
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 Volume No.3 Issue No.6, pp : 738-742 1 June 2014

IJSET@2014 Page 738

Improvement and Implementation of Software Quality by Using Software

Metrics

Dileram Bansal, Ajit Saxena, Gajendra Singh

Department of Computer Science and Engineering,

Sri Satya Sai Institute of Science and Technology, Sehore (M.P) India

dileram81@gmail, saxena.ajit2007@gmail.com

Abstract: Without the software development and software

product knowledge it’s very complicated to understand,

keep away from improvement in the quality of software.

There should be some dimension process to forecast the

software development, and to appraise software products

and its quality. In This paper provides a brief view on

Software Metrics, Software Quality and Software Metrics

techniques that will forecast and evaluate the specified

superiority factors of software which will relate to quality.

It additional discusses regarding the Quality as given

through the principles like ISO, principal elements

necessary for the Software Metrics and Software Quality as

the measurement method to forecast the Quality in the

Software. Java source code evolution are using for Software

Metrics, like Defect Metrics, Size Metrics, and Complexity

Metrics. Presented experiments are proving that, the

software quality can be analyzed, observed, and enhanced

through software metrics usage.

Keywords: Software Product Metrics, Software Metrics,

Quality, Software Code, Software Product Metrics, Software

Quality Metrics, , Software Metrics Usability

Introduction: As we know that Quality in the software is

prime issues to development of any software product and all

most all company are working toward in this era. Software

market are increasing rapidly and software users are demanding

good quality product for this they are ready to pay higher cost

With this amplify in prospect and ramble in the software field,

countries and multinational companies are ongoing to spend

great deal of currency, effort and time to improving the

software quality [4]. The number of errors and bugs occurred

throughout the process of software development which has to

be found in the early on of development stage for good quality.

If the errors or bug are found behind schedule, then the

corrective accomplishment will be very costly [6, 9]. Software

companies will be significantly benefited if there is method to

plan and forecast the software development scheduled. The

process or method of measuring the software is called as

software metrics. Software metrics can be defined as,

“Mathematical measure of software that is responsive to

differences in software characteristics[10]. It gives us a

quantitative measure of a characteristic which the body of

Software exhibits.Its aspire is to development process or

method of software by controlling the various aspects[1,2] .So

it can be said that metrics are used to enhance the ability to

recognize , manage and quantify the essential constraint during

its development or it can also be said that dimension of

software product and the method or process by which it is being

developed.

The information gained from software metric can be helped to

control and manage the process of development, which will

escort to enhancement in the outcome of the software product.

Good software metrics should have the capability to forecast

the software development method or process. The outcome

obtained from the software metrics can be helped to point out,

which portions of software code have to modified or changed

[12]. Software metrics are considered as a approach to access

the quality of big system [13] and have been functional to

object oriented systems as well [7, 11, 15]. IEEE prints some

standard for the software quality metrics [17], which is help to

the development.Main Motive was to provide a methodical

approach for the establishment of quality metrics in software

through implementing, analyzing and identifying with

validating the software quality metrics of a system. The

development of metrics as given by IEEE [17] is given are as

follow.

 Software Quality metrics Identification

 Software Quality metrics Implementation

 Software Quality Activity

 Analyzing the results of metrics

 Software Quality Requirements Establishment

Software Quality: It’s very difficult to define the word of

quality not for the reason that of the difficulty to achieve, but

because of the difficulty to explain the term.Quality has various

meanings for various users. For example if we yet to be paid a

vehicle, then will describe the quality as ruggedness of the

vehicle, or the fastness of the vehicle, or the looks of the

vehicle. So definition of quality varies with the views of the

user using or it can also be said as the views of the beholder.

When it comes to software, the beholder is, the person using the

software, or the person interacting with the software, when it is

executed .That is, the person will be satisfied when the software

does what he or she wants to do, when it is purchased. The

software purchased includes the code, but the users will only be

interested in the working and service offered such as the user

manual, help and support .In case of software developed for the

internal use in company or in an organization, the quality is

about the performance of the software whenever the user asks

mailto:samidhad2000@gmail

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 Volume No.3 Issue No.6, pp : 738-742 1 June 2014

IJSET@2014 Page 739

the development organization to produce it. Quality cannot be

defined by the technical excellence alone [18].

Software Quality Standards: There are few set of quality

standards pertinent for the companies which involved in

development of software. The defined standards should be met

by the companies involved in development of software [8]. Few

standard Companies responsible for giving the standards are

[15].

 ANSI: American National Standards Institute.

 ISO: International Organization for Standardization

 IEEE: Institute of Electrical and Electronics Engineers

 EIA: Electronic Industries Association.

 IEC: International Electro technical Commission

 AIAA: American Institute of Aeronautics and

Astronautics.

Various standard organizations have various definition for their

quality standards. ANSI is the simply organization that does not

build standards but it approves the standards.The usage of

software metrics will decrease the subjectivity during the

evaluation of software quality and it gives decisions making

ability about the software quality [12, 13].

Software Metric: Software Metrics can also be helped to

distinguish the duplicated code which can afterward be

uninvolved by applying suitable refactoring [11]. As we have

discussed previously, software metrics is alienated in to two

parts: software process metrics and software product metrics.

Software product metrics is used to assess the final products of

the software i.e design documentation or software code.

Software process metrics is used to assess the software

development process, ie. Overall development time and

Methodology Type.Software quality requirements

establishment is the primary level of software metrics and its

begins with the all the attributes that describe the software

quality requirements should be settled through the user-oriented

views and management are then assigned to the attributes [17].

Figure 1: Software Metrics Model

Software metrics measuring software products is various for

various paradigms. Figure 1 is showing the general view of

software metrics model.

Product Metric: Product metrics are usually derivative from

the system itself [14]. The metrics information of this type can

be composed after exact time intervals. The preliminary work

in product metrics deals with the attributes of the source code.

It’s forever better to have metric information in the preliminary

stages of software development because it will raise the

probability of controlling the Software development process

with results. Figure 2 is showing the general view of software

product metrics model.

Figure 2: Software Product Metric Model

Size: Size software metric is controversial metric for software

but for the most part its used [14, 15]. It becomes controversial

for the reason that there is no ideal assessment for size, which

everybody agrees on. The size metrics is an stab to measure the

software size, and the broadly used size metrics is Lines of

Code (LOC). The size metrics has some deficiency for the

reason that it cannot be measured until the method or process of

software development is completed. Some Halstead’s metrics

are also used to assess the size metrics, but they are not

discussed hear. Lines of Code (LOC) are one of the mainly

used metrics for the program size [11]. LOC is calculated

through the total number of lines of code in a function. The

total number lines can be with or without the blank and

comment lines [30]. The decision to include the blank and

comment lines will be of the developers. The size metrics can

be extended to measure the size of a system by summing all the

LOC metric values of all the functions in the system. The

calculated values of lines of code metrics is shown in results

section (Table 2 to Table 6).

Complexity: Complexity software metrics is measured as the

measure of control flow in a function. The complexity software

metrics is used to measure the relation between the multifarious

codes and its failures. The best example of Complexity

software Metrics is Cyclomatic Complexity Metrics.

Cyclomatic Complexity metrics was proposed by McCabe in

the year 1976. It is a measure derived from the product itself

[17]. It is helped to assess the control flow complexity in a

function. It is also considered as one of the internal metrics, as

it built early warning from the collection of the collection of

internal metrics [17]. The measured values of cyclomatic

complexity metrics can be calculated numerically or can be

represented in figures. There are tools for representing the

cyclomatic complexity in figures. The calculated cyclomatic

complexity is shown in results section

Defect: It is an external measure of the system derived from the

external assessment of the behavior of the system [16]. It is

used to measure the number of defects in a software product

and the data required for the metrics is collected from the

product itself. So, it can be said that it quantifies the product

metrics. There has been no particular procedure for the

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 Volume No.3 Issue No.6, pp : 738-742 1 June 2014

IJSET@2014 Page 740

measurement of number of defects. One of the alternative

methods for the defects metrics is to find number of errors

during code inspection.

Method: The Method used in this paper consists of both

investigation and practical approach. The investigation on

Software Quality Software Quality through case study of

different journals, text books, research papers, online material

and by the usage of standards such as ISO. Some of the

Software Quality Metrics, such as Product metrics through

journals, text books, research papers, online material and by the

usage of standards such as IEEE. The practical approach is on

Software Product Metrics, such as: Lines of Code: The Lines of

Code metrics can be found by using the integrated development

environment (for example: eclipse) or by running code in

compiler, which gives the total number of lines and in case of

any error in the code, it also gives the lines of errors.

Cyclomatic Complexity Metrics: It can be found by the using

the software Cyvis[37], in which the metrics to find the

complexity, total number of methods and the number of lines in

each method is predefined. Defect Metrics: It is the total

number of errors found during the execution of program.

RESULTS

Total number of line which is executable in the code can be

calculated with the counting of the line in a code. i.e., not

including the commentary lines. The results are further

discussed in discussions section.

Table 2: Summary of Lines of Code Metrics
Number of

Classes

Class name Lines of Codes Number of

methods

1 Class 1 435 14

2 Class 2 423 14

3 Class 3 67 4

4 Class 4 47 4

Table 3: Lines of Code Metrics for Class 1 (Summary)
Number of

Methods

Method Lines of Codes

1 Run Server 93

2 Get Stream 16

3 <init > 61

4 Process Connection 63

5 Display Image 6

6 Send Data 21

7 Set text field editable 4

8 Wait for Connection 45

9 Access $000 8

10 Access $100 3

11 Access $200 3

12 Close Connection 15

Table 4: Lines of code Metrics for Class 2 (Summary)
Number of

methods

Methods Lines of Codes

1 Wait for Connection 24

2 Process Connection 33

3 Run Client 47

4 Send Data 27

5 <init > 43

6 Display Image 6

7 Close Connection 23

8 Get Stream 29

9 Access $000 7

10 Access $100 3

11 Access $200 3

12 Set text field editable 6

Table 5: Lines of code Metrics for Class 3 (Summary)

Number of

Methods

Methods Lines of Codes

1 <init> 5

2 Main 37

Table 6: Lines of code Metrics for Class 4 (Summary)

Number of

Methods

Methods Lines of Codes

1 <init> 3

2 Main 18

Cyclomatic Complexity: With the help counting the total

number of methods we can calculate to the cyclomatic

complexity of every class, and the complexity implicated

throughout its control flow. Cyclomatic complexity

experiments results are shown in Figure 3, and Figure 5 - 8 are

showing each class cyclomatic complexity.

Figure 3: Cyclomatic Complexity

Figure 4: Color Coding for Cyclomatic

Complexity Metrics [37]

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 Volume No.3 Issue No.6, pp : 738-742 1 June 2014

IJSET@2014 Page 741

Figure 5: Cyclomatic Complexity for Class 1

Figure 6: Cyclomatic Complexity for Class 2

Figure 7: Cyclomatic Complexity for Class 3

Figure 8: Cyclomatic Complexity for Class 4

Summary: Any metrics cannot describe to the quality or can

be correlated to the quality. However, they can be use to

improvement of the quality. They can be used to describe the

parameters that influence the quality and also the changes that

can be prepared to get better the quality. The other major

advantages of these metrics are that, they can be used to

generate the test or experiment cases for software testing. They

also supply us with the data like the total number of lines not

comment line in the code, the most multifarious piece of code

and also the total number of process or methods contain in the

code. Every metrics provides us with exact code information.

The lines of code metrics signify the size or length of program

and also the total number of methods or process implicated in

the program. The results (Experiment) of the Lines of Code

Metrics are discussed below: summary with related to source

code of the java in table 3.

It consists of 4 classes and the metrics for lines of code for each

is calculated. The number of methods involved in each class is

also calculated. By summing the total number of lines for each

code, the total size of the system can be found. Table 3 to table

6 gives the summary for Class 1, class 2, class 3 and class 4.

The usage of this metrics will reduce the subjectivity by

providing the total number of lines in each class and the

number methods present in it. It makes the software more clear

and visible. The lines of code for each class can be cross

checked by comparing it with summary of classes given in

Table 3, Table 4, Table 5, and Table 6. Cyclomatic complexity,

apart from providing us with the complexity in each and every

method involved in the code, also provides us with the flow of

complexity i.e., structural complexity. It also indicates how

complicated the flow is in a function and also indicates how

many test cases are needed to perform the basis path testing on

the function. The results of Cyclomatic Complexity Metrics are

discussed below: Figure 4 shows the cyclomatic complexity for

java source code. As discussed in lines of code metrics, it

consists of 4 classes and flow complexity is shown in Figure 4.

The vertical bars represent the classes, and it is from left to

right. The horizontal bars represent the method involved in

each class, and it is from top to bottom. The colors shaded in

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 Volume No.3 Issue No.6, pp : 738-742 1 June 2014

IJSET@2014 Page 742

each method represent the cyclomatic complexity of that

method. The meaning of the color and its level of complexity is

shown in Figure 4. The method with blaze orange color will

have the highest cyclomatic complexity, and its value will be

greater than or equal to 7. Blue color represents medium

cyclomatic complexity with its value ranging between 5 and 9.

Red color is for low cyclomatic complexity and it will range

between 0 and 5. As there has been no interfacing in the java

source code, interfacing is not being discussed. But its color

representation is shown Figure 4. Figure 5 shows the

cyclomatic complexity for class 1. From Figure 5, it can be said

that the first two methods divided by horizontal lines have the

moderate complexity, and the ten methods below it have the

low level of complexity. Figure 6 shows the cyclomatic

complexity for class 2. From Figure 6, it can be said that the

first method in this class has the highest complexity, followed

by the second method with medium complexity, and the

remaining ten methods have the low complexity. Figure 7

shows the cyclomatic complexity for class 3. From Figure 7, it

can be said that the two methods in it have the low level of

complexity. The value of the complexity of particular method

can be viewed at the bottom of Figure 5, Figure 6, Figure 7, and

Figure 8. The value of complexity can also be found by placing

the arrow over the particular method as shown in Figure 7.

Defect metrics does not have particular procedure to measure

the total number of defects in the system. The alternative

method is to calculate some of the characteristics of the code.

As the java source code has been provided after its

development, only one characteristic of it has been calculated

i.e., the total number of errors during code inspection. The java

source code has been inspected and the total number of errors

during inspection has been found.

CONCLUSION

In this Paper we have discussed about quality of the software,

metrics of software and various application and standard for

those.

For the results point of view we have used java code and its

evaluated on the pre-defined or pre-selected metrics and noted

down the value of different metrics. From the presented values

of metrics i.e., number of errors, cyclomatic complexity and

lines of code. From these metric it’s clear that we can improve

the quality of the software and easily identify area where need

to concentrate during development of the software.

REFERENCES:

i. Konstantinos Stroggylos, Diomidis Spinellis: “Refactoring – Does it

improve software quality?”. IEEE publications, Fifth International Workshop
on Software Quality 2007.

ii. software quality?”. IEEE publications, Fifth International

Workshop on Software Quality 2007.
iii. Dr. James A. Bednar and Dr. David Robertson: “Software Quality

and Standards”. SEOC2 Spring 2005, Quality/Standards.

iv. Demeyer and S. Dueasse. Mettles: “Do they really help? In Proc.
Languages at Modules and Objects”. Hermes Science Publication, pages 69-82

2004
v. Evans, Isabel: “Achieving Software Quality Through

Teamwork”.Norwood, MA, USA: Artech House, Incorporated, 2004.

vi. Kitchenham, B: “ The Failure of Quality, Proceedings of the Second

Workshop on Software Quality”. ICSE 2004.

vii. Chulani, S, Ray, B., Santhanam, P. and Leszkowicz, R.:“Metrics for

Managing Customer View of Quality”, IEEE Metrics conference, Sep. 2003
viii. Tom Mens and Serge Demeyer: “ Future Trends in Software

Evolution Metrics”. ACM publications 2002.

ix. O'Regan and Gerard: “Practical Approach to Software Quality”.
Secaucus, NJ, USA: Springer-Verlag New York, Incorporated, 2002

x. Jeffrey Voas: “ A New Generation of Software Quality

Conferences”, IEEE publications, IEEE Software January/February 2000.
xi. Wei li: “ Software Product Metrics – Using them to Quantify Design

and Code Quality”. IEEE publications, December 1999/ January 2000.

xii. N. Fenton and S. L. Pfleeger: “Software Metrics: A Rigorous and
Practical Approach”. International Thomson Computer Press, London, UK,

second edition, 1997.

xiii. Wei Li and Harry Delugach: “Software Metrics and Application
Domain Complexity”. Computer Science Department The University of

Alabama in Huntsville Huntsville, AL 35899, IEEE publications 1997.

xiv. B. Lagufi, D. Proulx, E. M. Merlo, J. Mayrand, and J. Hudepohl:
“Assessing the benefits of incorporating function clone detection in a

development process”. IEEE Computer Society Press, 1997.

xv. ISO/IEC: "DIS 14598-1 Information Technology – Software Product
Evaluation". ISO 1996.

xvi. McCabe, Thomas J., and Schulmeyer, G. Gordon: “The Pareto

Principle Applied to Software Quality Assurance, in The Handbook of Software
Quality Assurance”, Schulmeyer, G. Gordon and McManus, James I., eds.,

New York: Van Nostrand Reinhold Company, Inc., 2nd ed., 1992.

xvii. McCabe, T. J.: "A Complexity Measure". IEEE Transactions on
Software Engineering, Vol. 2, No. 4, pp. 308-320, 1976.

