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Abstract 

 

Network diagnosis, an essential research topic for traditional networking systems, has not received much attention for wireless sensor 

networks (WSNs). Existing sensor debugging tools like sympathy or EmStar rely heavily on an add-in protocol that generates and reports a large 

amount of status information from individual sensor nodes, introducing network overhead to the resource constrained and usually traffic-

sensitive sensor network. We report our initial attempt at providing a lightweight network diagnosis mechanism for sensor networks. We further 

propose PAD, a probabilistic diagnosis approach for inferring the root causes of abnormal phenomena. PAD employs a packet marking scheme 

for efficiently constructing and dynamically maintaining the inference model. Our approach does not incur additional traffic overhead for 

collecting desired information. Instead, we introduce a probabilistic inference model that encodes internal dependencies among different network 

elements for online diagnosis of an operational sensor network system. Such a model is capable of additively reasoning root causes based on 

passively observed symptoms. We can implement the PAD prototype in our sea monitoring sensor network test-bed.  

 

Index Terms—Diagnosis, passive, sensor networks. 
 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) have been widely studied 

for enabling various applications such  as environment 

surveillance, scientific observation, traffic monitoring, etc. 

[14], [28]. A sensor network typically consists of a large 

number of resource-limited sensor nodes working in a self-

organizing and distributed manner. Having made increasing 

efforts [6], [7], [10]–[12], [16], [18]–[20], [27], [31] on the 

robustness and reliability of WSNs under crucial and critical 

conditions, researchers, however, have done little work 

targeting the in-situ network diagnosis for testing operational 

sensor networks. It is of great importance to provide system 

developers useful information on a system’s working status 

and guide further improvement to or maintenance on the 

sensor network. Due to the    ad hoc working style, once 

deployed, the inner structures and interactions within a WSN 

are difficult to observe from the outside. Existing works for 

diagnosing WSNs mainly rely on proactive approaches, which 

implant debugging agents into sensor nodes, periodically 

reporting the internal status information of each node to the 

sink, such as component failures,link status, neighbor list, and 

the like. For example, Zhao et al.[33] propose to scan the 

residual energy and monitor parameter aggregates including 

link loss rate and packet count. Such information is collected 

locally at each node and transmitted back to the sink for 

analysis. Sympathy [23] actively collects run-time status from 

sensor nodes like routing table and flow information and 

detects possible faults by analyzing node status together with 

observed network exceptions. The proactive information 

generation and retrieval exerts extra computational operations 

on sensors and imposes a large communication burden on a 

WSN, which is usually fragile at high-traffic loads. Those 

approaches work more like debugging or evaluation [26] tools 

before the system is released for use outside laboratory 

settings. While such tools are effective for offline debugging 

when sensor behavior and network scale can be strictly 

controlled, they may not be suitable for in-situ network 

diagnosis of an operational WSN since they continuously 

generate a large amount of traffic and aggressively consume 

computation, communication, and energy resources. Also, 

integrating those complex debugging agents with application 

programs at each sensor node introduces difficulties for 

system development. This work is motivated from our 

ongoing sea monitoring project [4], [30]. As shown in Fig. 1, 

for this project, we launched a working prototype WSN 

consisting of tens of nodes that float on the sea surface and 

collect scientific data such as sea depth, ambient illumination, 

pollution, and so on. Recently, in the field deployment tests, 

we often observed abnormal energy depletion that never 

occurred in the controlled laboratory experiments. We suspect 

that such a phenomenon is due to the usage of the Multi Hop 

Router (integrated in SURGE) component that frequently 

switches the optimized routing tree of the network owing to 

the highly instable environment of the sea. We also observed 

other problems on the sink side such as high delay of data 

sampling and unbalanced packet loss. Fast and accurate 

identification of the root causes is necessary before taking any 

further action such as issuing reboot messages to certain nodes 

or physically examining the suspicious links. With current 

debugging tools, it is indeed difficult to integrate 
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Fig. 1. OceanSense project. 
 

their agents with our application programs. It is even worse if 

we implant proactive information collectors in the network, 

which would inevitably speed up the depletion of energy and 

rapidly reduce the expected lifetime of the sensor network. In 

this study, we propose an online diagnosis approach that 

passively observes the network symptoms from the sink. 

Using probabilistic inference models, this approach effectively 

deduces the root causes of abnormal symptoms in the network. 

Compared to proactive debugging tools, the passive diagnosis 

approach observes data from routine application packets for 

back-end analysis. It can also be maintained in a running 

system at lightweight cost, thus it is expected to accommodate 

the application system in a timely manner without degrading 

performance. Inference-based network diagnosis methods 

have been widely investigated and applied in enterprise 

networks [5]. 

Various types of inference models, both deterministic and 

nondeterministic, have been proposed for inferring the root 

causes of service failures. Most models are built on expert 

knowledge or trained from historical data from the networks. 

The construction of such models can be very complicated, and 

once constructed, the models are often viewed as   maining 

unchanged for a relatively long period [5], as enterprise 

networks are usually stable with few dynamics in their 

structures. Compared to enterprise or static networks, 

however, sensor networks have the following unique features: 

1) sensor nodes have extremely limited computational and 

energy resources; 2) the network topology is highly dynamic 

due to the instable environment and acquiring prior knowledge 

of the network is difficult; 3) the individual sensor nodes are 

error-prone. Such conditions make existing active approaches 

for static network diagnosis infeasible. Thus, WSNs cannot 

easily adapt to such slow start approaches as sensors are self-

organized without any prior information on the dependencies 

among network elements. The high dynamics of the WSN 

structure also leads to the infeasibility of those inference 

models built from static data. We address the above challenges 

as follows. First, we introduce a packet marking scheme, 

which marks the regular routine communicating packets to 

continuously reveal their communication dependencies within 

the network. Using the output of the scheme, the sink 

constructs and dynamically maintains a probabilistic inference 

model. This scheme works in a lightweight manner without 

any extra transmission in the network and can adapt to 

frequent network changes. Second, we employ a hierarchical 

inference model that captures multilevel dependencies in the 

network. The hierarchical model can be constructed based on 

incomplete information, and it is able to  efficiently handle the 

network dynamics by updating only the changed parts. This 

model takes both positive and negative symptoms as input and 

reports the inferred posterior probability of possible root 

causes. Third, we design an online inference engine capable of 

additively reasoning the root causes such that it works even 

with incomplete or suspicious inputs in a nondeterministic 

manner. The major contributions of this study are as follows. 

To the best of our knowledge, we are the first to investigate a 

passive method of diagnosing the wireless sensor networks. 1) 

According to the unique features of sensor networks, we 

design an efficient packet marking scheme that dynamically 

reveals the inner dependencies of sensor networks without 

injecting extra transmissions. 

2) We propose hierarchical inference models that capture the 

multilevel dependencies among the network elements and 

achieve high accuracy. We further introduce a fast inference 

scheme that reduces the computational complexity and is thus 

scalable for online diagnosis in large-scale WSNs. 

3) We implement our diagnosis approach, PAD, and test its 

effectiveness in our sea monitoring project with 24 sensors. 

The results of our field test show that PAD indeed helps in 

exploring the root causes of observed symptoms. Relying on 

the output of PAD, we have successfully improved our 

application programs. 4) We further analyze and evaluate the 

scalability and effectiveness of PAD design through extensive 

simulations under varied conditions using the trace we collect 

from the prototype implementation. The rest of this paper is 

organized as follows. Section II introduces related work. 

Section III describes the framework of our system. We 

introduce the packet marking scheme in Section IV 

and discuss the two inference models based on Belief Network 

and Causality Diagram in Section V. In Section VI, we present 

our implementation and simulation results. We conclude this 

work in Section  
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II. RELATED WORK 

Most existing approaches for sensor network 

diagnosis are proactive, in which each sensor employs a 

debugging agent to collect its status information and reports to 

the sink by periodically transmitting specific control 

messages. Some researchers propose to monitor sensor 

networks by scanning the residual energy [33] of each sensor 

and collecting the aggregates of parameters of sensors where 

in-network processing is leveraged. By collecting such 

information, the sink is aware of the network conditions. Some 

debugging systems [23], [29] aim to detect and debug 

software failures in sensor nodes. For example, Clairvoyant 

[29] focuses on debugging sensor nodes at source level and 

enables developers to wirelessly connect to a remote sensor in 

the network and execute standard debugging commands on 

that node including break, step, and the like. Sympathy [23] is 

an advanced debugging tool that detects and debugs the 

failures in a sensor network. It actively collects in-network 

information periodically from each sensor node such as 

neighbor list, traffic flow, and the like and analyzes the 

network status at the sink. By carefully selecting an optimal 

set of information metrics, Sympathy aims at minimizing the 

diagnosis cost so as to be applicable to resource-limited sensor 

networks. It also applies an empirical decision tree to 

determine the most likely root causes for an observed 

exception. Much effort has been expended on network 

diagnosis for for enterprise networks. Commercial tools [1]–

[3] independently monitor servers and routers with various 

control messages, and alerts are automatically generated from 

the implanted agents in different network equipment. Those 

tools, being effective for diagnosing large-scale networks, are 

too complicated and energy-consuming for resource-

constrained sensor networks. There have been some passive 

diagnosis approaches proposed for enterprise networks that 

collect a network’s operational enterprise networks. 

Commercial tools [1]–[3] independently monitor servers and 

routers with various control messages, and alerts are 

automatically generated from the implanted agents in different 

network equipment. Those tools, being effective for 

diagnosing large-scale networks, are too complicated and 

energy-consuming for resource-constrained sensor networks. 

There have been some passive diagnosis approaches proposed 

for enterprise networks that collect a network’s 

operationalstatus from routine data packets so as to deduce the 

possible root causes of exceptions by an inference model. For 

example, Score [17] troubleshoots via shared risk modeling. It 

adopts a simplified two-level graph as the inference model and 

formulates the problem of locating fault roots as a minimal set 

cover problem. Kandula et al. explore the bipartite graph 

inference model and propose Shrink, introducing a 

probabilistic inference scheme [15]. The bipartite graph model 

approximates the dependencies in enterprise networks and 

greatly simplifies the complexity of the inference process. 

Steinder and Sethi [24], [25] also assume a bipartite graph 

model and apply Belief Networks [21] with the bipartite graph 

to represent relations among links and end-to-end 

communications. Shi et al. [22] present a fault diagnosis 

approach for general static complex systems based on 

Causality Diagram. The above schemes either require pre 

knowledge of the network dependencies,  which are obtained 

through Shared Risk Link Groups or SNMP in a relatively 

stable enterprise network, or adopt simplified models to 

approximate the network dependencies. A WSN, however, is 

featured by its hierarchical multilevel structures, which can 

hardly be approximated by the bipartite graph model. It is also 

unpractical to maintain the network dependencies as stable 

inputs in highly dynamic and self-organized sensor networks. 

The recently proposed Sherlock is the only work that adopts a 

multistate and multilevel inference graph for the network 

diagnosis [5]. They use a scoring function to derive the best 

explanations(root causes) for observed service exceptions. In 

order to avoid NP-hard computation complexity, they assume 

that there are at most a small constant number of failures in 

the enterprise network. This assumption is not valid for the 

unreliable and lossy WSNs. Guo et al. 13] tackle the problem 

of detecting nodes with faulty readings. 

 

 

 

 

III. SYSTEM FRAMEWORK 

We view the sensor network as a method for data acquisition 

in which source nodes periodically sample data and deliver 
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them back to the sink through multi hop communication. We 

do not assume any specific routing strategy, that is, our 

approach deals with networks of various communication 

topologies such as spanning tree or directed acyclic graph 

(DAG). We design a passive diagnosis approach, PAD, for 

such sensor networks. PAD aims to help network managers 

explore the root causes of exceptions in a running sensor 

system. PAD implants 

a tiny lightweight probe into each sensor node that 

sporadically marks routine application packets passing by so 

that the sink can reassemble a big picture of the network 

conditions from those small clues. Nevertheless, information 

from marking probes is quite limited and not sufficiently 

accurate. PAD employs a probabilistic model to infer the 

statuses of unobservable network elements and reveal the root 

faults in the network. PAD denotes the observed abnormal 

situations as negative symptoms such as a long time delay of 

data arrival or frequent packet loss. It denotes any successful 

packet reception as positive symptoms. The inference model 

inputs both negative and positive symptoms to derive network 

statuses. As illustrated in Fig. 2, PAD is mainly composed of 

four components: a packet marking module, a mark parsing 

module, a probabilistic inference model, and an inference 

engine. The packet marking module resides in each sensor 

node and sporadically  marks routine application packets 

passing by. At the sink side, the mark parsing module extracts 

and analyzes the marks 

carried by the received data packets. The network topology 

can thus be reconstructed and dynamically updated according 

to the analysis results. The mark parsing module also 

generates preliminary diagnosis information such as packets 

loss on certain links, route dynamics, and so on. The inference 

model builds a graph of dependencies among network 

elements based on the outputs from the parsing module. Using 

the inference model and observed negative and positive 

symptoms as inputs, the inference engine is able to yield a 

fault report, which reveals the root causes of exceptions by 

setting the posterior probabilities of each network component 

being problematic. The inference results are also taken as 

feedback to help improve and update the inference model.  

 

IV. PACKET MARKING 

Since a sensor network has a self-organized time-varying 

network structure, unlike the case in an enterprise network, no 

prior knowledge can be obtained for constructing the inference 

model. Also, as a WSN topology is highly dynamic, we need 

to acquire the network statuses continually to maintain the 

topology in real time. To address the above requirements, we 

design a packet marking algorithm in PAD, which 

dynamically captures the network topology and extracts the 

inner dependencies among network components. Before the 

analysis results are directed to the inference engine for further 

reasoning, we can generate a preliminary diagnosis report on 

some basic network exceptions. The main operation of this 

marking algorithm is to let sensor nodes stamp their IDs on 

passing data packets. Due to the size limitations of the data 

packets used in sensor networks, however,the marking scheme 

only adds 2 bytes to each data packet that records one node 

ID. During the packet delivery, each packet is marked by only 

one selected sensor node based on a set of rules. 

At the sink side, the mark parsing module traces back the 

paths from each source node through analyzing sporadically 

marked packets. Through assembling the paths from different 

source nodes, the network topology can be reconstructed along 

with the regular data delivery of the system. If the network 

remains 

static, the packet marking process automatically converges 

and stops after the entire network topology is constructed. 

When network conditions vary, such as when packet loss or 

route changes occur, the packet marking process restarts 

somewhere close to the exceptional event. A strength of this 

design is that it does not inject any extra message into the 

network and strictly limits the overhead of marks attached to 

each data packet. 

 
Fig. 3. The data structures for packet marking scheme. (a) A marked data 

packet. (b) Cache in sensor node. (c) Path updating 

 

A. Marking Scheme on Sensor Nodes 

Fig. 3(a) depicts an example of marked data packet. We 

assume that each original data packet contains: 1) a source 

node ID denoting the source node of this packet; and 2) a 

sequence number identifying the packet. If there is no such 

information recorded in the application, the marking scheme 

adds them to the packets. The mark added to the original 

packet consists of a pass node ID field that records the ID of a 

sensor that participates in delivering this packet and a hop to 

source field recording the number of hops from the source 

node to the marking node. When the source node issues a new 

data packet, it leaves the pass node ID field empty and sets the 

hop to source field to 0. Every intermediate node maintains a 

cache for its downstream source nodes. As illustrated in Fig. 
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3(b), each cache entry consists of a source node ID and the 

sequence number of the recently received packet from the 

source. We call two sequence numbers of a source continuous 

if the first sequence 

number is larger than the latter one by 1. As shown in 

Algorithm 1, upon receiving a packet, an intermediate node 

first checks whether the packet has been marked. If yes (the 

pass node ID is not empty), it forwards the packet with no 

further operations. Otherwise, the node checks its own cache. 

If there is no entry for the source node ID of this packet, it 

marks the packet by filling the pass node ID field with its own 

ID. It also creates a new entry for this source node in its cache 

and records the sequence number for the packet. If there exists 

an entry in the cache for the source node and the sequence 

number in the packet is continuous with the cache entry, the 

intermediate node updates the cache entry with the new 

sequence number. To prevent duplicate marking, the 

intermediate node does not fill the pass node ID field, instead 

it increments the hop to source field in the packet by 1 and 

forwards the packet. If the sequence number of the packet is 

not continuous with that recorded in the cache entry, it might 

be due to the packet loss or routing dynamics. The 

intermediate node marks the packet by filling the packet pass 

node ID field with its own ID. The node then updates its cache 

entry with the new sequence number of this packet and 

forwards it. The sink also participates in the marking process 

and creates a table recording source nodes and their packet 

sequence numbers. Using this marking scheme, the received 

packet in the sink records the ID of one intermediate node in 

the routing path together with its hop distance to the source 

node.We avoid duplicate marks of the same node on the same 

path to save communication costs. We can further reduce the 

memory usage in each sensor node by organizing its cache 

table into bloom filters. Each intermediate node inserts and 

extracts the source node information on the bloom filter. The 

error rate introduced by the bloom filter introduces negligible 

adverse impact in the lossy by-nature sensor network. 

 

Algorithm 1 Packet Marking (packet ) 

 

1: if has been marked 

2: return; 

3: else 

4: check cache; 

5: if no entry for source node of 

6: mark ; 

7: create entry with source node ID and sequence number 

in ; 

8: else if entry exists and sequence numbers are continuous 

9: update entry with new sequence number; 

10: increase hop to source in by 1; 

11: else if entry exists and sequence numbers are not 

continuous 

12: mark ; 

13: update entry with new sequence number; 

14: end if 

15: end if 

16: return; 

 

B. Parsing the Marks 

At the sink, the mark parsing module extracts and parses the 

marks piggybacked from the received packets. For each source 

node, we keep a data structure denoted as path to record node 

IDs along the path from the source node to the sink. As shown 

in Fig. 3(c), a path contains an array of slots and each slot 

records a node ID along the routing path hop by hop. The path 

also has a field that records the sequence number of the latest 

arrived packet from each source. On receiving a new packet, 

the mark parsing module checks the existence of a path 

structure associated with its source node. If there is no such 

path, it means it is the first time the sinkas received packets 

from that source. The sink creates a new path for the source 

node and records the source node ID at the first slot. The mark 

parsing module then examines whether the packet has been 

marked (the pass node ID field has been filled). If it has been 

marked, the sink updates the associated slot in the path to be 

the recorded node ID according to the hop to source field in 

the packet. For the packets from the recorded path, the parsing 

module operates according to the recorded sequence 

number.We denote as the difference between the sequence 

number of the received packet and the sequence number 

recorded in the path. If the sequence number of the new 

packet is equal to or less than that recorded in the path , it 

means that this is a duplicate or delayed packet. As 

information in the duplicate and delayed packets is usually 

outdated and may lead to errors in the mark 

parsing process, we ignore marks in such packets and do not 

update sequence number or other slots for the path. As a 

matter of fact, according to our deployment experiences in an 

operational sensor network, with a relatively long sampling 

interval, this kind of situation is rare. If , the sequence number 

recorded in the path is updated by the newly received 

packet, and then other slots of the path are accordingly 

updated by parsing the mark as Algorithm 2. Normally, 

without packet loss, , and we directly add the marked node ID 

into the path. Discontinuousness of the sequence numbers 

indicates 

that the packet loss occurs, which triggers a preliminary 

diagnosis report on packet loss. Besides, the number of packet 

losses is quantified as . A mismatch of the recorded pass node 

ID in the packet and the recorded node ID in corresponding 

slot in the path indicates a route alternation happening at the 

position between the hop to source recorded in the packet and 

its hops upward. If not so, the marking should have been taken 

earlier. The parsing algorithm then generates a preliminary 

report of a route switch. In such a case, the slots in recorded 
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path ranging from hops before the hop to source position to 

the sink become inaccurate, so we clear all those slots. Let us 

look at the example in Fig. 3(c), where a new mark is 

received. The pass node ID is , four hops away from the 

source. The mismatch between and current node in the same 

position of this path indicates a route variation. Now, the issue 

is how to determine where the route variation occurs. If there 

is no packet loss, it must be node that changes its route from 

to. In this case equals 2, indicating that one packe this just 

been lost. The situation can be more complicated indeed. As 

illustrated in Fig. 3(c), the route variation can happen at ; for 

example, changes its parent node from to , and then marks the 

consequent packet. The packet, however, gets lost on its way 

to the sink, so before the next packet marked 

by arrives, the sink cannot be aware of the route  ariation. 

Another possible case is that the route switch happens at , but 

fails to send the consequent packet to , and then has to mark 

the second packet. As the route variation happens, slots 

ranging from to sink are suspicious. We update to and clear 

other slots, expecting further information. The reception of the 

packet without any marks triggers a preliminary report of a 

successful delivery. The mark parsing function is presented in 

Algorithm 2. The mark parsing module constructs and updates 

the network topology with the recorded paths. Once a 

newpacket is received, the path associated to its source node is 

updated. This indicates that all links along the current path 

have just participated in the transmission of a packet. For each 

link in the network topology, we keep a counter to count the 

number of transmissions experienced by this link. Such 

information facilitates the construction of the inference model 

as it tells the strength of the dependency between the parent 

and its successive nodes. Since links in sensor networks are 

usually shared by multiple paths, we do not need to collect 

complete path information for all paths before revealing the 

entire network topology. Indeed, this scheme captures the 

network topology with a small number of packet receptions, as 

demonstrated in our field experiment. One potential issue is 

that when the sink fails to learn the information of some path 

segments and the network topology is stable, few marks are 

received. As a result, it will take really a long time for the sink 

to learn the missing path segments. Such a drawback, 

however, is alleviated due to the sharing feature of network 

links, i.e., the missing links can be recovered from other paths 

that share them. Such a feature definitely alleviates, but does 

not completely avoid, this problem. To actively 

eliminate such a problem, in our implementation we let the 

intermediate nodes periodically clear their local caches.With 

this operation, new marks are inserted to packets, and the path 

information at sink can be periodically refreshed even when 

the network topology is static. 

Algorithm 2 Mark Parsing(packet ) 

 

1: if p.sourceNodeID has no associated path 

2: create new path for p.sourceNodeID; 

3: end if 

4: ; 

5: if //duplicate packet 

6: return; 

7: else 

8: ; 

9: end if 

10: if //no packet loss 

11: if //route 

switch 

12: ; 

13: clear all slots in path after ; 

14: generates route switch report; 

15: end if 

16: else if //packet loss detected 

17: generate packet loss report; 

18: if //route 

switch 

19: clear all slots in path after ; 

20: ; 

21: end if 

22: end if 

 

Clearly, in this design we propose to mark simple messages 

only, but if we insert more marks into the data packets, we 

obtain richer information on the network statuses and make 

the diagnosis process more straightforward. Nevertheless, in  

resource constrained sensor networks, we have to minimize 

the communication overhead introduced by our diagnosis 

model. Therefore, we choose to only use simplified marks to 

additively reconstruct the network. We give details about this 

issue in later discussions. Compared to existing approaches, 

our approach with quick reactivity and fast convergence is 

thus more suitable for highly dynamic environments. 

C. Preliminary Diagnosis Reports 

Before the final diagnosis results are obtained from 

the inference engine, some preliminary diagnosis reports can 

be yielded from the mark parsing module, which help to 

analyze the network statuses. The preliminary diagnosis 

briefly infers the following reports. 1) Success delivery report. 

When the sink receives a packet without any mark, it indicates 

a successful delivery  along the current path. This report tells 

us that the route from the source sensor node to the sink is still 

the same and all links along this path have just conducted a 

successful transmission that confirms the active state of those 

links.  

2) Packet loss report. As described above, if the difference 

between the sequence number recorded in the path and the 

sequence number of the packet is more than one, it can be 

inferred that the packet loss occurs. The number of packet loss 

is quantified as . In this case, according to our marking 

scheme, the packet must have been marked by some 
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intermediate node. This report can further locate the packet 

loss location if there is no route switch accompanying the 

packet loss. 

3) Route Switch Report. The mismatch of the pass node ID in 

the packet and the recorded ID in the corresponding slot in the 

path indicates that the previous routing path has been altered. 

The position of the switch is between the hop to source 

recorded in the packet and its hop upward. V. PROBABILISTIC 

INFERENCE The packet mark parsing module provides a coarse 

abstraction and incomplete report.  

 

At the sink, the successive probabilistic inference helps to 

reveal the inner dependencies among different network 

elements in the sensor network and expose the hidden root 

causes of the exterior symptoms. Network elements are inner 

correlated, for example, the crash of an upstream node causes 

all its children to disconnect from the sink. In contrast, 

simultaneous congestion of multiple paths may indicate a high 

probability of a malfunction at a common link. Based on such 

observations, we explore the dependencies among network 

elements (link status, sensing function, path status, etc.) on the 

constructed communication topology and encode them with a 

probabilistic model.  

 

Exterior symptoms like delay or loss of data samples are 

considered as inputs. When specific symptoms are observed 

by our inference algorithm, we can deduce the probability of 

the failures of each network element and find the most 

probable root causes in real time.Most existing inference 

schemes for static enterprise  networks use the simplified 

bipartite graph or tree-based inference model.  

As the network topologies in sensor networks are highly 

dynamic and no prior knowledge can be acquired in advance, 

it is difficult to apply the models for static networks in sensor 

networks. Instead, we apply a hierarchical inference model to 

capture the inner dependencies in sensor networks. The 

hierarchical model is good for encoding indirect dependencies 

with its hierarchical structure and can be constructed without 

complete information. Also, being assembled by many 

subparts, it can easily handle the network dynamics efficiently 

by updating the changed parts only.  

We first apply the Belief Network [21] as our inference model. 

Belief Network is a well-known probabilistic model that has 

been widely used in research domains like artificial 

intelligence and system engineering. In Belief Network, each 

possible root cause or symptom is represented by a variable. 

Each variable might have multiple values (e.g., 1 for a link in 

active state and 0 for in trouble). Causal relationships between 

different variables are denoted as directional arcs. Inferences 

can be conducted on this model to deduce the probability of 

particular values to our interested variables once the values of 

some other variables have been observed (e.g., symptoms like 

the high delay of data samplings). To further speedup the 

process, we propose a simplified inference model, Causality 

Diagram. According to the characteristics of sensor networks, 

we can design a simplified Causality Diagram that accurately 

approximates the inference results and reduces the overhead. 

A. Belief Network 

A Belief Network (or Bayesian Network) is a 

directed acyclic graph (DAG) that represents a set of variables 

and their probabilistic relationships. Each vertex in the graph 

denotes a random variable. In the rest of this paper, we use 

“vertex” and  “variable” interchangeably. A directional arc 

from vertex to indicates a causal relation between the two 

variables in which the variable associated with the starting 

vertex acts as the cause and the variable of is the effect. The 

cause is called a parent of the outcome .  

 

The strength of the relation between a parent and its 

child is defined by the conditional probabilities. We then 

formulate a Belief Network as a binary , where is a DAG and 

specifies a conditional probability distribution (CPD) in . 

Here, represents the set of vertices in , and denotes all arcs (or 

edges). specifies the conditional probability distribution of 

each variable given its parents. When the value domain of 

variable is discrete, the CPD can be represented as a 

conditional probability table (CPT). Given certain evidence 

(values of some variables), the Belief Network can answer 

three major types of queries [21]: 1) posterior probability 

assessment; 2) maximum posterior hypothesis; and 3) most 

probable explanation. The first type of query, which estimates 

posterior probabilities of certain variables given some 

evidence variables, best fits our requirements in this work. 

 

 

B. Inferring Through Belief Network 

Our inference model automatically constructs and 

maintains a Belief Network from the output of the mark 

parsing module. The inference engine accordingly infers from 

this model hidden statuses of the network. In our PAD 

approach, the Belief Network structure is assembled from the 

current network topology obtained from the mark parsing 

module. 

 

1) Constructing a Belief Network: 

 Fig. 4(a) depicts a simple example topology composed of a 

sink and three sensor nodes. The directional edge between two 

nodes denotes a wireless link and the direction of data 

transmitting along the link. There are five types of variables in 

our Belief Network, each of  which has the value domain of 

that denotes a normal or abnormal working status, 

respectively. For each source node, we add a variable to the 

BeliefNetwork, which denotes the status of the data reception 

of the 
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Fig. 4. Belief Network constructed from the communication topology. (a) 

Network 

topology. (b) Belief Network. 
 

 

source node. For example, if the sink observes a long time 

delay in the data reception from a source, the corresponding 

variable of this node will be set to Down. Note that, in many 

applications, some sensor nodes do not sample data, but only 

relay messages for other nodes. Some of the nodes simply 

relay packets for other sensors, so there are no data reception 

variables for those nodes. The status of the data report variable 

depends on two parent variables, the sensing variable and the 

connection variable . The sensing variable Si indicates the 

sensing function of the corresponding source node, and the 

connection variable describes the condition of the network 

connectivity from the source node to the sink. We add two 

arcs from and to to represent the dependencies between them. 

And are thus called the parent variables of in the Belief 

Network. Both the sensing functionality and the network 

connectivity condition will affect the success of the data 

reported from the source node. The connectivity from a source 

node to the sink relies on one or more paths connecting them. 

For example, node 2 in Fig. 4(a) can choose to deliver packets 

through two parents, node 1 and node 3, so in the 

corresponding Belief Network, the connection variable has 

two parent variables and . They are called path variables. The 

subscript of each path variable sequentially denotes the ID of 

the start node on the path, the ID of the next hop node from 

the start node, and the ID of the end node on the path. As 

illustrated in Fig. 4(b), the status of each path variable depends 

on two parent variables. One is the link variable on the first 

hop from the start node, and the other is the connection 

variable of its parent node. The link variable represents the 

communication conditions of a wireless link between two 

nodes and . We connect each pair of variables that has a 

dependency with a directional arc from the cause variable to 

the outcome variable. Eventually, we obtain a hierarchical 

network composed of these five types of variables in which 

dependencies among network elements are encoded. Among 

the five types of variables, the statuses of the link and sensing 

variables are hidden from the exterior observations that most 

need to be inferred. The path and connection variables are 

intermediate variables that are usually combinational results of 

other parent variables. The data report variables are outputs of 

the mark parsing module that we directly observe at the sink. 

The Belief Network structure consisting of Fig. 5. CPTs of (a) 

noisy-OR and (b) Select gates. the variables is automatically 

maintained and updated when network topology and 

communication conditions vary over time. 

2) Inference on Belief Network:  

Once the Belief Network structure is constructed, a critical 

issue is how to assign CPTs for variables that specify the 

conditional probabilities between parents and their children. 

Different logistic relations between parents and their children 

lead to different methods for calculating the CPT. For 

example, the sensing variable and connection variable affect 

their children variable of data report in a logical OR manner, 

i.e., if one of them is in the Down state, the data report 

variable should be switched onto the Down state. Due to the 

diverse routing schemes and high dynamics in sensor 

networks, a sensor may maintain multiple parents for relaying 

its data. Consequently, in our inference model, multiple path 

variables affect the same connection variable in Select mode 

where the status of selected paths will determine the status of 

the connection variable.  

 

In PAD, we employ the noisy-OR gate [21] and Select gate [5] 

to encode these operations. Fig. 5(a) shows the CPT in a 

noisy-OR gate, where any one of the parent variables in Down 

status results in the Down status of the child variable. In Fig. 

5, and represent the noisy property that means even if both 

parent variables are in the Up status, the child variable still has 

a chance to fail (in Down status). In PAD, noisy-OR gates 

exist in several cases such as when the sensing and connection 

variables affect the data report variables, the link and 

connection variables affect the path variables, and so on. The 

relation between multiple path variables and a connection  

variable is represented by the Select gate as illustrated in Fig. 

5(b). Here, denotes the dependency strength of each parent, 

and in the case of Fig. 5(b), is the probability that the child 

connection variable selects a certain path to relay data. Thus, 

the probability that a connection variable is in the Up status is 

given by In the Belief Network, each noisy-OR gate connects 

two parent variables to a child variable, so the CPT calculation 

is quick. The Select gate might connect more parent variables 

to a child variable, but the maximum number of parent 

variables for one gate is bounded by the number of neighbors 

for a sensor node. The number of neighbors is normally 

treated as a constant. Hence, the CPT calculation for Select 

gate is also 
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Fig. 5. CPTs of (a) noisy-OR and (b) Select gates 

 

 

the variables is automatically maintained and updated when 

network topology and communication conditions vary over 

time. 2) Inference on Belief Network: Once the Belief 

Network structure is constructed, a critical issue is how to 

assign CPTs for variables that specify the conditional 

probabilities between parents and their children. Different 

logistic relations between parents and their children lead to 

different methods for calculating the CPT. For example, the 

sensing variable and connection variable affect their children 

variable of data report in a logical OR manner, i.e., if one of 

them is in the Down state, the data report variable should be 

switched onto the Down state. Due to the diverse routing 

schemes and high dynamics in sensor networks, a sensor may 

maintain multiple parents for relaying its data. Consequently, 

in our inference model, multiple path variables affect the same 

connection variable in Select mode where the status of 

selected paths will determine the status of the connection 

variable. In PAD, we employ the noisy-OR gate [21] and 

Select gate [5] to encode these operations. Fig. 5(a) shows the 

CPT in a noisy-OR gate, where any one of the parent variables 

in Down status results in the Down status of the child variable. 

In Fig. 5, and represent the noisy property that means even if 

both parent variables are in the Up status, the child variable 

still has a chance to fail (in Down status). In PAD, noisy-OR 

gates exist in several cases such as when the sensing and 

connection variables affect the data report variables, the link 

and connection variables affect the path variables, and so on. 

The relation between multiple path variables and a connection 

variable is represented by the Select gate as illustrated in Fig. 

5(b). Here, denotes the dependency strength of each parent, 

and in the case of Fig. 5(b), is the probability that the child 

connection variable selects a certain path to relay data. Thus, 

the probability that a connection variable is in the Up status is 

given by  

In the Belief Network, each noisy-OR gate connects two 

parent variables to a child variable, so the CPT calculation is 

quick. The Select gate might connect more parent variables to 

a child variable, but the maximum number of parent variables 

for one gate is bounded by the number of neighbors for a 

sensor node. The number of neighbors is normally treated as a 

constant. Hence, the CPT calculation for Select gate is also 

efficient. In the initial stages, the prior fault probability 

distribution of the link and sensing variables are assigned 

according to experience data. The value of each is assigned by 

estimating the percentage of transmissions delivered through 

each path in a connection. Such information is input from the 

mark parsing module. 

 

 

VI. EVALUATION 

We conduct comprehensive simulations and implement field 

experiments to evaluate the performance of PAD. For the 

implementation, we used the BNJ implementation of the 

Belief Network 

inference as part of our inference engine.We implemented the 

packet marking scheme for TelosB motes on the TinyOS 

platform with nesC language.We implemented the mark 

parsing module on the java based back end. 

 

A. Simulations 

We first examine the effectiveness and efficiency of PAD 

through simulations. We simulate a sensor network in which 

sensor nodes are deployed on a two-dimensional space, with 

the sink located at the center. Sensors periodically data and 

deliver to the sink through multihop routes. Two routing 

schemes are applied in the simulation. Various types of faults 

are inserted into links or nodes according to different test 

settings. We use a cutoff threshold to detect the failures. In the 

following tests, if the output posterior probability of a certain 

network element (for example a link) to be faulty is higher 

than 50%, we will regard this element as failure. We apply 

two metrics for estimating the performances of inference 

models, the detection ratio and false positive ratio. Detection 

ratio is the ratio between the number of faults founded and the 

number of all faults. False positive ratio is the ratio between 

the real failures detected and all failure reports generated by 

our diagnosis system. 

1) The Efficiency of the Packet Marking Scheme: We evaluate 

the convergence time of the packet marking scheme under 

various network conditions. In these tests, we simulate a data 

acquisition network using both spanning tree-based routing 

and DAG-based routing schemes. Each source node samples 

environment data and generates a new packet every 2 s. 

Different routing schemes lead to different types of topologies. 

The notation Tree denotes a spanning tree topology rooted at 

the sink, and the notation DAG denotes a multipath routing 

strategy where each sensor node has multiple parents. Besides 

the routing topologies, the link loss rate also impacts the 

topology reconstruction. Thus, we evaluate the performance of 

our approach with different link loss rates. Here, no link loss 
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indicates that all packet transmissions are guaranteed to 

deliver, and 10% link loss means that each link has 10% 

packet loss rate. Under the latter setting (10% link loss), it is 

difficult for a source node far away from the sink to deliver its 

packets to the sink since a packet has high probability to get 

lost on a long path. 
 

 

VII. CONCLUSION AND FUTURE WORK 

Although there have been many approaches proposed for 

debugging the operation of sensor network systems in a 

controlled laboratory, few works have been done toward an in-

situ diagnosis tool for monitoring the statuses of operational 

systems in the field. In this paper, we propose PAD, a passive 

diagnosis approach that can be efficiently implemented and 

applied to a normally working sensor network system 

providing in-situ network diagnosis. The proposed lightweight 

packet marking scheme collects necessary hints without 

injecting extra traffic overhead to the original system. The 

probabilistic inference model residing at the sink captures the 

unique features of the sensor networks and yields accurate 

results. The inference engine works well even with incomplete 

or suspicious inputs in a nondeterministic manner.We 

implement our diagnosis approach and validate its 

effectiveness in a field test in our sea monitoring project. The 

sea monitoring project is an ongoing project. We are currently 

utilizing PADas an important diagnosis tool to detect possible 

faulty components in the system and guarantee its correct 

operations. On the other hand, we are relying on such a 

platform to further test the effectiveness and efficiency of 

PAD and hope to improve it according to our future 

observations.  
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