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ABSTRACT 

In this paper a 64-bit double precision floating point 

multiplier is implemented. A BIST test pattern generator for 

double precision multiplier is proposed. Linear feedback 

shift registers are used to generate the test pattern. A 

comparator is used to compare the output response and the 

expected response. For the circuit to work correctly the 

output response must be the same as the expected response. 

Xilinx ISE is used to synthesize the circuit and ModelSim is 

used for simulation purpose. 
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I. INTRODUCTION 

BIST is a technique to test a circuit through built-in hardware 

functions. In BIST a part of the circuit is used to test the 

circuit itself. BIST helps in the testing and verification of the 

circuit without the requirement of any hardware verification 

language. Every device is required to go through testing to 

ensure proper working. The devices that are produced 

nowadays consist of heterogeneous components like 

processors, memories etc. So it’s not easy to test them. Also 

the design of the devices is mostly core based. Therefore the 

internal structures cannot be accessed. The technology used to 

manufacture devices is deep submicron technology. If there is 

a fault in such a device, it’s very complicated to detect. 

BIST provides solution to all these problems.  

Floating point multiplier requires complex calculation because 

the operands used consists of 64-bits each. When the 

calculation involved is as large and complex as in the case of 

floating point multiplier then the proper working of the device 

cannot be ensured. The device might produce the output at the 

required time but the output cannot be verified. So even if 

there is a fault in the circuit of the device it might go 

unnoticed. 

 

To solve this problem BIST architecture is used in the circuit. 

BIST architecture randomly generates a test pattern and 

applies it to the input of the device. Also the BIST architecture 

produces its own output, known as expected output, of those 

inputs. Both these outputs are compared with each other. To 

ensure proper working the outputs must match each other. If 

the outputs are same then a message is displayed regarding 

correct working of the floating point multiplier unit. In case 

the outputs are different, a message is displayed showing that 

the floating point multiplier is not working properly. 

II. 64-BIT DOUBLE PRECISION FLOATING 

POINT NUMBERS 

Double precision floating point numbers are 64-bit binary 

numbers. The 64-bits are divided into 3 parts- sign, exponent 

and mantissa. The 52 least significant bits (LSBs) are used to 

represent the mantissa of the number. The next 11-bits are 

used to represent the exponent of the number. The most 

significant bit (MSB) of the number is used as a sign bit to 

represent the sign of the number.  

 Sign bit ‘0’ indicates positive number. 

 Sign bit ‘1’ indicates negative number. 

 

 

           Sign     Exponent                  Mantissa 

 

III. FLOATING POINT MULTIPLIER 

Multiplication of two floating point numbers is a complex task 

and is carried out in a series of steps. Since a floating point 
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number consists of 3 parts- sign, exponent and mantissa, 

calculations for all the parts are carried out separately. 

a) Calculation of Sign  

The sign bit of the resultant is obtained by carrying out the ex-

or operation of the sign bits of the two operands. Sign bit ‘0’ 

represents a positive sign and sign bit ‘1’ represents a negative 

sign. 

b) Calculation of Exponent:  

The exponents of both the operands are represented in the 

IEEE 754 format, i.e., a bias of 1023 is added to both the 

exponents. To calculate the exponent of the resultant the bias 

of 1023 must be removed from the exponents. After removal 

of bias from the exponents, both are added to give the 

resultant exponent. This resultant exponent is in unbiased 

form. So to represent it in IEEE 754 format, it should be 

converted to the biased form by adding bias of 1023 to it. 

c) Calculation of Mantissa:   

Mantissa calculation is the most complex part of floating point 

multiplication. A 64-bit number contains 52-bit mantissa. The 

resultant mantissa is calculated by multiplying the mantissas 

of both the operands. But before the multiplication is carried 

out, the mantissas of both the operands need to be normalized. 

Normalization is done in order to ensure that either of the 

numbers to be multiplied is not zero. If any one of the 

numbers is zero than the resultant will be zero. If both the 

numbers are zero than the resultant will be undefined or Not a 

Number (NaN). Normalization is done by adding a ‘1’ as the 

MSB of the mantissa. By adding a ‘1’ as MSB, the possibility 

of the number being a zero is eliminated. After normalization, 

the number of bits in the mantissa is increased by one, so the 

normalized mantissa contains 53-bits. 

The next step after normalization is multiplication of the 

normalized mantissas. Two 53-bits mantissas are multiplied 

and a resultant of 106-bits is obtained. There are several 

different algorithms which can be used to carry out the 

multiplication of the mantissas. As the size of the mantissa is 

very large it is convenient to use an algorithm rather than 

multiplying directly. This 106-bits resultant cannot be stored 

directly into the output because of its size. The output 

mantissa must contain only 52-bits. To obtain 52-bits 

mantissa, normalization of the 106-bits resultant is carried out. 

In normalized form the MSB of the number must be 1. 

Therefore all the ‘0’ bits before the first ‘1’ bit are discarded. 

Now the mantissa is in normalized form with a ‘1’ as MSB.  

Now to extract the final 52-bits, denormalization is carried 

out. This is done because the mantissa that is finally stored in 

IEEE 754 format is not in the normalized form as the integer 

part of the output is by default 1. So the first bit of the number, 

i.e. 1, is discarded and the next 52 bits are stored as the 

mantissa of the output, also discarding the remaining least 

significant bits. 

EXCEPTIONS  

There are 5 exceptional cases defined by the IEEE 754 

representation. Whenever any of these cases occur, it should 

be represented by a flag. 

i) Invalid Operation: 

There are some operations which are invalid such as square 

root of a negative number. The result of an invalid operation is 

Not a Number (NaN). Whenever any invalid operation 

occurs, it should be represented by NaN. A NaN value is 

represented by setting all the bits of exponent to ‘1’ alongwith 

a non-zero mantissa. 

ii) Inexact Operation: 

When the result of an operation cannot be defined exactly by 

the available range of output, inexact operation is signaled. 

This may occur due to a large exponent that cannot be defined 

by the available bits. 

iii) Division by zero: 

During a division operation if the divisor is zero then the result 

is not defined. This condition is signaled by a exception flag. 

iv) Overflow:  

When the result of an operation exceeds the range that can be 

represented by the available exponent bits, an overflow is said 

to have occurred. It should be signaled by an overflow flag. 

v) Underflow: When a result is too small to be represented in 

the floating point format, it is known as underflow condition. 

It should be signaled by an underflow flag. 
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IV. BIST ARCHITECTURE 

The general BIST architecture consists of a test pattern 

generator, a device under test (DUT) and an optical response 

analyzer (ORA). The test pattern generator generates several 

patterns of inputs to test the device. The patterns generated by 

the test pattern generator are provided to the device under test 

(DUT) and its response to the test patterns is analyzed by the 

optical response analyzer (ORA). The optical response 

analyzer compares the output of the DUT with the expected 

output and provides the results accordingly.  

The test patterns generator generates patterns using a gate-

level representation of the design netlist. These patterns are 

stored in tester memory and scanned into the circuit using 

parallel scan chains. The chip input/output plays a major role 

in determining the number of scan chains. Other than this 

there are also some factors like the tester channels and on-chip 

routing congestion which can have an impact on the number 

of scan chains. 

BIST adds an on-chip pattern generator and an on-chip result 

compressor to the circuit. The former helps in feeding the scan 

chains and latter helps in compressing the scanned out 

responses. All those responses are compressed into a final 

signature. 

 

When a test pattern is applied to a circuit, the pattern data is 

scanned out firstly. After scanning, clock cycles are applied to 

it. The clock cycles can be one or more than one. Finally the 

resultant data is scanned out. 

 

 

 

 

 

 

 

Fig 1  BIST architecture 

V. SYNTHESIS AND SIMULATION RESULTS 

The BIST architecture is implemented on 64- bit double 

precision floating point multiplier using XILINX ISE . It has 

been mapped and routed on XILINX FPGA circuit of family 

Spartan 3E XC3S500E. ModelSim is used for simulation 

purpose. The implementation results are shown below. Fig.2 

shows the RTL schematic of the BIST architecture. Fig.3 

shows the RTL schematic of the circuit without implementing 

BIST architecture.  

 

Fig.2 RTL schematic of BIST architecture 

 

Fig.3 RTL of 64-bit floating point multiplier 

Fig.4 shows the simulation waveform of floating point 

multiplier unit without implementing the BIST architecture 

and Fig.5 shows the simulation waveform of the complete unit 

with BIST architecture. 

 

TEST PATTERN GENERATOR 

DEVICE UNDER TEST (DUT) 

OPTICAL RESPONSE ANALYZER 

(ORA) 
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Fig.4 Simulation result of floating point multiplier 

 

Fig.5 Simulation result of BIST architecture 

 

VI. CONCLUSION 

64-bit double precision floating point multiplier has been 

successfully implemented using VHDL. The code is 

synthesized using Xilinx ISE tool and Model Sim is used for 

simulation purpose. The output of the floating point multiplier 

has been verified with the help of BIST architecture. The 

output of the device under test (DUT) is the same as the 

expected output and the floating point multiplier unit is 

working correctly. Various flags have been introduced in the 

design to represent exceptional conditions such as positive 

infinity, negative infinity, zero etc.  
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