
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.2, Issue No.8, pp : 776-779 1 Aug. 2013

IJSET@2013 Page 276

BIST Architecture and Implementation of 64-Bit Double Precision Floating

Point Multiplier Using VHDL

Anurag Sharma

M.Tech VLSI, Suresh Gyan Vihar University, Jaipur.

Email ID- anuraagsharmaa@yahoo.com

ABSTRACT

In this paper a 64-bit double precision floating point

multiplier is implemented. A BIST test pattern generator for

double precision multiplier is proposed. Linear feedback

shift registers are used to generate the test pattern. A

comparator is used to compare the output response and the

expected response. For the circuit to work correctly the

output response must be the same as the expected response.

Xilinx ISE is used to synthesize the circuit and ModelSim is

used for simulation purpose.

Keywords : BIST, floating, ModelSim, multiplier

I. INTRODUCTION

BIST is a technique to test a circuit through built-in hardware

functions. In BIST a part of the circuit is used to test the

circuit itself. BIST helps in the testing and verification of the

circuit without the requirement of any hardware verification

language. Every device is required to go through testing to

ensure proper working. The devices that are produced

nowadays consist of heterogeneous components like

processors, memories etc. So it’s not easy to test them. Also

the design of the devices is mostly core based. Therefore the

internal structures cannot be accessed. The technology used to

manufacture devices is deep submicron technology. If there is

a fault in such a device, it’s very complicated to detect.

BIST provides solution to all these problems.

Floating point multiplier requires complex calculation because

the operands used consists of 64-bits each. When the

calculation involved is as large and complex as in the case of

floating point multiplier then the proper working of the device

cannot be ensured. The device might produce the output at the

required time but the output cannot be verified. So even if

there is a fault in the circuit of the device it might go

unnoticed.

To solve this problem BIST architecture is used in the circuit.

BIST architecture randomly generates a test pattern and

applies it to the input of the device. Also the BIST architecture

produces its own output, known as expected output, of those

inputs. Both these outputs are compared with each other. To

ensure proper working the outputs must match each other. If

the outputs are same then a message is displayed regarding

correct working of the floating point multiplier unit. In case

the outputs are different, a message is displayed showing that

the floating point multiplier is not working properly.

II. 64-BIT DOUBLE PRECISION FLOATING

POINT NUMBERS

Double precision floating point numbers are 64-bit binary

numbers. The 64-bits are divided into 3 parts- sign, exponent

and mantissa. The 52 least significant bits (LSBs) are used to

represent the mantissa of the number. The next 11-bits are

used to represent the exponent of the number. The most

significant bit (MSB) of the number is used as a sign bit to

represent the sign of the number.

 Sign bit ‘0’ indicates positive number.

 Sign bit ‘1’ indicates negative number.

 Sign Exponent Mantissa

III. FLOATING POINT MULTIPLIER

Multiplication of two floating point numbers is a complex task

and is carried out in a series of steps. Since a floating point

63 62 52 51 0

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.2, Issue No.8, pp : 776-779 1 Aug. 2013

IJSET@2013 Page 277

number consists of 3 parts- sign, exponent and mantissa,

calculations for all the parts are carried out separately.

a) Calculation of Sign

The sign bit of the resultant is obtained by carrying out the ex-

or operation of the sign bits of the two operands. Sign bit ‘0’

represents a positive sign and sign bit ‘1’ represents a negative

sign.

b) Calculation of Exponent:

The exponents of both the operands are represented in the

IEEE 754 format, i.e., a bias of 1023 is added to both the

exponents. To calculate the exponent of the resultant the bias

of 1023 must be removed from the exponents. After removal

of bias from the exponents, both are added to give the

resultant exponent. This resultant exponent is in unbiased

form. So to represent it in IEEE 754 format, it should be

converted to the biased form by adding bias of 1023 to it.

c) Calculation of Mantissa:

Mantissa calculation is the most complex part of floating point

multiplication. A 64-bit number contains 52-bit mantissa. The

resultant mantissa is calculated by multiplying the mantissas

of both the operands. But before the multiplication is carried

out, the mantissas of both the operands need to be normalized.

Normalization is done in order to ensure that either of the

numbers to be multiplied is not zero. If any one of the

numbers is zero than the resultant will be zero. If both the

numbers are zero than the resultant will be undefined or Not a

Number (NaN). Normalization is done by adding a ‘1’ as the

MSB of the mantissa. By adding a ‘1’ as MSB, the possibility

of the number being a zero is eliminated. After normalization,

the number of bits in the mantissa is increased by one, so the

normalized mantissa contains 53-bits.

The next step after normalization is multiplication of the

normalized mantissas. Two 53-bits mantissas are multiplied

and a resultant of 106-bits is obtained. There are several

different algorithms which can be used to carry out the

multiplication of the mantissas. As the size of the mantissa is

very large it is convenient to use an algorithm rather than

multiplying directly. This 106-bits resultant cannot be stored

directly into the output because of its size. The output

mantissa must contain only 52-bits. To obtain 52-bits

mantissa, normalization of the 106-bits resultant is carried out.

In normalized form the MSB of the number must be 1.

Therefore all the ‘0’ bits before the first ‘1’ bit are discarded.

Now the mantissa is in normalized form with a ‘1’ as MSB.

Now to extract the final 52-bits, denormalization is carried

out. This is done because the mantissa that is finally stored in

IEEE 754 format is not in the normalized form as the integer

part of the output is by default 1. So the first bit of the number,

i.e. 1, is discarded and the next 52 bits are stored as the

mantissa of the output, also discarding the remaining least

significant bits.

EXCEPTIONS

There are 5 exceptional cases defined by the IEEE 754

representation. Whenever any of these cases occur, it should

be represented by a flag.

i) Invalid Operation:

There are some operations which are invalid such as square

root of a negative number. The result of an invalid operation is

Not a Number (NaN). Whenever any invalid operation

occurs, it should be represented by NaN. A NaN value is

represented by setting all the bits of exponent to ‘1’ alongwith

a non-zero mantissa.

ii) Inexact Operation:

When the result of an operation cannot be defined exactly by

the available range of output, inexact operation is signaled.

This may occur due to a large exponent that cannot be defined

by the available bits.

iii) Division by zero:

During a division operation if the divisor is zero then the result

is not defined. This condition is signaled by a exception flag.

iv) Overflow:

When the result of an operation exceeds the range that can be

represented by the available exponent bits, an overflow is said

to have occurred. It should be signaled by an overflow flag.

v) Underflow: When a result is too small to be represented in

the floating point format, it is known as underflow condition.

It should be signaled by an underflow flag.

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.2, Issue No.8, pp : 776-779 1 Aug. 2013

IJSET@2013 Page 278

IV. BIST ARCHITECTURE

The general BIST architecture consists of a test pattern

generator, a device under test (DUT) and an optical response

analyzer (ORA). The test pattern generator generates several

patterns of inputs to test the device. The patterns generated by

the test pattern generator are provided to the device under test

(DUT) and its response to the test patterns is analyzed by the

optical response analyzer (ORA). The optical response

analyzer compares the output of the DUT with the expected

output and provides the results accordingly.

The test patterns generator generates patterns using a gate-

level representation of the design netlist. These patterns are

stored in tester memory and scanned into the circuit using

parallel scan chains. The chip input/output plays a major role

in determining the number of scan chains. Other than this

there are also some factors like the tester channels and on-chip

routing congestion which can have an impact on the number

of scan chains.

BIST adds an on-chip pattern generator and an on-chip result

compressor to the circuit. The former helps in feeding the scan

chains and latter helps in compressing the scanned out

responses. All those responses are compressed into a final

signature.

When a test pattern is applied to a circuit, the pattern data is

scanned out firstly. After scanning, clock cycles are applied to

it. The clock cycles can be one or more than one. Finally the

resultant data is scanned out.

Fig 1 BIST architecture

V. SYNTHESIS AND SIMULATION RESULTS

The BIST architecture is implemented on 64- bit double

precision floating point multiplier using XILINX ISE . It has

been mapped and routed on XILINX FPGA circuit of family

Spartan 3E XC3S500E. ModelSim is used for simulation

purpose. The implementation results are shown below. Fig.2

shows the RTL schematic of the BIST architecture. Fig.3

shows the RTL schematic of the circuit without implementing

BIST architecture.

Fig.2 RTL schematic of BIST architecture

Fig.3 RTL of 64-bit floating point multiplier

Fig.4 shows the simulation waveform of floating point

multiplier unit without implementing the BIST architecture

and Fig.5 shows the simulation waveform of the complete unit

with BIST architecture.

TEST PATTERN GENERATOR

DEVICE UNDER TEST (DUT)

OPTICAL RESPONSE ANALYZER

(ORA)

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.2, Issue No.8, pp : 776-779 1 Aug. 2013

IJSET@2013 Page 279

Fig.4 Simulation result of floating point multiplier

Fig.5 Simulation result of BIST architecture

VI. CONCLUSION

64-bit double precision floating point multiplier has been

successfully implemented using VHDL. The code is

synthesized using Xilinx ISE tool and Model Sim is used for

simulation purpose. The output of the floating point multiplier

has been verified with the help of BIST architecture. The

output of the device under test (DUT) is the same as the

expected output and the floating point multiplier unit is

working correctly. Various flags have been introduced in the

design to represent exceptional conditions such as positive

infinity, negative infinity, zero etc.

REFERENCES :

i. D.Bakalistx. Kavousianos, H. T. Vergos D. Nikolos And G. Piq.

Alexiou, “Low Power Built-In Self-Test Schemes for Array and Booth

Multipliers” Vlsi Design 2001, Vol. 12, No. 3, Pp. 431-448

ii. B. Fagin and C. Renard, “Field Programmable Gate Arrays and

Floating Point Arithmetic,” IEEE Transactions on VLSI, vol. 2, no. 3, pp.

365–367, 1994.

iii. Zhiquan Zhang Zhiping Wen ; Lei Chen “BIST Approach for

testing Embedded Memory Blocks in System-on-Chips” Testing and

Diagnosis, 2009. ICTD 2009. IEEE Circuits and Systems International

Conference 28-29 April 2009, pg no 1-3.

iv. N. Shirazi, A. Walters, and P.Athanas, “Quantitative Analysis of

Floating Point Arithmetic on FPGA Based Custom Computing

Machines,”Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM‟95), pp.155–162, 1995.

v. Jutman, A.; Tsertov, A.; Ubar, R. “Calculation of LFSR Seed and

Polynomial Pair for BIST Applications” Design and Diagnostics of Electronic

Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop16-18 April

2008.page no 1-4.

vi. Serdar S. Erdem ,Çetin K. Koç¸ “A Less Recursive Variant of

Karatsuba-Ofman Algorithm for Multiplying Operands of Size a Power of

Two”, 16th IEEE Symposium on Computer Arithmetic, 2003

vii. Shianling Wu; Furukawa, H.; Boryau Sheu; Laung-Terng Wang;

Hao-Jan Chao; Lizhen Yu; Xiaoqing Wen; Murakami, M. “Practical

Challenges in Logic BIST Implementation – Case Studies” Asian Test

viii. Rohit Sreerama, Paidi Satish, K Neelima. “An Algorithm for

variable precision based floating point multiplication”, proc International

Conference on Advances in Information Technology and Mobile

Communication, AIM 2012, page no-238-242

ix. John G. Proakis and Dimitris G. Manolakis (1996), “Digital

Signal Processing: Principles,.Algorithms and Applications”, Third Edition.

x. Xilinx Application Note by Peter Alfke “Efficient Shift Registers,

Lfsr Counters, And Long Pseudo-Random Sequence Generators” July 7,1996

(Version 1.1).

