
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.3 Issue No.6, pp : 765-766 1 June 2014

IJSET@2014 Page 765

Clone Removal V/S Clone Avoidance

Ritu Garg, Rajesh Bhatia

Deenbandhu Chhotu Ram University of Science and Technology, Murthal

Punjab Engineering College University of Technology,Chandigarh

Ritugarg.engg@gmail.com, rbhatiapatiala@gmail.com

Abstract -- Cloning occurs in software when there is

redundancy in it in form of any similarity. So, the clones need

to be removed or it can be avoided from the software in order

to mitigate the negative impacts of clones. In this paper we

have studied the various factors that affect the decision of

avoidance or removal of clones for handling them.

Keywords -- Software clones, Code clones, Model clones,

Software system

I. Introduction

The clones [1] can occur as the redundant component in form of

fragments in the software.During the software development

process there is a high probability of cloning due to time, budget

constraints or programmer limitations [2, 11]. Mainly two types

of clones exist during software development life cycle [14]:-

1. Code clones [3] 2. Model clones [4]

The code clones are the redundant component that exists in the

implementation phase during coding the software. This stage

occurs after designing phase. There are four types of code clones

– exact code clone, renamed or modified code clone, near miss

code clones and semanticcode clones [1].

Similarly the model clones are the redundant component that

exists in the design phase during the software designing after

feasibility study and before implementation phase. Similar to

code clones these can also be divided in four categories- exact

model clone, renamed or modified model clone, near miss model

clones and semanticmodel clones [5].

These clones if present in the software can lead to update

anomalies [6, 7] and change at one place needs to be changed at

all the other duplicate components. Due to this, cloning can

increase the cost and time [7, 12] associated with the software

under construction as the risk involved with the

softwareincreases. In order to decrease the impacts of cloning,

the clones need to be identified and removed [13] but it is not

always possible that we can remove these clones. So, they can be

avoided to mitigate its effects. The detection process must be

followed by either avoidance or removal of clones.

Figure 1: Different phases in clone handling

2. Selection Technique

The selection of clone avoidance or removal depends on the

following factors:-

Nature of software :- A software with many reusable

components allow more reusing and less cloning so the clones

can be avoided easily in this case while the software with less

reusable components allows less reusing and more cloning so,

the clones should be removed. Thus, the amount of reusing in

the software determines the clone avoidance or clone removal

process.

A. Independent component: - Between two dependent

systems during the clone detection phase the clones are

represented in form of clone pairs. These clone pairs are

analyzed if they can exist as an independent component that is

any type of internal dependence to and fro from the component

is prohibited. If the fragment represented in form of clone pairs

has high cohesion and is in less coupling with other components

of the software then only it can exist as an independent

component. If clone pair can be represented in form of

independent component then clones must be removed otherwise

the clone should be avoided.

B. Cost/Profit Metric: - This metric is based on the

assumptions where cost represents the money which will be

involved in removing the clones from the software while the

profit represents the benefits that will be provided on removing

of these clones. The value of profit parameter can be decided on

basis of current software between which the clones have been

detected while the value of cost parameter can be provided by

the previous similar software where such similar type of clone

pairs have been removed.

If the value of cost/profit metric is positive so the cost for

removals of these clone pairs would be more than the profit that

can be achieved by removing them. Therefore the clones must be

avoided to develop or maintain the software within strict cost

and time schedule. If the value of cost/profit metric is negative

so the cost for removals of these clone pairs would be less than

the profit that can be achieved by removing them. Therefore the

clones must be removed to develop or maintain the software

within strict cost and time schedule. Here removal would be

beneficial for the software development life cycle.

Using all these three metrics, we can differentiate between the

clones that should be removed from the software.

mailto:rbhatiapatiala@gmail.com
mailto:rbhatiapatiala@gmail.com

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.3 Issue No.6, pp : 765-766 1 June 2014

IJSET@2014 Page 766

3. Results (How clones can be removedbetween dependent

systems using independent component approach)

The clone pairs in form of independent component can be

removed from the software’s and put into the library as a library

candidate so that it can be reused by current software

Figure 2: Software’s design before clone removal process

and for the future use. So, in current software from which clone

pairs were detected reuses that library candidate in all

occurrences. It includes both original occurrences and all

duplicate occurrences. It must be carefully determined that the

size of independent component should be large enough

otherwise making every very small component and then reusing

could increase the effort, time and cost of the software which is

not desirable.

Figure 3: Software’s design after clone removal process

4. Conclusions

In this paper we have identified the clones that should be kept in

the software by avoiding them. Also it has identified the clones

that should be deleted from the software by removing them. It is

also studied how these clones can be removed and why there is a

need for avoidance or removal arises.

References
i. C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection

Research, Technical Report 2007-541, Queen’s University at Kingston Ontario,
Canada, 2007, p. 115.

ii. M. Kim, L. Bergman, T. Lau, D. Notkin, An Ethnographic study of

copy and paste programming practices in OOPL, in: Proceedings of 3rd
International ACM-IEEE Symposium on Empirical Software Engineering

(ISESE’04), Redondo Beach, CA, USA, 2004, pp. 83–92.

iii. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison

and evaluation of clone detection tools, IEEE Transactions on Software

Engineering 33 (9) (2007) 577–591.

iv. F. Deissenboeck, B.Hummel, E. Juergens, B. Schätz, S. Wagner, J.
Girard, S. Teuchert, Clone detection in automotive model-based development,

in:Proceedings of 30th International Conference on Software Engineering

(ICSE’08), Leipzig, Germany, 2008, pp. 603–612.
v. H. Storrle, Towards clone detection in UML domain models, in:

Proceedings of European Conference on Software Architecture (ECSA’10),

Copenhagen, Denmark, 2010, pp. 285–293.
vi. R. Koschke, Frontiers of software clone management, in:

Proceedings of Frontiers of Software Maintenance (FoSM’08), Beijing, China,

2008, pp. 119– 128.
vii. J. Mayrand, C. Leblanc, E.M. Merlo, Experiment on the automatic

detection of function clones in a software system using metrics, in: Proceedings
of the 12th International Conference on Software Maintenance (ICSM’96),

Monterey, CA, USA, 1996, pp. 244–253.

viii. C.J. Kapser, M.W. Godfrey, Supporting the analysis of clones in
software systems: a case study, Journal of Software Maintenance and Evolution:

Research and Practice 18 (2) (2006) 61–82.

ix. B. Baker, On finding duplication and near-duplication in large
software systems, in: Proceedings of the 2nd Working Conference on Reverse

Engineering (WCRE’95), Toronto, Ontario, Canada, 1995, pp. 86–95.

x. B. Hummel, E. Juergens, L. Heinemann, M. Conradt, Index-based
code clone detection: Incremental, distributed, scalable, in: Proceedings of the

26th IEEE International Conference on Software Maintenance (ICSM’10),

Timisoara, Romania, 2010, pp. 1–9.
xi. D Rattan, R Bhatia, M Singh, Model clone detection based on tree

comparison, in: India Conference (INDICON), 2012 Annual IEEE, pp.1041-

1046.
xii. D. Rattan, R. K. Bhatia, M. Singh: Software clone detection: A

systematic review, in: Information & Software Technology, Volume- 55, 2013,

pp. 1165-1199
xiii. Y. Sharma,R. Bhatia,R . K .Tekchandani ,Thesis on Hybrid technique

for object oriented software Clone detection ,in Electronic Theses &

Dissertations @ TU, 2011.
xiv. R.Garg,R. Bhatia,Code Clone v/s Model Clones: Pros and Cons,

in:International Journal of Computer Applications (IJCA),Volume 89 – No 15,

2014, pp. 20-22

http://dspace.thapar.edu:8080/dspace/handle/123456789/14
http://dspace.thapar.edu:8080/dspace/handle/123456789/14
http://dspace.thapar.edu:8080/dspace/handle/123456789/14

