete , {yn} converges to a point z in X.  

We observe that  

 limn   Sx2n+1  =  z    limn   Px2n   

and   

 limn   Tx2n+2  =  z    limn   Qx2n+1  

Hence by weak compatibility of S and P we have Sz  Pz.  

Similarly, Tz  Qz. 

Thus z  X is a coincidence point of P, Q, S and T. 

This completes the proof of the theorem. 
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Yildiz, Sharma and Servet [xxxv] , further extended this 

definition of multivalued function for intuitionistic fuzzy 

metric space. 
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