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Introduction 

The introduction of “intuitionistic fuzzy sets” is due to K.T 

Atanassov [1], and this theory has been developed by many 

authors [2-4]. In particular D. Coker has defined the 

intuitionistic fuzzy topological spaces, and several authors 

have studied this category [5-14]. Nevertheless, separation in 

intuitionistic fuzzy topological spaces is not studied. Only 

there exists a definition due to D. Coker. 

Definition: Let  X be a non-empty set and I=[0,1]. A fuzzy set 

in X is a function IXu :  which assign to each element 

Xx , a degree of membership ,  Ixu )( . 

Example:Let },,{ cbaX  and ].1,0[I If

5.0)(,4.0)(,2.0)(  cubuau then 

{(a,0.2),(b,0.4),(c,0.5)} is a fuzzy set in X. 

Definition: Let ]1,0[I . X be a non-empty set and I
X
  be 

the collection of all mappings from  X into I , i. e. the  class of 

all fuzzy sets in X. A fuzzy topology on X is defined as a 

family t of members of I
X
, satisfying the following conditions: 

ti 0,1)(  )(ii if tu i   for 

each i ,then tuii   )(iii if tuu 21, then

tuu  21 .Then the pair ),( tX is called a fuzzy topological 

space (FTS) and  the members of t are called t-open (or simply 

open) fuzzy sets. A fuzzy set v is called a t-closed (or simply 

closed) fuzzy set if tv1 . 

Example: 

Let },,,{ dcbaX  , },,1,0{ vut  ,where

)}1,(),1,(),1,(),1,{(1 dcba

)}0,(),0,(),0,(),0,{(0 dcba  

)}9.0,(),7.0,(),5.0,(),2.0,{( dcbau 

)}95.0,(),8.0,(),5.0,(),3.0,{( dcbav  Then ),( tX is a 

fuzzy topological space.  

Definition: (Atanassov [4]). Let X be a nonempty fixed set. 

An intuitionistic fuzzy set (IFS) A  is an object having the 

form }:)(),(,{ XxxxxA AA    where the functions 

IXA : and IXA :  denote the degree of 

membership ( namely )(xA ) and the degree of non-

membership (namely )(xA ) of each element Xx  to the 

set A , respectively and 1)()(0  xx AA    for each 

Xx . 

Definition: Let X be a nonempty set and   be a family of 

intuitionistic fuzzy sets in X. Then   is called an intuitionistic 

fuzzy topology on X  if it satisfy the following 

conditions: 1,0)(i   

 21)( GGii   for any 21 ,GG , 

 iGiii)( for any arbitrary family  }:{ JiGi .In 

this case the pair ),( X  is called an intuitionistic fuzzy 

topological space (IFTS) and any IFS in   is known as an 

intuitionistic fuzzy open set (IFOS) in X . 

Definition: An IFTS ),( X  is called Hausdorff iff 

Xxx 21 , and 21 xx   imply that there 

exist  
2211

,,,,, 21 GGGG xGxG with 

0)(,1)( 11 11
 xx GG  0)(,1)( 22 22

 xx GG    and 

021 GG  . 

Definition:  An IFTS ),( X  is called  (a) )(2 iT  if for all 

Xxx 21 ,
, 21 xx 

 
imply that there exist open sets 

 
2211

,,,,, 21 GGGG xGxG  such 

that 0)(,1)( 11 11
 xx GG  0)(,1)( 22 22

 xx GG 
 

and 021 GG . 
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(b) )(2 iiT  if for all Xxx 21 ,  with 21 xx   imply that 

there exist open sets 

 
2211

,,,,, 21 GGGG xGxG  such that  

0)(,1)( 11 11
 xx GG   0)(,1)( 22 22

 xx GG   and 

 21 GG . 

(c) )(2 iiiT  if for all Xxx 21 , , 21 xx 
 

imply that there 

exists
 

2211
,,,,, 21 GGGG xGxG such that 

  )(,)( 21 21
xx GG  and 021 GG . 

 

(d) )(2 ivT  if for all Xxx 21 , , 21 xx 
 

imply that there exist 

   
2211

,,,,, 21 GGGG xGxG such that 

  )(,)( 21 21
xx GG  and  21 GG .   

Theorem: If (X, T) be fuzzy topological space and ),( X  be 

corresponding intuitionistic fuzzy topological space(IFTS) 

then (X,T) is )(2 jT ⇒ ),( X  is )(2 jT ,for 

.,,, iviiiiiiJ   

But the converse is not true. 

Proof: First suppose that (X,T) is a fuzzy )(2 iiT  space. 

Let Xxx 21 ,  with 21 xx  . Since (X,T) is fuzzy 

)(2 iiT space,for some 1I , Xxx  21 , with 

21 xx   , Tvu  , such 

that )(1)( 21 xvxu  and vu .This implies that if 

for all Xxx 21 ,  ,
 21 xx  imply that there exist open sets 

 
2211

,,,,, 21 GGGG xGxG  such that  

0)(,1)( 11 11
 xx GG   0)(,1)( 22 22

 xx GG   and 

 21 GG .Hence we have ),( X  is )(2 iiT  space. 

Similarly, one can see that (X,T) is )(2 iT  ),( X  

is )(2 iT .(X,T) is )(2 iiiT   ),( X  

is )(2 iiiT . 

(X,T) is )(2 ivT  ),( X  is )(2 ivT . 

Example: Let },{ 21 xxX  and (X,T) be the fuzzy topology 

on X generated 

by }tan{},{ tsconsvu  ,where

1)(,0)(,0)(,1)( 2121  xvxvxuxu .Again let   be 

the indiscreat topology on X.Then for every 1I , the IFTS 

),( X  is  )(2 jT . But the fuzzy topological space (X,T) 

is not  )(2 jT  for .,,, iviiiiiiJ   

Remarks: Let (X,T) be the fuzzy topological space and 

),( X  be its corresponding IFTS. Then ),( X is 

)(2 jT does not imply (X,T) is )(2 jT   for 

.,,, iviiiiiiJ  For this consider the following example. 

Example: Let },{ yxX   and T be the fuzzy topology on X 

generated 

by }tan{}{ tsconsu  ,where 0)(,1)(  yuxu . Again 

let   be the intuitionistic fuzzy topology on X generated 

by }tan{}{ 1 tsconsG  ,where 0)(,1)(
11

 xx GG   

.Then for every 1I , the IFTS ),( X  is  )(2 jT . 

But the fuzzy topological space (X,T) is not  )(2 jT  for 

.,,, iviiiiiiJ   

Theorem: Let ),( X  be an IFTS. Then we have the 

following implication: 

                                 )(2 iiT   

)(2 iT                                                          )(2 ivT  

                                 )(2 iiiT
            

 

Proof: Let ),( X be )(2 iT .We prove that ),( X is 

)(2 iiT . Let Xxx 21 , , 21 xx   . Since ),( X  is 

)(2 iT , there exist open sets 

 
2211

,,,,, 21 GGGG xGxG  such that 

0)(,1)( 11 11
 xx GG   , 0)(,1)( 22 22

 xx GG   

and 021 GG . We see that that 

  )(,)( 21 21
xx GG , and  21 GG   for every 

1I  .Hence it is clear that ),( X  is )(2 iiT  and also 

)(2 iiiT . 

Further one can easily verify that  

)(2 iiT  )(2 ivT  

)(2 iiiT  )(2 ivT  
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)(2 iT  )(2 iiiT  

Now we give some examples to show that none of the reverse 

implications are true in general. 

Example(a): Let },{ 21 xxX   and
XIIGG )(, 21    

where 21,GG  are defined by  0)(,7.0)( 11 11
 xx GG   

and 8.0)(,0)( 22 22
 xx GG  . Consider the  

intuitionistic fuzzy topology  on X generated by 

}tan{},{ 21 tsconsGG  . For 4.0 , it is clear that 

),( X   is  )(2 iiiT  but ),( X  is neither  )(2 iiT  

nor )(2 iT  . 

Example (b): Let },{ 21 xxX   and 
XIIGG )(, 21   

where 21,GG  are defined by  0)(,1)( 11 11
 xx GG   

and  1)(,0)( 22 22
 xx GG  . Consider the  intuitionistic 

fuzzy topology  on X generated by 

}tan{},{ 21 tsconsGG  . For 5.0 , it is clear that 

),( X   is  )(2 iiT  but ),( X  is neither )(2 iiiT  

nor  )(2 iT  . 

Example(c): Let },{ 21 xxX   and 
XIIGG )(, 21   

where 21,GG  are defined by  0)(,8.0)( 11 11
 xx GG   

and 3.0)(,5.0)( 22 22
 xx GG  . Consider the  

intuitionistic fuzzy topology   on X generated by 

}tan{},{ 21 tsconsGG  . For 4.0 , it is clear that 

),( X   is  )(2 ivT  but ),( X  is neither  )(2 iiT  

nor )(2 iiiT
.       

Theorem: If ),( X  is IFTS and 10     then 

(a) )(2 iiT  )(2 iiT  

 (b) )(2 iiiT  )(2 iiiT  

(c) )(0 2 iiiT  )(0 2 ivT  

Proof: Let ),( X  be )(2 iiT . We prove that ),( X  is 

)(2 iiT . Since ),( X  is )(2 iiT , if for all 

Xxx 21 , , 21 xx    imply that there exist open sets 

 
2211

,,,,, 21 GGGG xGxG  such that  

0)(,1)( 11 11
 xx GG   , 0)(,1)( 22 22

 xx GG   

and  21 GG . This implies that 

0)(,1)( 11 11
 xx GG   , 0)(,1)( 22 22

 xx GG   

and  21 GG  as 10   . Hence it is clear that 

),( X is )(2 iiT . 

Example: Let },{ 21 xxX   and 
XIIGG )(, 21   where 

21,GG  are defined by  0)(,1)( 11 11
 xx GG   and  

0)(,1)( 22 22
 xx GG  . Consider the  intuitionistic 

fuzzy topology  on X generated by 

}tan{},{ 21 tsconsGG  . For 8.0,5.0   , it is 

clear that ),( X   is  )(2 iiT  but ),( X  is not  

)(2 iiT . Further one can easily verify that 

)(2 iiiT  )(2 iiiT and )(0 2 iiiT  )(0 2 ivT  

are true.  

This completes the proof. 

̔Good extension ̓҆ property 

Now we discuss about the “good extension” property of  

)(2 jT  for j = i , ii ,iii , iv. 

Definition: Let f be a real valued function on a topological 

space. If })(:{ xfx  is open for every real α, then f is 

called lower semi continuous function. 

Definition: Let X be a non-empty set and t be a topology on 

X. Let )(t  be the set of all lower semi continuous 

function (lsc) from (X, t) to )( II   (with usual topology). 

Thus 

)]},0[],1,([:)({)(
11




 GG

XIIGt where

IXG : , IXG :  for each 1I . It can be 

shown that )(t  is a intuitionistic fuzzy topology on X. 

Let P be the property of a topological space (X , t)  and FP be 

its intuitionistic fuzzy topological analogue. Then FP is called 

a “good extension” of P “ iff the statement (X, t) has P iff 

))(,( tX    has FP” holds good for every topological space 

(X, t ). 

Theorem: Let (X, t) be a IFTS. Consider the following 

statements: 

(1). (X, t) be )(2 iT  space. 

(2). ))(,( tX   be )(2 iT  space. 
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 (3). ))(,( tX   be )(2 iiT  space. 

(4). ))(,( tX   be )(2 iiiT  space. 

(5). ))(,( tX   be )(2 ivT  space. 

Then the following implications are true 

                                                  ③ 

①                   ②                                                     ⑤ 

                                                    ④ 

Proof: Let the intuitionistic fuzzy topological space (X, t) be 

)(2 iT  . Suppose  Xxx 21 ,  with 21 xx  . Since (X, t) is  

)(2 iT , there exist  

txGxG GGGG 
2211

,,,,, 21   such that 

0)(,1)( 11 11
 xx GG   , 0)(,1)( 22 22

 xx GG   

and 021 GG . But from the definition of the lower semi 

continuous function, there exist )(1,1
21

tGG   such 

that 01,11 )()( 1111

 xx GG  , 01,11 )()( 2222

 xx GG  ,and 

01
21
GG  i, e 011

21
 GG . Hence it is clear that the IFTS 

))(,( tX   is )(2 iT  space. 

Further it can be easily to show that )4()2(   )3()2(   

)5()3(   and )5()4(  .Hence   proved. 

Theorem: Let (X,t) be a IFTS and 

},:),0[],1,(

,),0[],1,({)(

21

11

11

22

11

tGG

tI

GG

GG













 

then 

(a) (X, t) is )(2 iiT  ))(,( tIX   is )(2 iT  

(b) (X, t) is )(2 iiiT  ))(,( tIX   is )(2 iT  

(c) (X, t) is )(2 ivT  ))(,( tIX   is )(2 iT  

The reverse implications in (a) and (b) are not true in general. 

Proof: Let the intuitionistic fuzzy topological space (IFTS in 

short) (X, t) be a )(2 iiT .We shall prove that the 

topological space ))(,( tIX   is )(2 iT . Since (X, t) is 

)(2 iiT , if for all Xxx 21 ,
 
 ,

 21 xx  imply that there 

exist open sets txGxG GGGG 
2211

,,,,, 21   

such that  0)(,1)( 11 11
 xx GG   , 

0)(,1)( 22 22
 xx GG   and  21 GG .But for 

every 1I , 

)(},:),0[],1,(

,),0[],1,({

21

11

11

22

11

tItGGGG

GG










  

and also ]1(
1

1 1



 Gx , ]1,(

1

2 2



 Gx  and 

 


]1,(]1,(
11

21 GG
, as  21 GG  .Hence it 

is clear that ))(,( tIX   is )(2 iT  . Further , one can easily 

verify that   

(X, t) is )(2 iiiT  ))(,( tIX   is )(2 iT  and   (X, t) is 

)(2 ivT  ))(,( tIX   is  )(2 iT  . 

Conversely, suppose that ))(,( tIX   is )(2 iT  .Let  

Xxx 21 ,  ,
 21 xx  .Since ))(,( tIX   is )(2 iT  

there,exist   

)(},:),0[],1,(

,),0[],1,({

21

11

11

22

11

tItGGGG

GG










  

such that  

]1,(
1

1 1



 Gx , ]1,(

1

2 2



 Gx and 

 


]1,(]1,(
11

21 GG
. Again since 

)(},:),0[],1,(

,),0[],1,({

21

11

11

22

11

tItGGGG

GG










  

, so we get txGxG GGGG 
2211

,,,,, 21   

such that   )(,)( 21 21
xx GG and  

 


]1,(]1,(
11

21 GG 

   ]1,()( 1

21 GG
.,. 21 GGei So we see 

that (X, t) is )(2 ivT  .  

Now we have an example for non-implication. 

Example: Let },{ 21 xxX   and 
XIIGG )(, 21   where 

21,GG  are defined by  2.0)(,8.0)( 11 11
 xx GG   and 

6.0)(,1.0)( 22 22
 xx GG  . Consider the intuitionistic  
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fuzzy topology t on X generated by 

}tan{},{ 21 tsconsGG  . For 4.0 , it is clear that (X, 

t)  is neither )(2 iiT  nor  )(2 iiiT   .Now  

},:),0[],1,(

,),0[],1,({)(

21

11

11

22

11

tGG

tI

GG

GG













  

Also, ]1,(
1

1 1



 Gx , ]1,(

1

2 2



 Gx and 

 


]1,(]1,(
11

21 GG
 , as  21 GG . Hence it 

is clear that ))(,( tIX   is )(2 iT  . 

This completes the proof. 
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