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Abstract 

Numerical differential equations studies the methods for 

finding numerical approximations to the solutions of 

differential equations, occur in many scientific disciplines, 

for instance in physics, chemistry, biology, and economics. 

Because of its various applications, this is often viewed as 

a discipline in and of itself. In this paper we develop a 

numerical simulator for solving ordinary differential 

equations (ODEs). This simulator is incorporated with a 

combination of Euler, modified Euler and Runge-Kutta 

second and fourth order methods. 

 

1. Introduction
 

Very often the differential equations appearing in physical 

problems cannot be solved analytically. Thus it becomes 

imperative to discuss their solutions by numerical methods. 

In numerical method, we do not proceed in the hope of 

finding a relation between variables but we find the 

numerical values of the dependent variables for certain 

values of independent variables
[i]

.  

The process of finding a derivative is called differentiation. 

The modern development of differentiation is usually 

credited to Isaac Newton (1643–1727) and Gottfried Leibniz 

(1646–1716), who provided independent and unified 

approaches to differentiation and derivatives
[ii]

. In numerical 

analysis, numerical differentiation describes algorithms for 

estimating the derivative of a mathematical function or 

function subroutine using values of the function and perhaps 

other knowledge about the function. Isaac Newton (1642-

1727), Joseph Raphson (1648-1715), Leonhard Euler (1707-

1783), Joseph Lagrange (1736-1813), Carl David Tolme 

Runge (1856-1927), Martin Wilhelm Kutta (1867-1944), 

George Dantzig (1914-2005) and so on have developed the 

numerical differentiation. 

Programming language C is very flexible and powerful. It 

was originally designed in the early 1970s. It allows us to 

maximum control with minimum command. It is recognized 

worldwide and used in a multitude of applications especially 

in Numerical solution of Differential Equations. Along with 

other numerous benefits, we have used programming 

language C in this paper. 

The outline of this paper is as follows: Section 2 contains 

the description of the existing methods of numerical 

differential equations with methodology. In Section 3, we 

develop a numerical simulator, using the programming 

language C, which gives us the solution of an ordinary 

differential equation simultaneously regarding four popular 

existing methods namely Euler, modified Euler, Runge-

Kutta second and fourth order. Moreover, the technique 

identifies the method that gives the best solution comparing 

with possible exact solution of the problem. We devote 

Section 4 to a trial of the simulator for a specific problem. 

Conclusions are given at the end at Section 5. 

2. Existing methods 

We give a brief description of the existing methods of 

numerical differential equations like Euler, modified Euler, 

Runge-Kutta second and fourth order in this section with 

their methodology. 

 

2.1 Euler method 

In mathematics and computational science, the Euler 

method is a first-order numerical procedure for solving 

ODEs with a given initial value. It is the most basic explicit 

method for numerical ODEs.  

We consider the differential equation 
[iii] 

),( yxfy                     (1) 

with the initial condition 00 )( yxy               (2)    

Suppose that we wish to solve the equation (1) with (2) for 

the value of y at rhxxr  0  ( ...,3,2,1r ). 

Integrating (1) with respect to x  from 0y to 1y  and 0x  to 

1x , we get 

dxyxfyy

x

x


1

0

),(0             (3) 

Assuming that ),(),( 00 yxfyxf   in 10 xxx  , this 

gives Euler’s formula  

),( 0001 yxfhyy  [for hxx  0 ]     (4) 

Similarly for the range 21 xxx  , we have  

dxyxfyy

x

x


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),(11  
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Substituting ),( 11 yxf for ),( yxf  where 21 xxx  , 

we have ),( 1112 yxfhyy   [since hxx  12 ] . And 

proceeding in this way, we obtain the general formula 

),(1 nnnn yxfhyy  , ...,2,1,0n  

 

2.2 Modified Euler’s method 

Integrating (3) by means of trapezoidal rule to obtain 

)],(),([)2/( 110001 yxfyxfhyy      (5) 

We thus obtain the iterative formula 

)],(),()[2/( )(

11000

)1(

1

nn yxfyxfhyy 
; 

...,2,1,0n           (6) 

Where 
)(

1

ny  is the nth approximation to 1y . The iterative 

formula (6) can be started by choosing 
0

1y  from Euler’s 

formula ),( 000

0

1 yxfhyy   

 

2.3 Runge-Kutta method (second order) 

Substitute ),( 0001 yxfhyy   on the right side of 

equation (5), we obtain 

)],([)2/( 000001 fhyhxffhyy      (7) 

Where ),( 000 yxff   and hxx  01 .  

Now set  01 fhk   and ),( 1002 kyhxfhk  so 

that equation (7) becomes ])[2/1( 211 kky  . 

This is known as Runge-Kutta second order formula. 

 

2.4 Runge-Kutta method (fourth order)
[iv] 

We mention the fourth order formulae defined by  

4433221101 kWkWkWkWyy            (8) 

Where 

),( 001 yxfhk   

),( 100002 kyhxfhk    

),( 11110103 kkyhxfhk    

),( 3122120204 kkkyhxfhk        (9) 

Where the parameters have to be determined by expanding 

both sides of (8) by Taylor’s series and securing agreement 

of terms up to and including those containing
4h . The 

choice of the parameters is, again arbitrary and we have 

therefore several fourth order Runge-kutta formulae. If for 

example we set 2/1100   , 12  , 

2/)12(1  , 02  , 2/)12(1  , 

2/12  , 2/)12(1  , 6/141 WW , 

23/)12(2 W and 23/)12(3 W , We 

obtain the method of Gill, whereas the choice 

2/110  , 2/110  , 0221   , 

112  , 6/141 WW and 6/232 WW  leads 

to the fourth order Runge-Kutta formulae, whereas 

),( 001 yxfhk   

)2/,2/( 1002 kyhxfhk   

)2/,2/( 2003 kyhxfhk   

),( 3004 kyhxfhk                 

Consequently, )2)(6/1( 432101 kkkkyy   

 

3. Algorithm
[vi] 

We here give the algorithm that can solve differential 

equation numerically regarding four methods- Euler, 

modified Euler, Runge-Kutta second and fourth order 

simultaneously. Moreover, it will ensure which method 

gives the best solution with comparing exact solution. 

INPUT: function ),( yxf , initial condition ),( 00 yx , 

interval h , value of x , direct result r . 

Step-1: Set hxxn /)( 0 , 000 yy  , 0yyoe  , 

002 y , 004 y , ),( 000001 yxfhyy   

Step-2: Set 1i  

Step-3: While ni   repeat Step-4 to step-7 

Step-4: Set 1j  

Step-5: While ij  repeat step-10 

Step-6: Set hxx  01 , 

),(),()2/1( 11000010 yxfyxfhyy  , 101 yy   

Step-7: Set  ),( 0001 eee yxfhyy  , 

),( 04011 yxfhk  , 

)2/,2/( 1104022 kyhxfhk  , 

)2/,2/( 2204033 kyhxfhk  , 

),( 3304044 kyhxfhk  , 

6/)22( 443322110441 kkkkyry  ,  

),( 0201 yxfhk  , ),( 10202 kyhxfhk  ,  

2/)( 210221 kkyry  , ee yy 10  , 1000 yy  , 

4104 ryy  , 2102 ryy  , nxx 0 . 

Step-8: Set  

rya e  1 , ryb  10 , rryc  21 , 

rryd  41  
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 If ( ba   and ca  ) 

 If ( da  ) 

 ey1  

 Else 

 41ry  

If ( ab   and cb ) 

 If ( db  ) 

 10y  

 Else 

 41ry  

If ( ac   and bc  ) 

 If ( dc  ) 

 21ry  

 Else 

 41ry  

Output: 21101 ,, ryyy e and 41ry with message which method 

gives best solution. 

 

 

 

4 Findings 

We are now offering a trial of the simulator for the 

numerical differential equation y
dx

dy
 , with condition 

1)0( y to find )04.0(y . 

 

4.1 Input 

This is a program of differential equation. 

Enter Equation: 

dx

dy
y   

Enter value of h : 

0.01 

Enter value of 0x : 

0  

Enter value of 0y : 

1 

Enter target: 

0.04 

Type the exact value 

0.9607894 

 

 

 

 

4.2 Output 

The required interpolated value of ]0400.0[y in Euler 

method: 0 

 

The required interpolated value of ]0400.0[y in modified 

Euler method: 1 

 

The required interpolated value of ]0400.0[y in Runge-

Kutta method: 0.960790 

 

The required interpolated value of ]0400.0[y in Runge-

Kutta 4
th

 order method: 0.960789 

 

The Runge-Kutta 4
th

 order method is the best. 

 

5. Conclusion
[v] 

In this paper, we develop a simulator incorporated with the 

traditional Euler, modified Euler, Runge-Kutta second and 

fourth order methods for solving ordinary differential 

equations. It been observed in the paper that the result 

obtained according to our procedure is much nearer to the 

exact solution. We therefore, hope that this algorithm can 

solve differential equation problems numerically and can 

save our time and labour. Finally, we have seen that Runge-

Kutta fourth order gives the best solution among these. 
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