

Performance Analysis and Comparison of Wireless Protocols Standards in WPAN-Bluetooth and WLAN-Wi-Fi

¹Dr. P. Rajamohan, ²Mr. R. Thinaharan ,³Dr. Leelavathi

School of IT, SEGi University, Kota Damansara, PJU 5, 47810 PJ, Selangor, Malaysia, ¹parthasarathy_rajamohan@yahoo.com & rajamohanp@segi.edu.my, ²thinaharanr@segi.edu.my, ³leelavathiraj@segi.edu.my

Abstract: Communication is going wireless with the upsurge of smart mobile devices such as laptops, cellular phones, PDA, tablets etc. In order escape traps of wires and to stream data wirelessly among these devices, a number of protocols have been formulated such WPAN-Bluetooth and WLAN-Wi-Fi. Using these technologies users can exchange almost all sorts of files at high speeds. Bluetooth is oriented to connecting close devices serving as a substitute for cables while Wi-Fi is oriented towards computer to computer connections, as an extension of or substitution for cabled LANs. This paper presents the performance analysis and comparison of all of these popular wireless communication standards, comparing their main features and behaviors in terms of various metrics, including capacity, security, QoS, and power consumption.

Keywords: WPAN (Wireless Personal Area Network), WLAN (Wireless Local Area Networks), FHSS (Frequency Hopping Spread Spectrum), DSSS (Direct Sequence Spread Spectrum, CCK (Complementary Code Keying), and OFDM (Orthogonal Frequency Division Multiplexing).

I. INTRODUCTION

Wireless communications is a fast-growing technology. WPAN operate in the range of a few feet, whereas WLANs operate in the range of a few hundred feet. This article presents wireless technologies on the Bluetooth (BT) in the WPAN and IEEE 802.11 WLAN (often known as Wi-Fi®). Since Bluetooth was developed mainly for the mobile phone industry, it has become fairly common in mobile phones. Its ability to connect peripherals like keyboards and headsets is not possible with WiFi and it is a lot easier and faster to send pictures and other small files via Bluetooth than WiFi. WiFi has already begun to appear in a few mobile phones and more likely to find it in laptops, PDAs, and smart phones where it is often used to connect to the internet via a hotspot.

WiFi is meant to provide mobility to its users while staying connected its radios transmit at high power levels to achieve a long range that can extend up to 300ft. Bluetooth does not require this much distance between two devices, that's why it uses a much weaker radio to achieve 30ft of separation. Most Bluetooth devices do not require a lot of bandwidth and greater bandwidth would usually result to greater cost. That's why Bluetooth still has a very small bandwidth making it unsuitable for transferring larger files.[1]. Currently the wireless scene is held by two standards, namely the Bluetooth and the IEEE 802.11 protocols, which define the physical layer and the medium access control (MAC) for wireless communications over a short action range and with low power consumption. Bluetooth is mainly oriented towards connections between close connected devices as a substitute for data transfer cables. IEEE 802.11 is devoted to connections among computers as an extension or substitute for cabled LANs. The standards cover different techniques at the physical layer with different radio signal multiplexing techniques such as FHSS used by Bluetooth devices and DSSS, complementary code keying and orthogonal frequency division multiplexing (OFDM) used in IEEE 802.11 WLAN commercial devices. Both Bluetooth and IEEE 802.11 systems are evolving towards more powerful multiplexing technologies namely ultra wide band (UWM) and multiple input-multiple output (MIMO).[2]

Two wireless connection options that are very common in portable devices are Bluetooth and WiFi. Bluetooth is a standard that was developed largely for the mobile phone market. It was created to supersede Infrared which had a lot of limitations. Bluetooth is used to send small files from one device to another and to connect other devices like headsets and other peripherals. WiFi on the other hand, is a wireless networking solution that allows computers to connect to the network via an access point. It was developed as an alternative to wired networking which is restrictive. The paper presented here is widely available in the literature; therefore the main purpose of this paper is not to contribute to research in the area of wireless standards, but to present a comparison of the major characteristics of the two main protocols for short-range terrestrial communications and the key aspects of the technology medium access and connectivity.[1]-[2]

II. ARCHITECTURE OF BLUETOOTH AND WI-FI PROTOCOLS

2.1 BLUETOOTH

Bluetooth [1] is a standard for wireless communications based on a radio system designed for shortrange, cheap communications devices suitable for substituting cables for printers, faxes, joysticks, mice, keyboards, etc. This range of applications is known as WPAN. Since March 2002, the IEEE 802.15 working group has adopted the work done for Bluetooth (without any major changes) and made it an IEEE standard, namely IEEE 802.15.1. The future of Bluetooth may be based on ultra-wide band (UWB). UWB systems use very high-speed transmitting information over a very wide spectrum.

When a Bluetooth device is powered on, it may try to operate as one of the slave devices of an already running master device. It then starts listening for a master's inquiry for new devices and responds to it. The inquiry phase lets the master know the address of the slave; this phase is not necessary for very simple paired devices that are granted to know each other's address. Once a master knows the address of a slave, it may open a connection towards it, provided the slave is listening for paging requests. Bluetooth predefines several types of connection, each with a different combination of available bandwidth, error protection and quality of service. Once a connection is established, the devices can optionally authenticate each other and then communicate. Devices not engaged in transmissions can enter one of several power and bandwidth saving modes or tear down the connection. Master and slave can switch roles, which may be necessary when a device wants to participate in more than one piconet.[2]

2.1.2 Overview of Bluetooth Protocol

Bluetooth defines not only a radio interface, but a whole communication stack that allows the devices to find each other and advertise the services they offer. In Figure 1, the Link Manager layer handles the type of link configuration, authentication, security, quality of service (QoS), power consumption and transmission scheduling. The Control supplies a command interface to the Link Manager and Baseband levels, thus providing a coherent interface to hardware developed by different manufacturers.

Figure 1: Key Elements of the Bluetooth Stack

The L2CAP (Logical Link Control Adaptation Protocol) layer supplies connection-oriented and connectionless services to the upper levels. Its functions include:

i)Protocol multiplexing which is necessary because the

baseband protocol does not include a "type" field identifying the origin of the packet from the upper levels.

ii)Segmentation and reassembly of the protocol data units coming from the upper levels.

iii)It is possible to implement IP directly on L2CAP but Bluetooth 1.1 does not define a profile implementing this facility. Thus, IP is typically implemented by using PPP over RFCOMM, a profile that emulates a serial port to support QoS.

RFCOMM is useful because many existing applications are based on serial communications. Up to 60 connections can be simultaneously active between two Bluetooth devices. The acronyms in Figure 1: TCS (Telephony Control Specifications) and SDP (Service Discovery Protocol). A Bluetooth device may operate either in master mode or in slave mode. To form a Piconet requires a maximum of eight devices seven active slaves plus one master working together. which is the simplest configuration of a Bluetooth network. Piconets may be connected together thus forming a Scatternet. A Scatternet is a topology over which a multihop wireless network can be built. A wireless network is said to be multihop when two nodes can communicate with each other even if there is no direct connection between them by using other nodes as relays. Two Piconets can communicate by means of a common node belonging to both of them. A node can be master in one Piconet at most and slave in several others.

Bluetooth devices use the 2.4 GHz band which is unlicensed in most countries. The channels are accessed using technique, with a signal rate of 1 Mb/s using a FHSS Gaussian shaped Frequency Shift Keying modulation. Frequency hopping consists in accessing the different radio channels according to an extremely long pseudo-random sequence that is generated from the address and clock of the master station in the Piconet. Using this method, different Piconets use different hop sequences. When entering a Piconet, a slave waits for an Inquiry message from the master to learn the master's address and clock phase, which it then uses to compute the hopping sequence. The transmission channel changes 1600 times per second. This means that the transmission frequency remains unchanged for 625 ms long slots which are identified by a sequence number. The master station starts its transmissions in the even slots, the slaves in the odd ones. Two different link types are defined in Bluetooth, namely Asynchronous Connection-Less links (ACL), and Synchronous Connection-Oriented links (SCO).

A SCO link provides guaranteed delay and bandwidth, apart from possible interruptions caused by the LMP (Link Manager Protocol) messages which have higher priority. A slave can open up to three SCO links with the same master, or two SCO links with different masters, while a master can open up to three SCO links with up to three different slaves. SCO links provide constant bit rate, symmetric channels, which makes them suitable for streaming applications which require fixed, symmetric bandwidth. They provide limited reliability such as no retransmission is ever performed, and no CRC (Cyclic Redundancy Check) is applied to the payload, though they are optionally protected with a 1/3 or 2/3 FEC (forward error correction) convolutional code. The data rate is 64 kb/s in both directions; an asymmetric connection is also defined, with only the forward guaranteed rate of 64 kb/s and 2/3 FEC. SCO links are suitable for transmitting average-quality voice and music.

ACL links are appropriate for non-real-time traffic. A slave can exchange one packet at a time with the master according to a schedule between slaves, which is computed by the master. Only a single ACL link can exist between a given slave and the master which means that applications requiring different QoS parameters should use different links. ACL links exist in both symmetric and asymmetric flavours with different preset bandwidths error protection by means of a 16bit CRC applied to the payload optional 2/3 FEC convolutional code and optional ARQ. The configuration of the ACL links, from the point of view of bandwidth and quality of service, is done by means of an interface offered by the Link Manager. The configurable parameters are: type of OoS (none, best effort, and guaranteed best effort, the latter being the default), token rate (the data transfer rate guaranteed on that link; no default), token rate bucket size (the buffer size for the received data, default is zero), peak bandwidth (default is not specified), latency (default is not specified) the delay variation (the maximum allowable difference between packet delays, default is not specified). The use of these parameters is implemented by means of primitives that make a request to the admission control function implemented by the master's Link Manager. If the master accepts the QoS request, it configures the link with the slave by setting two parameters: the poll interval (the maximum time interval between two consecutive transmissions), and NBC, that is, the number of retransmissions for broadcast packets. The latter are not acknowledged by slaves, so they can be transmitted with a given number of retransmissions to increase their reliability. The Link Manager may communicate any violation of the requested QoS parameters to the upper levels of the Bluetooth stack. The set of configurable parameters provides the basis for implementing a complete QoS policy by using a Bluetooth stack.[1]-[3]. Bluetooth security is divided into three modes:

Mode 1: non-secure

Mode 2: Service Level enforced security (after

channel establishment)

Mode 3: Link Level enforced security (before

channel establishment).

Authentication and encryption at the link level are handled by means of four basic entities:

i) the Bluetooth device address, which is a 48-bit unique identifier assigned to each device;
ii) a private authentication key (random number);
iii) a private encryption key (random number); and
iv) a 128-bit frequently-changing random number, dynamically generated by each device [3].

There are two security levels for devices: trusted and un-trusted and three levels defined for services: open services, services requiring authentication and services requiring authentication and authorization. The same PIN code, of length comprised between 1 and 16 octets, must be entered for each communicating Bluetooth device at initialization; alternatively, the PIN code can be hardwired in all or some of the devices.

2.2 Wi-Fi

The IEEE 802.11 standard [4][6] is to provide wireless connectivity to devices that require a quick

installation, such as portable computers, PDAs, or generally mobile devices inside a WLAN. It defines the MAC procedures for accessing the physical medium which can be infrared or radio frequency.

In 1997 the IEEE (Institute for Electric and Electronic Engineering) approved a standard for wireless LAN called 802.11, which specified the characteristics of devices with a signal rate of 1 and 2 Mb/s. The standard specifies the MAC and the physical layers for transmissions in the 2.4 GHz band. The spectrum used ranges from 2.4 to 2.4835 GHz in the USA and Europe, while in Japan it ranges from 2.471 to 2.497 GHz. After the IEEE ratified a new amendment with better performance called IEEE 802.11.b which works at additional signal rates of 5.5 and 11 Mb/s. 802.11b specifies some coding modifications leaving the lower layer radio characteristics unmodified, and making very small changes to the upper MAC layers. IEEE published the specifications of a new amendment of the 802.11 family, the 802.11a. The specifications still refer to the MAC and the physical layers, and the band used is the 5 GHz, which is unlicensed in the USA but not in most other countries. The signal rates are 6, 9, 12, 18, 24, 36, 48 and 54 Mb/s. Devices following this standard should be usable in those parts of Europe where Dynamic Frequency Selection (DFS) and Adaptive Power Control (APC), as specified in the 802.11h amendment.[5]

In 2003 the IEEE approved 802.11g as a further evolution of the 802.11 standard. 802.11g provides the same performance as 802.11a, while working in the 2.4 GHz band. Compatibility with 802.11b devices is guaranteed. MIMO systems use multiple transmit and multiple receiving antennas. In a scattering-rich environment, each receiving antenna is able to compute a signature of each of the transmitting antennas, and thus distinguish their transmissions. The 802.11n task group is working towards definition of a MIMO physical layer. Table 1 summarizes the status of the IEEE 802.11 family including the draft versions and those that are still at task group development status.[8]

Standard	Description	Status
IEEE	WLAN; up to 2 Mb/s;	Approved 1997
802.11	2.4 GHz	
IEEE	WLAN; up to 54 Mb/s; 5	Approved 1999
802.11a	GHz	
IEEE	WLAN; up to 11 Mb/s;	Approved 1999
802.11b	2.4 GHz	
IEEE	WLAN; up to 54 Mb/s;	Approved 2003
802.11g	2.4 GHz	
IEEE	New coordination	Task group
802.11e	functions for QoS	development
IEEE	IAPP (Inter-AP	Approved 2003
802.11f	Protocol)	
IEEE	Use of the 5 GHz band	Approved 2003
802.11h	in Europe	
IEEE	New encryption	Approved 2004
802.11i	standards	
IEEE	MIMO physical layer	Task group
802.11n		development

Table 1: IEEE 802.11 Standards Family

2.2.1 Basic operation

When powered on, a Wi-Fi station will scan the available channels to discover active networks where beacons are being transmitted. Wi-Fi provides for different degrees of quality of service, ranging from best effort to prioritised and, in infrastructured networks, guaranteed services. While being part of a network, stations can keep discovering new networks and may disassociate from the current one in order to associate with a new one, e.g. because it has a stronger signal. Stations can roam this way between networks that share a common distribution system, in which case a seamless transition is possible. A station can sleep to save power, and when it finishes infrastructured mode operation it can deauthenticate and disassociate from the AP.

2.2.2 Overview of Wi-Fi Protocol

A Wi-Fi WLAN is based on a cellular architecture. Each cell is called a Basic Service Set (BSS). A BSS is a set of mobile or fixed Wi-Fi stations. Access to the transmission medium is controlled by means of a set of rules called a coordination function. Wi-Fi defines a Distributed Coordination Function (DCF) and a Point Coordination Function (PCF).

The simplest network configuration is the IBSS (Independent BSS), which implements an ad hoc network topology comprising at least two stations: no structure exists, so creating a multihop network requires higher-level protocols. Alternatively, an infrastructured BSS may be part of a wider network, the so called extended service set (ESS). An ESS is a set of one or more infrastructured BSSes connected via a distribution System. 802.11f will specify the Inter-AP Protocol. The stations connected to the distribution System are called Access Points (AP). Services offered by the stations fall into two classes: station services and distribution system services. APs allow data transfer between stations belonging to different BSSes. The standard also defines the functions of the Portal which is a bridge for interconnecting a Wi-Fi WLAN with a generic IEEE 802.x LAN. The available bandwidth is divided into 14 partially overlapping channels each 22 MHz wide. All the devices in the same BSS use the same channel. One of three techniques is used for multiplexing:

a) the DSSS which uses a Barker sequence, is adopted for the 1 and 2 Mb/s signal rates.

b) the Complementary Code Keying (CCK), defined in 802.11b, is used for the 5.5 and 11 Mb/s signal rates.

c) the Orthogonal Frequency Division Multiplexing (OFDM), defined in 802.11a and also used in 802.11g, which is used for 6, 9, 12, 18, 24, 36, 48 and 54 Mb/s.

DSSS uses an 11-bit Barker sequence so each sequence of 11 chips codifies a single information bit. The modulation rate is 1 Msymbol/s using either BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) for transmission rates of 1 or 2 Mb/s, respectively. With CCK, a 16-bit sequence transmitted on the channel codifies either 4 or 8 information bits. The modulation is QPSK at 1.375 Msymbol/s, for signal rates of either 5.5 or 11 Mb/s. Note that in both DSSS and CCK cases the chip rate is 11 Mchip/s, which means that the lowest layer of the radio section is the same: the difference lies in the modulation and multiplexing. OFDM uses a comb of 52 sub-carriers (48 for data) with a spacing of 0.3125 MHz and a symbol duration of 4 ms, for a total of 12 Msymbol/s. Each symbol is protected with a convolutional code of either 3/4, 2/3 or 1/2 rate, using MOAM modulation (M-ary Quadrature Amplitude Modulation) with M being 2, 4, 16 or 64. The resulting combinations provide signal rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mb/s. The Wi-Fi MAC protocol which must be implemented by every station is called Distributed Coordination Function (DCF). DCF is a CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance) channel access method used in both ad hoc and infrastructured networks. Once a station senses that no other station has transmitted for a short time, called Inter Frame Space (IFS), it transmits a frame.

For Unicast transmissions, the receiving station replies with an ack. if the transmitter does not hear the ack it will retransmit the frame up to a maximum number of times before giving up: this is a standard ARQ mechanism. When a station must send a new frame just after having sent one it first waits for an IFS, then it initializes a random backoff interval counter and starts decrementing it at a fixed rate while listening to the channel. If it detects that another station is transmitting, it stops decrementing the counter, waits for the end of the current transmission, waits for one IFS time, and starts decrementing the counter from where it had left: this is called a backoff procedure. A backoff procedure ends when the backoff counter reaches zero, at which point a frame is sent. A station enters a backoff procedure even when it wants to transmit a frame, but detects that the channel is busy.

As a variation in the basic DCF access method, stations may optionally use an RTS/CTS (request to send/clear to send) mechanism which is useful for reducing the number of collisions where hidden terminals are present. To understand that, let's suppose that stations A and C are both in view of station B, but they do not see each other, either because they are too far apart, or because there is an obstacle between them. In this case, when both A and C transmit data to B, they will often collide, because neither will sense the transmission of the other, and neither will back off. To reduce the chance of collision, the transmitting station (say A) first sends an RTS, a very short frame asking permission to transmit, and the receiving station (say B) responds with a CTS, meaning it is ready to listen. Station C does not hear the RTS, but it hears the CTS, so it defers transmission. Since an RTS is shorter than a data frame, chances of a collision are reduced. Wi-Fi defines an optional medium access protocol called Point Coordination Function (PCF) which can be used in an infrastructured topology only. [4]-][8]

The Point Coordinator (PC), a function normally performed by the AP, uses a round-robin policy to poll each station for data to be transmitted. PCF can be used to implement a contention-free (CF) access mechanism, in the sense that the PC controls the access of the stations, thus avoiding any contention. The Wi-Fi standard states that the two methods (DCF and PCF) must coexist: when in a BSS a PC is present, PCF and DCF alternate, thus creating a

contention-free period (CFP) followed by a contention period (CP). It is optional for an AP to act as a PC, and it is optional for a station to implement the possibility of replying to the PC's requests during the CFP. The stations that implement this facility are referred to as CF pollable stations.

The standard requires that a CP must always be present lasting sufficiently to transmit at least a complete frame sequence, in order to allow the transmission of management frames. Figure 2 shows how the DCF and PCF methods alternate: B indicates the reference beacon sent by the PC, at the start of each CFP, for synchronization purposes which contains important information relevant to the CFP; NAV (network allocation vector) is a counter set by the station to compute the expected end of the current transmission.

Figure 2 : How PCF and DCF alternate

The PCF, as described in the standard, has many drawbacks [9]; in fact, it is not implemented in any commercial device. The IEEE 802.11e amendment corrects this situation by redefining the QoS aspects of the multiple access protocol. The new coordination functions are called EDCA (enhanced distributed channel access) and HCCA (HCF controlled channel access), which together constitute the new HCF (hybrid coordination function). The new mechanisms can interoperate with the old ones.

EDCA provides 8 different priority levels for data. Each station keeps different queues, and the priority on the channel is implemented via different IFS (interframe space)[10] values: higher priority queues use a shorter IFS, thus gaining preferential access to the channel. In addition, backoff times are shorter for higher priority traffic, and collisions result in preemption of the channel by the highestpriority colliding transmitter. In HCCA, one of the stations has the role of Hybrid Coordinator (HC). Thanks to centralized control, EPCF provides hard guarantees expressed in terms of service rate, delay and jitter [9][10].

The Wi-Fi specification security framework is called wireless equivalent privacy (WEP) protocol. An important component of WEP is the use of the stream cipher RC4, which is well known and widely used; unfortunately, its implementation in Wi-Fi is of questionable quality [11]. Because of the nature of a wireless packet network, which will frequently drop packets, it is not easy to maintain synchronization between the encryptor and the decryptor for any length of time. To overcome this limitation, WEP uses a 24-bit initialisation vector to generate the cipher key stream on each packet. Since the initialisation vector is so short, eavesdropping on a busy network makes it possible to break the cipher in a reasonable length of time [12]. In late 2002 the Wi-Fi Alliance defined WPA (Wireless Protected Access), a notable improvement over WEP intended as an intermediate step while the 802.11i specifications were being worked out. WPA uses the 802.1X/EAP framework with TKIP (Temporal Key Integrity Protocol) for the cipher suite and an EAP (Extensible Authentication Protocol) method for authentication or alternatively pre-shared keys for implicit authentication. It is widely implemented in currently marketed devices. In mid-2004 the 802.11i working group finalized an amendment providing a comprehensive authentication framework based upon 802.1X and EAP methods, also known as WPA2.

Different EAP methods can be used for authentication and key material generation based upon different application needs, ranging from user names and passwords to certificates and smart cards. The 802.11i amendment also defines two cipher suites TKIP, which can be implemented as a software upgrade on existing equipment, and CCMP (based upon AES), which requires new equipment to support the computationally complex AES encryption algorithm. TKIP uses a key mixing function to generate perframe WEP keys and a 48-bit initialisation vector rather than the 24-bit vector used by WEP.

III. PERFORMANCE ANALYSIS AND COMPARISON OF BLUETOOTH AND Wi-Fi

3 COSTS AND POWER CONSUMPTION

Bluetooth is intended for portable products, short ranges, and limited battery power. Consequently, it offers very low power consumption and, in some cases, will not measurably affect battery life. On the other hand, Wi-Fi is designed for longer-range connections and supports devices with a substantial power supply. On the average, a typical Bluetooth device absorbs from about 1 to 35 mA, while a Wi-Fi device typically requires between 100 and 350 mA. This dramatic difference makes Bluetooth the only practical choice for mobile applications with limited battery power. On the other hand, when greater ranges are needed and power consumption is less of an issue, Wi-Fi is usually the best solution. In this section two wireless products for which detailed characteristics are publicly available, one for Bluetooth and one for Wi-Fi, are briefly presented as an example and compared in terms of power consumption and costs.

3.1 CSR BLUECORE ARCHITECTURE FOR BLUETOOTH

The CSR (Cambridge Silicon radio) designs and produces single-chip CMOS units for Bluetooth devices. Available chipsets include the Bluecore01 and Bluecore02, both of which implement the baseband and radio levels in the Bluetooth stack; their specifications are publicly available. In Bluecore01 a flash memory may be added containing the firmware which implements the Link Controller, the Link Manager and the Host Controller Interface levels, and may optionally include the Logical Link Control level, the

Adaptation Protocol, the RFCOMM protocol for the serial ports, and the Service Discovery Protocol (SDP). Bluecore02 gives some more options, such as including the flash memory in the chip, and requires about half the power.[13]

3.1.1 Power management in Bluetooth

Two main states are defined for Bluetooth devices:

Standby: no data are exchanged, only the clock is running.
 Connection: each device is connected with the master of the

piconet.

Four sub-states are possible:

Active mode: the device is active in the piconet.

Sniff mode: this is a low-power-consumption state as the listening activity is working during the sniff slots only.

Hold mode: the ACL traffic of a device is stopped for a certain period.

Park mode: the device is no longer a member of the piconet but it remains synchronized with the master of the piconet. This is the lowest power-consuming state.

3.1.2 Power management in the Bluecore chipset

The Bluecore family chips offer two low-power modes:

Shallow Sleep mode: the processor clock is reduced, which reduces the current absorption to 2 mA for the 01 chips, and a little less for the 02 chips.

Deep Sleep mode: most of the chip's circuits are switched off, which reduces the current absorption to 100 mA for the 01 series and even less for the 02 family. About 10 ms are necessary to enter or exit this mode. This mode can be used only if no SCO link is active and all the ACL links are in one of the power save modes (Hold, Sniff, Park). Some other restrictions are imposed,

e.g. the PCM port must be inactive, no USB connections must be active, and UART connections are forced to close.

3.1.3 Costs for the Bluecore chipset

Operation mode	VDD=3.0V	VDD=3.0V	VDD=1.8V
	Temp.	Temp.	Temp.
	=200 C	=200 C	=200 C
	average	peak	average
SCO connection	41 mA		
HV3 (1 s interval			
sniff mode) (Slave)			
41 mA			
SCO connection	42 mA		
HV3 (1 s interval			
sniff mode)			
(Master)			
SCO connection			26 mA
HV3 (40 s interval			
sniff mode) (Slave)			
SCO connection			26 mA
HV3 (40 s interval			
sniff mode)			
(Master)			
SCO connection	78 mA		53 mA
HV1 (Slave)			
SCO connection	77 mA		53 mA
HV1 (Master)			

ACL data transfer 115.2 kb/s UART (Master)	29 mA		15.5 mA
ACL data transfer 720 USB (Slave)	81 mA		53 mA
ACL data transfer 720 USB (Master)	82 mA	135 mA	53 mA
Peak current during RF burst			
ACL connection, Sniff mode 40ms interval, 38.4 kb/s UART	5.5 mA		40 mA
ACL connection, Sniff mode 1.28 ms interval, 38.4 kb/s UART	1.1 mA		0.5 mA
Parked Slave, 1.28 ms interval, 38.4 kb/s UART	1.1 mA		0.6 mA
Standby mode (connected to host, no RF activity)			0.047 mA
Deep sleep mode	0.09 mA		0.02 mA

Table 2: Power save modes in the Bluecore01 and Bluecore02 - External chipsets.

3.2 WI-FI INTERSIL PRISM ARCHITECTURE

Intersil Corp. has been one of the major hardware producers for the development of Wi-Fi devices3, in all its versions. Intersil is descended from Harris semiconductors which, together with Lucent Technologies, proposed the modifications to the Wi-Fi standard from which the 802.11b amendment was derived. The Intersil Wi-Fi business was sold to GlobespanVirata, which was then acquired by Conexant. We consider the Intersil Prism architecture because data sheets for the chipsets were publicly available. Both the PHY and the MAC layers are implemented for Wi-Fi devices. The Prism 2 chipset is composed of: A baseband/MAC (ISL 3871) processor with the following characteristics:

- USB 1.1 interface, - Firmware that realizes all the functions provided by the 802.11b standard, - Active autonomous scan, - Base band DSSS processor, - DBPSK and DQPSK modulations, - CCK multiplexing and Barker sequence, - Integrated A/D and D/A converters for AGC (automatic gain control) and transmission power adaptive control

. an RF amplifier (ISL 3984)

. a VCO (Voltage Controlled Oscillator) (ISL 3084) . a chip to feed the radio level (ISL 3684).

The following presents an overview of the provisions of the Wi-Fi standard on the topic of power management, and a comparison of these is made with what the Prism chipset offers on this topic.

3.2.1 Wi-Fi power management

A Wi-Fi device may be in either of the Awake or Doze states. In the Doze state the station cannot either transmit or receive, which reduces the power consumption. Consequently, there are two Power management modes:

Active mode (AM), and Power save mode (PS). The handling of the stations in PS mode differs according to the topology of the Wi-Fi network as follows.

Infrastructured network: a station in AM which wants to pass in PS must signal the AP (access point) by using the power management bit in the header of its packets. The AP stores all the traffic addressed to stations that are in PS mode; when transmitting the periodic beacon, the AP sends the list of the stations in PS mode and whether it has traffic queued for them. At regular and configurable time intervals, the stations in PS switch to AM in order to receive the beacon. If there is traffic addressed to them, the stations can receive it and then return to PS mode.

Ad hoc network: stations can use the PS mode, but the task of storing the traffic addressed to them is distributed among all the active stations, since no AP exists. All stations in PS mode switch to Awake state in a temporal window (ATIM window) during which the stations that have traffic stored for others send special frames (ATIM frames). If a station receives an ATIM frame addressed to it, it remains in Awake state in order to receive its traffic; otherwise, the station returns in PS mode until the next ATIM window is started. The transmission and reception of the ATIM frames during the ATIM window occur according to DCF rules, i.e. according to the CSMA/CA access method. It means that a station could receive an ATIM frame addressed to itself, wait for the data, and yet not receive them because of congestion on the shared channel.

3.2.2 Power management in the Prism chipset

The chipset of the Prism family has largely been used for the development of wireless cards, available for several buses: PCI, PCMCIA, USB and CompactFlash. The first generation Prism chipsets offers several power-saving modalities, which the MAC selects on the basis of the time interval between two consecutive Awake periods. The chipsets of the Prism 2 and Prism 3 families reduce the power consumption. [14]

3.2.3 Costs for the Prism chipsets

The Prism 3 kit costs about 40 USD in sets of 500 and includes:ISL3084 (SiGe VCO),ISL3684 units, (transceiver, direct Up/Down converter, single chip PHY),ISL3871 (integrated baseband processor/MAC for USB/PCMCIA, 11 Mb/s DS controller), ISL3984 (SiGe RF power amplifier, 2.4 GHz-2.5 GHz, +18 dBm with detector, ISL3872 **MLFP** package), (integrated baseband processor/MAC for mini-PC, 11 Mb/s DS controller).

3.3 BLUETOOTH AND WI-FI COMPARISON

In this section, the comparison of the two protocols, focusing particularly on the following items:

- the spectrum used, modulation characteristics and interference problems, - power requirements, - characteristics of the network topology, particularly with regard to the possibility of extending the basic cells, to interconnect with other network types, and routing problems,

- the ability to create an efficient network, particularly with regard to the maximum number of terminals which can be handled in a basic cell, the creation speed of the networks, and how the networks are created and maintained.

- the characteristics of the links among the devices of a single basic cell, and the maximum attainable throughput, - security and the ability to offer a given quality of service.

3.3.1 RADIO COMMUNICATION 3.3.1.1 Radio bandwidth, usage and modulation

Both protocols use a spread spectrum technique in the 2.4 GHz band, which ranges from 2.4 to 2.4835 GHz, for a total bandwidth of 83.5 MHz. Wi-Fi can also use the 5 GHz band. Bluetooth uses FHSS with 1 MHz wide channels, while Wi-Fi uses different techniques (DSSS, CCK, OFDM) with about 16 MHz wide channels. Frequency hopping is less sensitive to strong narrow band interference that only affects a few channels, while DSSS is less sensitive to wide-band noise. Both standards use ARQ at the MAC level i.e., they retransmit the packets for which no acknowledgement is received. Since Wi-Fi always uses the same frequency, retransmitted packets only benefit from time diversity. Future radio layers will likely use UWB for Bluetooth and MIMO for Wi-Fi [15][16].

3.3.1.2 Noise adaptation

Both protocols allow for different levels of protection from noise: Wi-Fi uses several modulation, coding and multiplexing techniques corresponding to signal rates ranging from 1 to 54 Mb/s, while Bluetooth uses a fixed signal rate of 1 Mb/s and several coding rates. Both protocols can exploit this flexibility in order to adapt to changing radio conditions, but the standards do not specify any algorithm for switching the signal and coding rates, so that implementers are free to choose their own. While the adaptation is done at the physical layer in Wi-Fi, and as such it is transparent to higher layers, in Bluetooth this is done at the Link Layer.[15][16]

3.3.1.3 Interference

Both technologies suffer from interference from other devices operating in the same radio bands. The 5 GHz band used by IEEE 802.11a is also used by 5 GHz cordless phones, while the 2.4 GHz band used by both Bluetooth and IEEE 802.11g is crowded with microwave ovens, HomeRF devices and 2.4 GHz cordless phones. The IEEE 802.11 Coexistence Task Group 2 and the Bluetooth SIG Coexistence Working Group are addressing this matter with the aim of making the Wi-Fi and the Bluetooth standards coexist peacefully. An outcome of this work is the proposed adaptive frequency-hopping scheme for Bluetooth, which would permit Bluetooth radios to identify and avoid the frequencies used by nearby Wi-Fi system and increase throughput while minimizing, or eliminating, interference for both systems.[15][16]

3.3.1.4 Traffic sensitivity

The aggregate throughput of a Piconet is independent of the traffic offered, because the access is centrally arbitrated. Conversely, the aggregate throughput on a BSS is dependent on the traffic offered, due to the distributed CSMA/CA technique, which uses collisions as a means of regulating access to the shared medium. Efficiency in a BSS is lower at higher load, while it is constant in a Piconet.

3.3.1.5 Transmission power

Both protocols define power limitations for the devices, according to the limits imposed by the various telecommunications regulator bodies. Table 3 summarizes the power limitations for Bluetooth. Most devices on the market are intended to replace short cables: they have fixed output power and usually fall into Class 1. Devices intended for general communications generally fall into Class 2 or Class 3 and have variable output power.[15]-[17]

Power Class	Maximum Output Power	Nominal Output Power	Minimum Output Power
Class 1	100 mW (20 dBm)	NA	1 mW (0 dBm)
Class 2	2.5 mW (4 dBm)	1 mW (0 dBm)	0.25 mW (-6 dBm)
Class 3	1 mW (0 dBm)	NA	NA

Table 3. Power classes of Bluetooth devices.

3.4 NETWORK SIZE

The maximum number of devices belonging to the network' s building block, i.e. the Piconet for Bluetooth and the BSS for Wi-Fi, is 8 (7 slaves plus one master) for a Piconet, 2007 for a structured BSS, and unlimited for an IBSS. Up to 255 Bluetooth slaves can be put in park mode, a state where they do not participate in data exchanges while keeping synchronization with the master's transmissions. Both protocols have a provision for more complex network structures, built from the respective basic blocks: the ESS for Wi-Fi and the Scatternet for Bluetooth.

3.5 SPATIAL CAPACITY

We define spatial capacity as the ratio between aggregated data transfer speed and transmission area used. Bluetooth, in a nominal range of 10 m, allows the allocation of 20 different Piconets, each with a maximum aggregate data transfer speed around 400 kb/s [15]. Wi-Fi allows interference-free allocation of 4 different BSSes, each with aggregate transmission speed of 910 kb/s in a nominal range of 100 m, or 31.4 Mb/s in a nominal range of 10 m. Thus, spatial capacities can be evaluated for 802.11g at roughly 0.1 kb/s·m2 at minimum speed or 400 kb/s·m2 at maximum speed, and 25 kb/s·m2 for Bluetooth. It is important to notice that these numbers are intended as a guideline only, since in real cases other factors, such as receiver sensitivity and interference affecting the attainable data transmission speed.

3.6 PACKETIZATION, FEC AND THROUGHPUT

Bluetooth datagram payloads (ACL links) are protected by a 16-bit CRC, while stream payloads (SCO links) are not; all headers are protected by an 8-bit CRC. Different FEC types can be applied to Bluetooth packets: no FEC, a 1/3 and a 2/3 (a shortened Hamming code) FECs are available. A SCO packet has fixed length, fitting a single slot, and a fixed 64 kb/s throughput with fixed packet lengths of 10, 20 or 30 bytes. An ACL packet fits into 1, 3, or 5 slots. The payload lengths are fixed, ranging from 17 to 339 bytes, with symmetric throughput ranging from 108.8 to 433.9 kb/s, and asymmetric throughput going up to 732.2 / 57.6 kb/s.

Wi-Fi packets are variable in length, with payload size ranging from 0 to 2304 bytes; they are protected by a 32bit CRC.[16]. In [17] it is shown that for the average Internet mix of IP packet sizes and supposing a fixed network rate of 11 Mb/s, the expected data rate is around 3 Mb/s with CSMA/CA and 2 Mb/s with RTS/CTS.

3.7 NETWORK TOPOLOGIES

Let us consider different topology configurations. In some cases, a direct comparison is possible between the cases of Bluetooth and Wi-Fi, while other configurations have no counterpart.

3.7.1 Piconet versus infrastructured BSS

The Bluetooth Piconet and the infrastructured BSS topology in Wi-Fi show many analogies. In both cases, traffic is handled by a central unit, called the master in Bluetooth and AP in Wi-Fi, respectively. The difference is that in the Piconet the master always regulates the channel access of the slaves, while the corresponding Wi-Fi function is not currently implemented; this may change with the advent of 802.11e devices. The maximum number of slave units is 7 in Bluetooth, 2007 in Wi-Fi; the nominal range is 10 m in Bluetooth, 100 m in Wi-Fi. Connection with external networks is defined for Bluetooth by the LAN Access Profile, while a Wi-Fi AP is structurally able to act as a bridge.

3.7.2 Scatternet versus IBSS

Topological analogies can also be found between the Bluetooth Scatternet configuration and the Wi-Fi ad hoc IBSS. They are both ad hoc networks, with a dynamically variable topology.

One difference is that the Scatternet has substructures, called Piconets, while the IBSS has a flat structure. Both need a global addressing mechanism and a routing mechanism in order to ensure global connectivity among the stations.

In Wi-Fi, a global addressing mechanism exists, since the devices are identified by a MAC 802 address. Bluetooth does not provide any global addressing, which should then be provided by upper-layer protocols.[15]-[17]

3.7.3 ESS and LAN Access Profile

The ESS defined in Wi-Fi has no analogous Bluetooth concept, unless a structure is built where two or more Piconets implementing the LAN Access or PAN (personal area network) profiles are interconnected to an external network, for example to a cabled LAN.

3.8 AUTHENTICATION

Both protocols support authentication at the link level for granting network access to the devices; user authentication is typically carried out at a higher level. Bluetooth provides a method for authenticating the devices by means of a shared secret, called a link key, between the two devices. This link key is established in a special communication session called pairing, during which the link key is computed starting from the address of each device, a random number, and a shared secret (PIN). If both parts must be authenticated, then the procedure is repeated in both senses. The shared secret can be manually entered the first time that the devices are used, or it can be hardwired for paired devices that are always used together.

Wi-Fi defines two authentication methods: OSA (Open System Authentication) and SKA (Shared Key Authentication).

In OSA mode, the requesting station sends a frame to the AP asking for authentication and the AP always grants authentication; two frames must be exchanged between the stations. This method provides no security and is the simplest for open Access Points.

In SKA mode, the requesting station (initiator) sends a frame to the AP asking for authentication; the AP (authenticator) sends a 128-byte clear text, which the initiator encrypts by using a shared secret and sends back to the AP. Encryption is performed by XORing the challenge with a pseudo-random string formed by the shared secret and a public initialization vector. This is a shared-secret authentication analogous to the one used in Bluetooth.

With the 802.1X authentication scheme used by WPA, more frames are exchanged after Association, for a total of seven frames exchanged between the station and the AP, plus a total of four packets exchanged between the AP and a RADIUS authentication server. [18],[23][24]

3.9 ENCRYPTION

This is why both the Bluetooth and Wi-Fi technologies use data encryption in lower network layers. Bluetooth adopts the E0 stream cipher. For each session, a unique encryption key is generated, from which per-packet keys are derived in a way that avoids their frequent reuse. This is a superior method with respect to the WEP protocol used in Wi-Fi, even if it has its own weaknesses [18][23].

Recent Wi-Fi devices based on WPA encryption are much harder to break, and future devices based on the 802.1X/EAP framework (WPA2) will allow choosing among different strength algorithms.

3.10 QUALITY OF SERVICE

In Bluetooth QoS for asynchronous service (ACL links) is requested in terms of long-term data rate, bucket size (which defines the maximum size of a burst of data), peak data rate, latency and jitter; in principle these parameters allow sophisticated channel admission control and scheduling policies. Bluetooth also provides for synchronous constant bit rate services (SCO links). The 802.11e draft standard is going to define similar provisions for QoS, by using sophisticated flow descriptions (ECDF) and guaranteed-rate services (EPCF), but the details are still being worked out. An overview of Comparisons of WPAN-Bluetooth and WLAN-WIFI as given in Table 4: [10]-[24].

V. CONCLUSION

In this article, I have provided a flavor for Bluetooth and IEEE 802.11 WLAN Wi-Fi technologies and their implementation specifically. The overview of the two most popular wireless standards, with a comparison in terms of capacity, network topology, security, quality of service support, and power consumption etc. These technologies often serve complementary functions for end-to-end connectivity such as power consumption, quality of service, and security are open challenges, where the technology is continuously improving, both as far as the standards and their implementations are concerned.

VI. REFERENCES

i. [1] IEEE Std 802.15.1-2002 IEEE Std 802.15.1 IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs).

ii. [2] T. Sridhar, "Wireless LAN Switches—Functions and Deployment," The Internet Protocol Journal, Volume 9, No. 3, September 2006..

iii. [3] Vainio, T. Juha, "Bluetooth security", Internetworking seminar, Department of Computer Science and Engineering, Helsinki University of Technology, 2000 <http://www.iki.fi/jiitv/bluesec.html>.

iv. [4] ISO/IEC 8802-11; ANSI/IEEE Std 802.11, 1999 edn Information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.

v. [5] ISO/IEC 8802-11:1999/Amd 1:2000(E); IEEE Std 802.11a-1999 Information technology- telecommunications and information exchange between systems- local and metropolitan area networks- specific requirements part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 1: high-speed physical layer in the 5 GHz band.

vi. [6] IEEE Std 802.11b-1999 Supplement To IEEE Standard For Information Technology- Telecommunications And Information Exchange Between Systems- Local And Metropolitan Area Networks- Specific Requirements- Part 11: ireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band.

vii. [7] IEEE Std 802.11g-2003 (Amendment to IEEE Std 802.11, 1999 Edn. (Reaff 2003) as amended by IEEE Stds 802.11a-1999, 802.11b-1999, 802.11b-1999/Cor 1-2001, and 802.11d-2001).

viii. [8] H. Bölcskei and A. J. Paulraj, "Multiple-input multipleoutput (MIMO) wireless systems", chapter in "The Communications Handbook", 2nd edition, J. Gibson, ed., CRC Press, pp. 90.1 -90.14, 2002.

ix. [9] Giuseppe Anastasi and Luciano Lenzini, "QoS provided by the IEEE 802.11 wireless LAN to advanced data applications: a simulation analysis", Wireless Networks, vol. 6, No. 99, 2000, pp. 99-108.

x. [10] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard Walke, "Analysis of IEEE 802.11e for QoS Support in Wireless LANs", IEEE Wireless Communications Magazine, Special Issue on Evolution of Wireless LANs and PANs, July 2003.

xi. [11] W. A. Arbaugh, "An inductive chosen plaintext attack against WEP and WEP2. 2001", IEEE 802.11 Working Group, task Group I (Security), 2002.

xii. [12] J. Walker (Intel Corp), "Unsafe at any key size; an analysis of the WEP encapsulation", available from http://md.hudora.de/archiv/wireless/unsafew.pdf>.

xiii. [13] CSR Inc., "BlueCore 01" and "BlueCore 02" data sheets, http://www.csr.com/guide.htm>.

xiv. [14] Carl Andren, Tim Bozych, Bob Rood and Doug Schultz, "PRISM Power Management Modes", Intersil Americas Inc. application note, February 1997, AN9665.

xv. [15] S. Souissi, E.F. Meihofer, "Performance Evaluation of a Bluetooth Network in the Presence of Adjacent and Co-channel Interference", IEEE Emerging Technologies Symposium on Broadband Wireless Internet Access, 2000, pp. 1-6.

xvi. [16] Jangeun Jun, Pushkin Peddabachagari, Mihail Sichitiu, "Theoretical maximum throughput of IEEE 802.11 and its applications", the 2nd International Symposium on Network Computing and Applications, NCA-03, 2003, USA.

xvii. [17] Muhammad Umar Ilyas, "Performance analysis of MAC layer in IEEE 802.11 networks", Fast abstracts of the International Conference on Dependable Systems and Networks (DSN 2004), Florence (IT), pp. 178-180.

xviii. [18] Markus Jakobsson and Susanne Wetzel, "Security Weaknesses in Bluetooth,", Topics in Cryptology. CT-RSA 2001: The Cryptographers' Track at RSA Conference 2001, San Francisco, Calif., 8-12 April 2001. (Lecture Notes in Computer Science, 2020). Berlin: Springer-Verlag, pp. 176-191.

xix. [20] Erina Ferro, Francesco Potortì Bluetooth Andwi-Fi Wireless Protocols:, A Survey And A Comparison(*)©2004 Ieee, Ieee Wireless Communications Magazine, 2004-06-30.

xx. [21] B.A. Miller, and C.Bisdikian, "Bluetooth revealed: the insider's guide to an open specification for global wireless specifications", Prentice Hall, 2001.

xxi. [22] Chatschik Bisdikian, "An overview of the Bluetooth wireless technology", IEEE Communication Magazine, vol. 39, no. 12, December 2001, pp. 86-94.

xxii. [23] Convery, S., "Network Authentication, Authorization, and Accounting – Part One: Concepts, Elements, and Approaches," The Internet Protocol Journal, Volume 10, No. 1, March 2007.

xxiii. [24] Convery, S., "Network Authentication, Authorization, and Accounting – Part Two: Protocols, Applications, and the Future of AAA," The Internet Protocol Journal, Volume 10, No. 2, June 2007.

Description	Wireless LAN - Wi-FI	Wireless PAN - Bluetooth
Timetable	Standard in 1998, Products in 2000	Standard in 2000, Products in 2001 and 2002
Frequency Band and Bandwidth	IEEE 802.11b - 2.4 GHz IEEE 802.11a - 5 GHz IEEE 802.11g - 2.4 GHz	2.4 GHz
Speed	11 Mbps - 54 Mbps (Effective speed - half of rated speed)	1-2 Mbps (Effective speed - less than 50% rated speed)
Modulation Technique	Spread Spectrum OFDM	-
Distance Coverage	Up to 300 feet - 802.11b Up to 60 feet - 802.11a	Up to 30 feet now - efforts to increase coverage and speed
Number of access points required	Every 200 feet - 802.11b Every 50 feet - 802.11a	Every 30 feet - 25 to 30 times number of Bluetooth access points;
Maturity	More matured products	Less matured but progressing fast
Market Penetration	Quite widespread	Just starting in 2002
Interference with other devices	2.4 GHz band is polluted - significant interference here	2.4 GHz band is polluted - significant interference here
Interoperability	Current problems expected to be resolved in future	Problems now but expect resolution soon
Cost	Much more expensive than Bluetooth	Cost incremental in PDAs and phones - \$50; However Bluetooth chips @ <\$5 now
Vendors	Proxim, 3COM, Symbol, Cisco	Mostly chip vendors supplying to device manufactures
Max number of devices in the basic cell	Unlimited in ad hoc networks up to 2007 devices in infrastructured networks.	8 active devices; 255 in park mode
Typical output power	30-100 mW (15-20 dBm)	1-10 mW (1-10 dBm)
Multiplexing	DSSS, CCK, OFDM	FHSS
Noise adaptation	Physical layer	Link layer
Basic cell	BSS	Piconet
Channel Access Method	Distributed: CSMA/CA	Centralised: Polling
Channel Efficiency	Decreasing with offered traffic	Constant
Spatial Capacity	About 15 kb/s·m2	From 0.1 to 400 kb/s·m2
Data Protection	32 bit CRC	16-bit CRC (ACL links only)
Coexistence mechanism	Transmit power control	Adaptive frequency hopping
Extension of the basic cell	ESS	Scatternet
Encryption	RC4 stream cipher	E0 stream cipher
QoS mechanism	Coordination functions	Link types

Table 4: Comparison of Wireless Protocols - Bluetooth Vs Wi-Fi