
International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.3, Issue No.3, pp : 250-252 1 March 2014

IJSET@2014 Page 250

A Numerical Simulator for Solving Ordinary Differential Equations

B. K. Datta, N. Rahman & R. C. Bhowmik

Department of Mathematics, Pabna University of Science and Technology.

bimaldu@gmail.com, nl.nizhum@gmail.com

& rajcumath@yahoo.com

Abstract

Numerical differential equations studies the methods for

finding numerical approximations to the solutions of

differential equations, occur in many scientific disciplines,

for instance in physics, chemistry, biology, and economics.

Because of its various applications, this is often viewed as

a discipline in and of itself. In this paper we develop a

numerical simulator for solving ordinary differential

equations (ODEs). This simulator is incorporated with a

combination of Euler, modified Euler and Runge-Kutta

second and fourth order methods.

1. Introduction

Very often the differential equations appearing in physical

problems cannot be solved analytically. Thus it becomes

imperative to discuss their solutions by numerical methods.

In numerical method, we do not proceed in the hope of

finding a relation between variables but we find the

numerical values of the dependent variables for certain

values of independent variables
[i]

.

The process of finding a derivative is called differentiation.

The modern development of differentiation is usually

credited to Isaac Newton (1643–1727) and Gottfried Leibniz

(1646–1716), who provided independent and unified

approaches to differentiation and derivatives
[ii]

. In numerical

analysis, numerical differentiation describes algorithms for

estimating the derivative of a mathematical function or

function subroutine using values of the function and perhaps

other knowledge about the function. Isaac Newton (1642-

1727), Joseph Raphson (1648-1715), Leonhard Euler (1707-

1783), Joseph Lagrange (1736-1813), Carl David Tolme

Runge (1856-1927), Martin Wilhelm Kutta (1867-1944),

George Dantzig (1914-2005) and so on have developed the

numerical differentiation.

Programming language C is very flexible and powerful. It

was originally designed in the early 1970s. It allows us to

maximum control with minimum command. It is recognized

worldwide and used in a multitude of applications especially

in Numerical solution of Differential Equations. Along with

other numerous benefits, we have used programming

language C in this paper.

The outline of this paper is as follows: Section 2 contains

the description of the existing methods of numerical

differential equations with methodology. In Section 3, we

develop a numerical simulator, using the programming

language C, which gives us the solution of an ordinary

differential equation simultaneously regarding four popular

existing methods namely Euler, modified Euler, Runge-

Kutta second and fourth order. Moreover, the technique

identifies the method that gives the best solution comparing

with possible exact solution of the problem. We devote

Section 4 to a trial of the simulator for a specific problem.

Conclusions are given at the end at Section 5.

2. Existing methods

We give a brief description of the existing methods of

numerical differential equations like Euler, modified Euler,

Runge-Kutta second and fourth order in this section with

their methodology.

2.1 Euler method

In mathematics and computational science, the Euler

method is a first-order numerical procedure for solving

ODEs with a given initial value. It is the most basic explicit

method for numerical ODEs.

We consider the differential equation
[iii]

),(yxfy  (1)

with the initial condition 00)(yxy  (2)

Suppose that we wish to solve the equation (1) with (2) for

the value of y at rhxxr  0 (...,3,2,1r).

Integrating (1) with respect to x from 0y to 1y and 0x to

1x , we get

dxyxfyy

x

x


1

0

),(0 (3)

Assuming that),(),(00 yxfyxf  in 10 xxx  , this

gives Euler’s formula

),(0001 yxfhyy  [for hxx  0] (4)

Similarly for the range 21 xxx  , we have

dxyxfyy

x

x


2

1

),(11

mailto:bimaldu@gmail.com
mailto:nl.nizhum@gmail.com
mailto:rajcumath@yahoo.com
http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Gottfried_Leibniz
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Mathematical_function
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations

International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.3, Issue No.3, pp : 250-252 1 March 2014

IJSET@2014 Page 251

Substituting),(11 yxf for),(yxf where 21 xxx  ,

we have),(1112 yxfhyy  [since hxx  12] . And

proceeding in this way, we obtain the general formula

),(1 nnnn yxfhyy  , ...,2,1,0n

2.2 Modified Euler’s method

Integrating (3) by means of trapezoidal rule to obtain

)],(),([)2/(110001 yxfyxfhyy  (5)

We thus obtain the iterative formula

)],(),()[2/()(

11000

)1(

1

nn yxfyxfhyy 
;

...,2,1,0n (6)

Where
)(

1

ny is the nth approximation to 1y . The iterative

formula (6) can be started by choosing
0

1y from Euler’s

formula),(000

0

1 yxfhyy 

2.3 Runge-Kutta method (second order)

Substitute),(0001 yxfhyy  on the right side of

equation (5), we obtain

)],([)2/(000001 fhyhxffhyy  (7)

Where),(000 yxff  and hxx  01 .

Now set 01 fhk  and),(1002 kyhxfhk  so

that equation (7) becomes])[2/1(211 kky  .

This is known as Runge-Kutta second order formula.

2.4 Runge-Kutta method (fourth order)
[iv]

We mention the fourth order formulae defined by

4433221101 kWkWkWkWyy  (8)

Where

),(001 yxfhk 

),(100002 kyhxfhk  

),(11110103 kkyhxfhk  

),(3122120204 kkkyhxfhk   (9)

Where the parameters have to be determined by expanding

both sides of (8) by Taylor’s series and securing agreement

of terms up to and including those containing
4h . The

choice of the parameters is, again arbitrary and we have

therefore several fourth order Runge-kutta formulae. If for

example we set 2/1100   , 12  ,

2/)12(1  , 02  , 2/)12(1  ,

2/12  , 2/)12(1  , 6/141 WW ,

23/)12(2 W and 23/)12(3 W , We

obtain the method of Gill, whereas the choice

2/110  , 2/110  , 0221   ,

112  , 6/141 WW and 6/232 WW leads

to the fourth order Runge-Kutta formulae, whereas

),(001 yxfhk 

)2/,2/(1002 kyhxfhk 

)2/,2/(2003 kyhxfhk 

),(3004 kyhxfhk 

Consequently,)2)(6/1(432101 kkkkyy 

3. Algorithm
[vi]

We here give the algorithm that can solve differential

equation numerically regarding four methods- Euler,

modified Euler, Runge-Kutta second and fourth order

simultaneously. Moreover, it will ensure which method

gives the best solution with comparing exact solution.

INPUT: function),(yxf , initial condition),(00 yx ,

interval h , value of x , direct result r .

Step-1: Set hxxn /)(0 , 000 yy  , 0yyoe  ,

002 y , 004 y ,),(000001 yxfhyy 

Step-2: Set 1i

Step-3: While ni  repeat Step-4 to step-7

Step-4: Set 1j

Step-5: While ij  repeat step-10

Step-6: Set hxx  01 ,

),(),()2/1(11000010 yxfyxfhyy  , 101 yy 

Step-7: Set),(0001 eee yxfhyy  ,

),(04011 yxfhk  ,

)2/,2/(1104022 kyhxfhk  ,

)2/,2/(2204033 kyhxfhk  ,

),(3304044 kyhxfhk  ,

6/)22(443322110441 kkkkyry  ,

),(0201 yxfhk  ,),(10202 kyhxfhk  ,

2/)(210221 kkyry  , ee yy 10  , 1000 yy  ,

4104 ryy  , 2102 ryy  , nxx 0 .

Step-8: Set

rya e  1 , ryb  10 , rryc  21 ,

rryd  41

International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 Volume No.3, Issue No.3, pp : 250-252 1 March 2014

IJSET@2014 Page 252

 If (ba  and ca )

 If (da )

 ey1

 Else

 41ry

If (ab  and cb)

 If (db )

 10y

 Else

 41ry

If (ac  and bc )

 If (dc )

 21ry

 Else

 41ry

Output: 21101 ,, ryyy e and 41ry with message which method

gives best solution.

4 Findings

We are now offering a trial of the simulator for the

numerical differential equation y
dx

dy
 , with condition

1)0(y to find)04.0(y .

4.1 Input

This is a program of differential equation.

Enter Equation:

dx

dy
y 

Enter value of h :

0.01

Enter value of 0x :

0

Enter value of 0y :

1

Enter target:

0.04

Type the exact value

0.9607894

4.2 Output

The required interpolated value of]0400.0[y in Euler

method: 0

The required interpolated value of]0400.0[y in modified

Euler method: 1

The required interpolated value of]0400.0[y in Runge-

Kutta method: 0.960790

The required interpolated value of]0400.0[y in Runge-

Kutta 4
th

 order method: 0.960789

The Runge-Kutta 4
th

 order method is the best.

5. Conclusion
[v]

In this paper, we develop a simulator incorporated with the

traditional Euler, modified Euler, Runge-Kutta second and

fourth order methods for solving ordinary differential

equations. It been observed in the paper that the result

obtained according to our procedure is much nearer to the

exact solution. We therefore, hope that this algorithm can

solve differential equation problems numerically and can

save our time and labour. Finally, we have seen that Runge-

Kutta fourth order gives the best solution among these.

References
i. A. Kaw, E.E. Kalu, Numerical Methods with

Applications, Lalu.com, 2008.

ii. C. Edwards, Jr. The Historical Development of

the Calculus, Springer-Verlag, 1997.

iii. M. Goyal, Computer-based Numerical &

Statistical Techniques, Infinity Science Press LLC, New

Delhi, India, 2007.

iv. S. S. Sastry, Introductory Methods of

Numerical Analysis, Prentice-Hall India, 2005.

v. Bimal kumar Datta & M .Babul Hasan, ‘A

code for solving Non-Linear Programming Problems’ ,

Dhaka Univ.J.Sci.59(1);25-31,2011(january).

vi. Bimal kumar Datta & M .Babul Hasan, ‘A

computer oriented Lagrange Method for solving Non-Linear

Programming Problems’, Dhaka Univ.J.Sci.59(1);71-

75,2011(january).

