
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

117

A Passive Diagnosis for Self organizing and Distributed Wireless Sensor

Networks

A.Rajasekaran
1
, K.Saraswathi

2

1
Assistant Professor, ECE Department, SCSVMV University, Enathur, Kanchipuram.
2
Assistant Professor, E&I department, SCSVMV University, Enathur, Kanchipuram.

Email: shrisairaja@gmail.com,saraswathi_krani@yahoo.co.in
Abstract

Network diagnosis, an essential research topic for traditional networking systems, has not received much attention for wireless sensor

networks (WSNs). Existing sensor debugging tools like sympathy or EmStar rely heavily on an add-in protocol that generates and reports a large

amount of status information from individual sensor nodes, introducing network overhead to the resource constrained and usually traffic-

sensitive sensor network. We report our initial attempt at providing a lightweight network diagnosis mechanism for sensor networks. We further

propose PAD, a probabilistic diagnosis approach for inferring the root causes of abnormal phenomena. PAD employs a packet marking scheme

for efficiently constructing and dynamically maintaining the inference model. Our approach does not incur additional traffic overhead for

collecting desired information. Instead, we introduce a probabilistic inference model that encodes internal dependencies among different network

elements for online diagnosis of an operational sensor network system. Such a model is capable of additively reasoning root causes based on

passively observed symptoms. We can implement the PAD prototype in our sea monitoring sensor network test-bed.

Index Terms—Diagnosis, passive, sensor networks.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been widely studied

for enabling various applications such as environment

surveillance, scientific observation, traffic monitoring, etc.

[14], [28]. A sensor network typically consists of a large

number of resource-limited sensor nodes working in a self-

organizing and distributed manner. Having made increasing

efforts [6], [7], [10]–[12], [16], [18]–[20], [27], [31] on the

robustness and reliability of WSNs under crucial and critical

conditions, researchers, however, have done little work

targeting the in-situ network diagnosis for testing operational

sensor networks. It is of great importance to provide system

developers useful information on a system’s working status

and guide further improvement to or maintenance on the

sensor network. Due to the ad hoc working style, once

deployed, the inner structures and interactions within a WSN

are difficult to observe from the outside. Existing works for

diagnosing WSNs mainly rely on proactive approaches, which

implant debugging agents into sensor nodes, periodically

reporting the internal status information of each node to the

sink, such as component failures,link status, neighbor list, and

the like. For example, Zhao et al.[33] propose to scan the

residual energy and monitor parameter aggregates including

link loss rate and packet count. Such information is collected

locally at each node and transmitted back to the sink for

analysis. Sympathy [23] actively collects run-time status from

sensor nodes like routing table and flow information and

detects possible faults by analyzing node status together with

observed network exceptions. The proactive information

generation and retrieval exerts extra computational operations

on sensors and imposes a large communication burden on a

WSN, which is usually fragile at high-traffic loads. Those

approaches work more like debugging or evaluation [26] tools

before the system is released for use outside laboratory

settings. While such tools are effective for offline debugging

when sensor behavior and network scale can be strictly

controlled, they may not be suitable for in-situ network

diagnosis of an operational WSN since they continuously

generate a large amount of traffic and aggressively consume

computation, communication, and energy resources. Also,

integrating those complex debugging agents with application

programs at each sensor node introduces difficulties for

system development. This work is motivated from our

ongoing sea monitoring project [4], [30]. As shown in Fig. 1,

for this project, we launched a working prototype WSN

consisting of tens of nodes that float on the sea surface and

collect scientific data such as sea depth, ambient illumination,

pollution, and so on. Recently, in the field deployment tests,

we often observed abnormal energy depletion that never

occurred in the controlled laboratory experiments. We suspect

that such a phenomenon is due to the usage of the Multi Hop

Router (integrated in SURGE) component that frequently

switches the optimized routing tree of the network owing to

the highly instable environment of the sea. We also observed

other problems on the sink side such as high delay of data

sampling and unbalanced packet loss. Fast and accurate

identification of the root causes is necessary before taking any

further action such as issuing reboot messages to certain nodes

or physically examining the suspicious links. With current

debugging tools, it is indeed difficult to integrate

http://www.ijset.com/
mailto:Email:%20shrisairaja@gmail.com,saraswathi_krani@yahoo.co.in

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

118

Fig. 1. OceanSense project.

their agents with our application programs. It is even worse if

we implant proactive information collectors in the network,

which would inevitably speed up the depletion of energy and

rapidly reduce the expected lifetime of the sensor network. In

this study, we propose an online diagnosis approach that

passively observes the network symptoms from the sink.

Using probabilistic inference models, this approach effectively

deduces the root causes of abnormal symptoms in the network.

Compared to proactive debugging tools, the passive diagnosis

approach observes data from routine application packets for

back-end analysis. It can also be maintained in a running

system at lightweight cost, thus it is expected to accommodate

the application system in a timely manner without degrading

performance. Inference-based network diagnosis methods

have been widely investigated and applied in enterprise

networks [5].

Various types of inference models, both deterministic and

nondeterministic, have been proposed for inferring the root

causes of service failures. Most models are built on expert

knowledge or trained from historical data from the networks.

The construction of such models can be very complicated, and

once constructed, the models are often viewed as maining

unchanged for a relatively long period [5], as enterprise

networks are usually stable with few dynamics in their

structures. Compared to enterprise or static networks,

however, sensor networks have the following unique features:

1) sensor nodes have extremely limited computational and

energy resources; 2) the network topology is highly dynamic

due to the instable environment and acquiring prior knowledge

of the network is difficult; 3) the individual sensor nodes are

error-prone. Such conditions make existing active approaches

for static network diagnosis infeasible. Thus, WSNs cannot

easily adapt to such slow start approaches as sensors are self-

organized without any prior information on the dependencies

among network elements. The high dynamics of the WSN

structure also leads to the infeasibility of those inference

models built from static data. We address the above challenges

as follows. First, we introduce a packet marking scheme,

which marks the regular routine communicating packets to

continuously reveal their communication dependencies within

the network. Using the output of the scheme, the sink

constructs and dynamically maintains a probabilistic inference

model. This scheme works in a lightweight manner without

any extra transmission in the network and can adapt to

frequent network changes. Second, we employ a hierarchical

inference model that captures multilevel dependencies in the

network. The hierarchical model can be constructed based on

incomplete information, and it is able to efficiently handle the

network dynamics by updating only the changed parts. This

model takes both positive and negative symptoms as input and

reports the inferred posterior probability of possible root

causes. Third, we design an online inference engine capable of

additively reasoning the root causes such that it works even

with incomplete or suspicious inputs in a nondeterministic

manner. The major contributions of this study are as follows.

To the best of our knowledge, we are the first to investigate a

passive method of diagnosing the wireless sensor networks. 1)

According to the unique features of sensor networks, we

design an efficient packet marking scheme that dynamically

reveals the inner dependencies of sensor networks without

injecting extra transmissions.

2) We propose hierarchical inference models that capture the

multilevel dependencies among the network elements and

achieve high accuracy. We further introduce a fast inference

scheme that reduces the computational complexity and is thus

scalable for online diagnosis in large-scale WSNs.

3) We implement our diagnosis approach, PAD, and test its

effectiveness in our sea monitoring project with 24 sensors.

The results of our field test show that PAD indeed helps in

exploring the root causes of observed symptoms. Relying on

the output of PAD, we have successfully improved our

application programs. 4) We further analyze and evaluate the

scalability and effectiveness of PAD design through extensive

simulations under varied conditions using the trace we collect

from the prototype implementation. The rest of this paper is

organized as follows. Section II introduces related work.

Section III describes the framework of our system. We

introduce the packet marking scheme in Section IV

and discuss the two inference models based on Belief Network

and Causality Diagram in Section V. In Section VI, we present

our implementation and simulation results. We conclude this

work in Section

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

119

II. RELATED WORK

Most existing approaches for sensor network

diagnosis are proactive, in which each sensor employs a

debugging agent to collect its status information and reports to

the sink by periodically transmitting specific control

messages. Some researchers propose to monitor sensor

networks by scanning the residual energy [33] of each sensor

and collecting the aggregates of parameters of sensors where

in-network processing is leveraged. By collecting such

information, the sink is aware of the network conditions. Some

debugging systems [23], [29] aim to detect and debug

software failures in sensor nodes. For example, Clairvoyant

[29] focuses on debugging sensor nodes at source level and

enables developers to wirelessly connect to a remote sensor in

the network and execute standard debugging commands on

that node including break, step, and the like. Sympathy [23] is

an advanced debugging tool that detects and debugs the

failures in a sensor network. It actively collects in-network

information periodically from each sensor node such as

neighbor list, traffic flow, and the like and analyzes the

network status at the sink. By carefully selecting an optimal

set of information metrics, Sympathy aims at minimizing the

diagnosis cost so as to be applicable to resource-limited sensor

networks. It also applies an empirical decision tree to

determine the most likely root causes for an observed

exception. Much effort has been expended on network

diagnosis for for enterprise networks. Commercial tools [1]–

[3] independently monitor servers and routers with various

control messages, and alerts are automatically generated from

the implanted agents in different network equipment. Those

tools, being effective for diagnosing large-scale networks, are

too complicated and energy-consuming for resource-

constrained sensor networks. There have been some passive

diagnosis approaches proposed for enterprise networks that

collect a network’s operational enterprise networks.

Commercial tools [1]–[3] independently monitor servers and

routers with various control messages, and alerts are

automatically generated from the implanted agents in different

network equipment. Those tools, being effective for

diagnosing large-scale networks, are too complicated and

energy-consuming for resource-constrained sensor networks.

There have been some passive diagnosis approaches proposed

for enterprise networks that collect a network’s

operationalstatus from routine data packets so as to deduce the

possible root causes of exceptions by an inference model. For

example, Score [17] troubleshoots via shared risk modeling. It

adopts a simplified two-level graph as the inference model and

formulates the problem of locating fault roots as a minimal set

cover problem. Kandula et al. explore the bipartite graph

inference model and propose Shrink, introducing a

probabilistic inference scheme [15]. The bipartite graph model

approximates the dependencies in enterprise networks and

greatly simplifies the complexity of the inference process.

Steinder and Sethi [24], [25] also assume a bipartite graph

model and apply Belief Networks [21] with the bipartite graph

to represent relations among links and end-to-end

communications. Shi et al. [22] present a fault diagnosis

approach for general static complex systems based on

Causality Diagram. The above schemes either require pre

knowledge of the network dependencies, which are obtained

through Shared Risk Link Groups or SNMP in a relatively

stable enterprise network, or adopt simplified models to

approximate the network dependencies. A WSN, however, is

featured by its hierarchical multilevel structures, which can

hardly be approximated by the bipartite graph model. It is also

unpractical to maintain the network dependencies as stable

inputs in highly dynamic and self-organized sensor networks.

The recently proposed Sherlock is the only work that adopts a

multistate and multilevel inference graph for the network

diagnosis [5]. They use a scoring function to derive the best

explanations(root causes) for observed service exceptions. In

order to avoid NP-hard computation complexity, they assume

that there are at most a small constant number of failures in

the enterprise network. This assumption is not valid for the

unreliable and lossy WSNs. Guo et al. 13] tackle the problem

of detecting nodes with faulty readings.

III. SYSTEM FRAMEWORK

We view the sensor network as a method for data acquisition

in which source nodes periodically sample data and deliver

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

120

them back to the sink through multi hop communication. We

do not assume any specific routing strategy, that is, our

approach deals with networks of various communication

topologies such as spanning tree or directed acyclic graph

(DAG). We design a passive diagnosis approach, PAD, for

such sensor networks. PAD aims to help network managers

explore the root causes of exceptions in a running sensor

system. PAD implants

a tiny lightweight probe into each sensor node that

sporadically marks routine application packets passing by so

that the sink can reassemble a big picture of the network

conditions from those small clues. Nevertheless, information

from marking probes is quite limited and not sufficiently

accurate. PAD employs a probabilistic model to infer the

statuses of unobservable network elements and reveal the root

faults in the network. PAD denotes the observed abnormal

situations as negative symptoms such as a long time delay of

data arrival or frequent packet loss. It denotes any successful

packet reception as positive symptoms. The inference model

inputs both negative and positive symptoms to derive network

statuses. As illustrated in Fig. 2, PAD is mainly composed of

four components: a packet marking module, a mark parsing

module, a probabilistic inference model, and an inference

engine. The packet marking module resides in each sensor

node and sporadically marks routine application packets

passing by. At the sink side, the mark parsing module extracts

and analyzes the marks

carried by the received data packets. The network topology

can thus be reconstructed and dynamically updated according

to the analysis results. The mark parsing module also

generates preliminary diagnosis information such as packets

loss on certain links, route dynamics, and so on. The inference

model builds a graph of dependencies among network

elements based on the outputs from the parsing module. Using

the inference model and observed negative and positive

symptoms as inputs, the inference engine is able to yield a

fault report, which reveals the root causes of exceptions by

setting the posterior probabilities of each network component

being problematic. The inference results are also taken as

feedback to help improve and update the inference model.

IV. PACKET MARKING

Since a sensor network has a self-organized time-varying

network structure, unlike the case in an enterprise network, no

prior knowledge can be obtained for constructing the inference

model. Also, as a WSN topology is highly dynamic, we need

to acquire the network statuses continually to maintain the

topology in real time. To address the above requirements, we

design a packet marking algorithm in PAD, which

dynamically captures the network topology and extracts the

inner dependencies among network components. Before the

analysis results are directed to the inference engine for further

reasoning, we can generate a preliminary diagnosis report on

some basic network exceptions. The main operation of this

marking algorithm is to let sensor nodes stamp their IDs on

passing data packets. Due to the size limitations of the data

packets used in sensor networks, however,the marking scheme

only adds 2 bytes to each data packet that records one node

ID. During the packet delivery, each packet is marked by only

one selected sensor node based on a set of rules.

At the sink side, the mark parsing module traces back the

paths from each source node through analyzing sporadically

marked packets. Through assembling the paths from different

source nodes, the network topology can be reconstructed along

with the regular data delivery of the system. If the network

remains

static, the packet marking process automatically converges

and stops after the entire network topology is constructed.

When network conditions vary, such as when packet loss or

route changes occur, the packet marking process restarts

somewhere close to the exceptional event. A strength of this

design is that it does not inject any extra message into the

network and strictly limits the overhead of marks attached to

each data packet.

Fig. 3. The data structures for packet marking scheme. (a) A marked data

packet. (b) Cache in sensor node. (c) Path updating

A. Marking Scheme on Sensor Nodes

Fig. 3(a) depicts an example of marked data packet. We

assume that each original data packet contains: 1) a source

node ID denoting the source node of this packet; and 2) a

sequence number identifying the packet. If there is no such

information recorded in the application, the marking scheme

adds them to the packets. The mark added to the original

packet consists of a pass node ID field that records the ID of a

sensor that participates in delivering this packet and a hop to

source field recording the number of hops from the source

node to the marking node. When the source node issues a new

data packet, it leaves the pass node ID field empty and sets the

hop to source field to 0. Every intermediate node maintains a

cache for its downstream source nodes. As illustrated in Fig.

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

121

3(b), each cache entry consists of a source node ID and the

sequence number of the recently received packet from the

source. We call two sequence numbers of a source continuous

if the first sequence

number is larger than the latter one by 1. As shown in

Algorithm 1, upon receiving a packet, an intermediate node

first checks whether the packet has been marked. If yes (the

pass node ID is not empty), it forwards the packet with no

further operations. Otherwise, the node checks its own cache.

If there is no entry for the source node ID of this packet, it

marks the packet by filling the pass node ID field with its own

ID. It also creates a new entry for this source node in its cache

and records the sequence number for the packet. If there exists

an entry in the cache for the source node and the sequence

number in the packet is continuous with the cache entry, the

intermediate node updates the cache entry with the new

sequence number. To prevent duplicate marking, the

intermediate node does not fill the pass node ID field, instead

it increments the hop to source field in the packet by 1 and

forwards the packet. If the sequence number of the packet is

not continuous with that recorded in the cache entry, it might

be due to the packet loss or routing dynamics. The

intermediate node marks the packet by filling the packet pass

node ID field with its own ID. The node then updates its cache

entry with the new sequence number of this packet and

forwards it. The sink also participates in the marking process

and creates a table recording source nodes and their packet

sequence numbers. Using this marking scheme, the received

packet in the sink records the ID of one intermediate node in

the routing path together with its hop distance to the source

node.We avoid duplicate marks of the same node on the same

path to save communication costs. We can further reduce the

memory usage in each sensor node by organizing its cache

table into bloom filters. Each intermediate node inserts and

extracts the source node information on the bloom filter. The

error rate introduced by the bloom filter introduces negligible

adverse impact in the lossy by-nature sensor network.

Algorithm 1 Packet Marking (packet)

1: if has been marked

2: return;

3: else

4: check cache;

5: if no entry for source node of

6: mark ;

7: create entry with source node ID and sequence number

in ;

8: else if entry exists and sequence numbers are continuous

9: update entry with new sequence number;

10: increase hop to source in by 1;

11: else if entry exists and sequence numbers are not

continuous

12: mark ;

13: update entry with new sequence number;

14: end if

15: end if

16: return;

B. Parsing the Marks

At the sink, the mark parsing module extracts and parses the

marks piggybacked from the received packets. For each source

node, we keep a data structure denoted as path to record node

IDs along the path from the source node to the sink. As shown

in Fig. 3(c), a path contains an array of slots and each slot

records a node ID along the routing path hop by hop. The path

also has a field that records the sequence number of the latest

arrived packet from each source. On receiving a new packet,

the mark parsing module checks the existence of a path

structure associated with its source node. If there is no such

path, it means it is the first time the sinkas received packets

from that source. The sink creates a new path for the source

node and records the source node ID at the first slot. The mark

parsing module then examines whether the packet has been

marked (the pass node ID field has been filled). If it has been

marked, the sink updates the associated slot in the path to be

the recorded node ID according to the hop to source field in

the packet. For the packets from the recorded path, the parsing

module operates according to the recorded sequence

number.We denote as the difference between the sequence

number of the received packet and the sequence number

recorded in the path. If the sequence number of the new

packet is equal to or less than that recorded in the path , it

means that this is a duplicate or delayed packet. As

information in the duplicate and delayed packets is usually

outdated and may lead to errors in the mark

parsing process, we ignore marks in such packets and do not

update sequence number or other slots for the path. As a

matter of fact, according to our deployment experiences in an

operational sensor network, with a relatively long sampling

interval, this kind of situation is rare. If , the sequence number

recorded in the path is updated by the newly received

packet, and then other slots of the path are accordingly

updated by parsing the mark as Algorithm 2. Normally,

without packet loss, , and we directly add the marked node ID

into the path. Discontinuousness of the sequence numbers

indicates

that the packet loss occurs, which triggers a preliminary

diagnosis report on packet loss. Besides, the number of packet

losses is quantified as . A mismatch of the recorded pass node

ID in the packet and the recorded node ID in corresponding

slot in the path indicates a route alternation happening at the

position between the hop to source recorded in the packet and

its hops upward. If not so, the marking should have been taken

earlier. The parsing algorithm then generates a preliminary

report of a route switch. In such a case, the slots in recorded

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

122

path ranging from hops before the hop to source position to

the sink become inaccurate, so we clear all those slots. Let us

look at the example in Fig. 3(c), where a new mark is

received. The pass node ID is , four hops away from the

source. The mismatch between and current node in the same

position of this path indicates a route variation. Now, the issue

is how to determine where the route variation occurs. If there

is no packet loss, it must be node that changes its route from

to. In this case equals 2, indicating that one packe this just

been lost. The situation can be more complicated indeed. As

illustrated in Fig. 3(c), the route variation can happen at ; for

example, changes its parent node from to , and then marks the

consequent packet. The packet, however, gets lost on its way

to the sink, so before the next packet marked

by arrives, the sink cannot be aware of the route ariation.

Another possible case is that the route switch happens at , but

fails to send the consequent packet to , and then has to mark

the second packet. As the route variation happens, slots

ranging from to sink are suspicious. We update to and clear

other slots, expecting further information. The reception of the

packet without any marks triggers a preliminary report of a

successful delivery. The mark parsing function is presented in

Algorithm 2. The mark parsing module constructs and updates

the network topology with the recorded paths. Once a

newpacket is received, the path associated to its source node is

updated. This indicates that all links along the current path

have just participated in the transmission of a packet. For each

link in the network topology, we keep a counter to count the

number of transmissions experienced by this link. Such

information facilitates the construction of the inference model

as it tells the strength of the dependency between the parent

and its successive nodes. Since links in sensor networks are

usually shared by multiple paths, we do not need to collect

complete path information for all paths before revealing the

entire network topology. Indeed, this scheme captures the

network topology with a small number of packet receptions, as

demonstrated in our field experiment. One potential issue is

that when the sink fails to learn the information of some path

segments and the network topology is stable, few marks are

received. As a result, it will take really a long time for the sink

to learn the missing path segments. Such a drawback,

however, is alleviated due to the sharing feature of network

links, i.e., the missing links can be recovered from other paths

that share them. Such a feature definitely alleviates, but does

not completely avoid, this problem. To actively

eliminate such a problem, in our implementation we let the

intermediate nodes periodically clear their local caches.With

this operation, new marks are inserted to packets, and the path

information at sink can be periodically refreshed even when

the network topology is static.

Algorithm 2 Mark Parsing(packet)

1: if p.sourceNodeID has no associated path

2: create new path for p.sourceNodeID;

3: end if

4: ;

5: if //duplicate packet

6: return;

7: else

8: ;

9: end if

10: if //no packet loss

11: if //route

switch

12: ;

13: clear all slots in path after ;

14: generates route switch report;

15: end if

16: else if //packet loss detected

17: generate packet loss report;

18: if //route

switch

19: clear all slots in path after ;

20: ;

21: end if

22: end if

Clearly, in this design we propose to mark simple messages

only, but if we insert more marks into the data packets, we

obtain richer information on the network statuses and make

the diagnosis process more straightforward. Nevertheless, in

resource constrained sensor networks, we have to minimize

the communication overhead introduced by our diagnosis

model. Therefore, we choose to only use simplified marks to

additively reconstruct the network. We give details about this

issue in later discussions. Compared to existing approaches,

our approach with quick reactivity and fast convergence is

thus more suitable for highly dynamic environments.

C. Preliminary Diagnosis Reports

Before the final diagnosis results are obtained from

the inference engine, some preliminary diagnosis reports can

be yielded from the mark parsing module, which help to

analyze the network statuses. The preliminary diagnosis

briefly infers the following reports. 1) Success delivery report.

When the sink receives a packet without any mark, it indicates

a successful delivery along the current path. This report tells

us that the route from the source sensor node to the sink is still

the same and all links along this path have just conducted a

successful transmission that confirms the active state of those

links.

2) Packet loss report. As described above, if the difference

between the sequence number recorded in the path and the

sequence number of the packet is more than one, it can be

inferred that the packet loss occurs. The number of packet loss

is quantified as . In this case, according to our marking

scheme, the packet must have been marked by some

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

123

intermediate node. This report can further locate the packet

loss location if there is no route switch accompanying the

packet loss.

3) Route Switch Report. The mismatch of the pass node ID in

the packet and the recorded ID in the corresponding slot in the

path indicates that the previous routing path has been altered.

The position of the switch is between the hop to source

recorded in the packet and its hop upward. V. PROBABILISTIC

INFERENCE The packet mark parsing module provides a coarse

abstraction and incomplete report.

At the sink, the successive probabilistic inference helps to

reveal the inner dependencies among different network

elements in the sensor network and expose the hidden root

causes of the exterior symptoms. Network elements are inner

correlated, for example, the crash of an upstream node causes

all its children to disconnect from the sink. In contrast,

simultaneous congestion of multiple paths may indicate a high

probability of a malfunction at a common link. Based on such

observations, we explore the dependencies among network

elements (link status, sensing function, path status, etc.) on the

constructed communication topology and encode them with a

probabilistic model.

Exterior symptoms like delay or loss of data samples are

considered as inputs. When specific symptoms are observed

by our inference algorithm, we can deduce the probability of

the failures of each network element and find the most

probable root causes in real time.Most existing inference

schemes for static enterprise networks use the simplified

bipartite graph or tree-based inference model.

As the network topologies in sensor networks are highly

dynamic and no prior knowledge can be acquired in advance,

it is difficult to apply the models for static networks in sensor

networks. Instead, we apply a hierarchical inference model to

capture the inner dependencies in sensor networks. The

hierarchical model is good for encoding indirect dependencies

with its hierarchical structure and can be constructed without

complete information. Also, being assembled by many

subparts, it can easily handle the network dynamics efficiently

by updating the changed parts only.

We first apply the Belief Network [21] as our inference model.

Belief Network is a well-known probabilistic model that has

been widely used in research domains like artificial

intelligence and system engineering. In Belief Network, each

possible root cause or symptom is represented by a variable.

Each variable might have multiple values (e.g., 1 for a link in

active state and 0 for in trouble). Causal relationships between

different variables are denoted as directional arcs. Inferences

can be conducted on this model to deduce the probability of

particular values to our interested variables once the values of

some other variables have been observed (e.g., symptoms like

the high delay of data samplings). To further speedup the

process, we propose a simplified inference model, Causality

Diagram. According to the characteristics of sensor networks,

we can design a simplified Causality Diagram that accurately

approximates the inference results and reduces the overhead.

A. Belief Network

A Belief Network (or Bayesian Network) is a

directed acyclic graph (DAG) that represents a set of variables

and their probabilistic relationships. Each vertex in the graph

denotes a random variable. In the rest of this paper, we use

“vertex” and “variable” interchangeably. A directional arc

from vertex to indicates a causal relation between the two

variables in which the variable associated with the starting

vertex acts as the cause and the variable of is the effect. The

cause is called a parent of the outcome .

The strength of the relation between a parent and its

child is defined by the conditional probabilities. We then

formulate a Belief Network as a binary , where is a DAG and

specifies a conditional probability distribution (CPD) in .

Here, represents the set of vertices in , and denotes all arcs (or

edges). specifies the conditional probability distribution of

each variable given its parents. When the value domain of

variable is discrete, the CPD can be represented as a

conditional probability table (CPT). Given certain evidence

(values of some variables), the Belief Network can answer

three major types of queries [21]: 1) posterior probability

assessment; 2) maximum posterior hypothesis; and 3) most

probable explanation. The first type of query, which estimates

posterior probabilities of certain variables given some

evidence variables, best fits our requirements in this work.

B. Inferring Through Belief Network

Our inference model automatically constructs and

maintains a Belief Network from the output of the mark

parsing module. The inference engine accordingly infers from

this model hidden statuses of the network. In our PAD

approach, the Belief Network structure is assembled from the

current network topology obtained from the mark parsing

module.

1) Constructing a Belief Network:

 Fig. 4(a) depicts a simple example topology composed of a

sink and three sensor nodes. The directional edge between two

nodes denotes a wireless link and the direction of data

transmitting along the link. There are five types of variables in

our Belief Network, each of which has the value domain of

that denotes a normal or abnormal working status,

respectively. For each source node, we add a variable to the

BeliefNetwork, which denotes the status of the data reception

of the

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

124

Fig. 4. Belief Network constructed from the communication topology. (a)

Network

topology. (b) Belief Network.

source node. For example, if the sink observes a long time

delay in the data reception from a source, the corresponding

variable of this node will be set to Down. Note that, in many

applications, some sensor nodes do not sample data, but only

relay messages for other nodes. Some of the nodes simply

relay packets for other sensors, so there are no data reception

variables for those nodes. The status of the data report variable

depends on two parent variables, the sensing variable and the

connection variable . The sensing variable Si indicates the

sensing function of the corresponding source node, and the

connection variable describes the condition of the network

connectivity from the source node to the sink. We add two

arcs from and to to represent the dependencies between them.

And are thus called the parent variables of in the Belief

Network. Both the sensing functionality and the network

connectivity condition will affect the success of the data

reported from the source node. The connectivity from a source

node to the sink relies on one or more paths connecting them.

For example, node 2 in Fig. 4(a) can choose to deliver packets

through two parents, node 1 and node 3, so in the

corresponding Belief Network, the connection variable has

two parent variables and . They are called path variables. The

subscript of each path variable sequentially denotes the ID of

the start node on the path, the ID of the next hop node from

the start node, and the ID of the end node on the path. As

illustrated in Fig. 4(b), the status of each path variable depends

on two parent variables. One is the link variable on the first

hop from the start node, and the other is the connection

variable of its parent node. The link variable represents the

communication conditions of a wireless link between two

nodes and . We connect each pair of variables that has a

dependency with a directional arc from the cause variable to

the outcome variable. Eventually, we obtain a hierarchical

network composed of these five types of variables in which

dependencies among network elements are encoded. Among

the five types of variables, the statuses of the link and sensing

variables are hidden from the exterior observations that most

need to be inferred. The path and connection variables are

intermediate variables that are usually combinational results of

other parent variables. The data report variables are outputs of

the mark parsing module that we directly observe at the sink.

The Belief Network structure consisting of Fig. 5. CPTs of (a)

noisy-OR and (b) Select gates. the variables is automatically

maintained and updated when network topology and

communication conditions vary over time.

2) Inference on Belief Network:

Once the Belief Network structure is constructed, a critical

issue is how to assign CPTs for variables that specify the

conditional probabilities between parents and their children.

Different logistic relations between parents and their children

lead to different methods for calculating the CPT. For

example, the sensing variable and connection variable affect

their children variable of data report in a logical OR manner,

i.e., if one of them is in the Down state, the data report

variable should be switched onto the Down state. Due to the

diverse routing schemes and high dynamics in sensor

networks, a sensor may maintain multiple parents for relaying

its data. Consequently, in our inference model, multiple path

variables affect the same connection variable in Select mode

where the status of selected paths will determine the status of

the connection variable.

In PAD, we employ the noisy-OR gate [21] and Select gate [5]

to encode these operations. Fig. 5(a) shows the CPT in a

noisy-OR gate, where any one of the parent variables in Down

status results in the Down status of the child variable. In Fig.

5, and represent the noisy property that means even if both

parent variables are in the Up status, the child variable still has

a chance to fail (in Down status). In PAD, noisy-OR gates

exist in several cases such as when the sensing and connection

variables affect the data report variables, the link and

connection variables affect the path variables, and so on. The

relation between multiple path variables and a connection

variable is represented by the Select gate as illustrated in Fig.

5(b). Here, denotes the dependency strength of each parent,

and in the case of Fig. 5(b), is the probability that the child

connection variable selects a certain path to relay data. Thus,

the probability that a connection variable is in the Up status is

given by In the Belief Network, each noisy-OR gate connects

two parent variables to a child variable, so the CPT calculation

is quick. The Select gate might connect more parent variables

to a child variable, but the maximum number of parent

variables for one gate is bounded by the number of neighbors

for a sensor node. The number of neighbors is normally

treated as a constant. Hence, the CPT calculation for Select

gate is also

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

125

Fig. 5. CPTs of (a) noisy-OR and (b) Select gates

the variables is automatically maintained and updated when

network topology and communication conditions vary over

time. 2) Inference on Belief Network: Once the Belief

Network structure is constructed, a critical issue is how to

assign CPTs for variables that specify the conditional

probabilities between parents and their children. Different

logistic relations between parents and their children lead to

different methods for calculating the CPT. For example, the

sensing variable and connection variable affect their children

variable of data report in a logical OR manner, i.e., if one of

them is in the Down state, the data report variable should be

switched onto the Down state. Due to the diverse routing

schemes and high dynamics in sensor networks, a sensor may

maintain multiple parents for relaying its data. Consequently,

in our inference model, multiple path variables affect the same

connection variable in Select mode where the status of

selected paths will determine the status of the connection

variable. In PAD, we employ the noisy-OR gate [21] and

Select gate [5] to encode these operations. Fig. 5(a) shows the

CPT in a noisy-OR gate, where any one of the parent variables

in Down status results in the Down status of the child variable.

In Fig. 5, and represent the noisy property that means even if

both parent variables are in the Up status, the child variable

still has a chance to fail (in Down status). In PAD, noisy-OR

gates exist in several cases such as when the sensing and

connection variables affect the data report variables, the link

and connection variables affect the path variables, and so on.

The relation between multiple path variables and a connection

variable is represented by the Select gate as illustrated in Fig.

5(b). Here, denotes the dependency strength of each parent,

and in the case of Fig. 5(b), is the probability that the child

connection variable selects a certain path to relay data. Thus,

the probability that a connection variable is in the Up status is

given by

In the Belief Network, each noisy-OR gate connects two

parent variables to a child variable, so the CPT calculation is

quick. The Select gate might connect more parent variables to

a child variable, but the maximum number of parent variables

for one gate is bounded by the number of neighbors for a

sensor node. The number of neighbors is normally treated as a

constant. Hence, the CPT calculation for Select gate is also

efficient. In the initial stages, the prior fault probability

distribution of the link and sensing variables are assigned

according to experience data. The value of each is assigned by

estimating the percentage of transmissions delivered through

each path in a connection. Such information is input from the

mark parsing module.

VI. EVALUATION

We conduct comprehensive simulations and implement field

experiments to evaluate the performance of PAD. For the

implementation, we used the BNJ implementation of the

Belief Network

inference as part of our inference engine.We implemented the

packet marking scheme for TelosB motes on the TinyOS

platform with nesC language.We implemented the mark

parsing module on the java based back end.

A. Simulations

We first examine the effectiveness and efficiency of PAD

through simulations. We simulate a sensor network in which

sensor nodes are deployed on a two-dimensional space, with

the sink located at the center. Sensors periodically data and

deliver to the sink through multihop routes. Two routing

schemes are applied in the simulation. Various types of faults

are inserted into links or nodes according to different test

settings. We use a cutoff threshold to detect the failures. In the

following tests, if the output posterior probability of a certain

network element (for example a link) to be faulty is higher

than 50%, we will regard this element as failure. We apply

two metrics for estimating the performances of inference

models, the detection ratio and false positive ratio. Detection

ratio is the ratio between the number of faults founded and the

number of all faults. False positive ratio is the ratio between

the real failures detected and all failure reports generated by

our diagnosis system.

1) The Efficiency of the Packet Marking Scheme: We evaluate

the convergence time of the packet marking scheme under

various network conditions. In these tests, we simulate a data

acquisition network using both spanning tree-based routing

and DAG-based routing schemes. Each source node samples

environment data and generates a new packet every 2 s.

Different routing schemes lead to different types of topologies.

The notation Tree denotes a spanning tree topology rooted at

the sink, and the notation DAG denotes a multipath routing

strategy where each sensor node has multiple parents. Besides

the routing topologies, the link loss rate also impacts the

topology reconstruction. Thus, we evaluate the performance of

our approach with different link loss rates. Here, no link loss

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

126

indicates that all packet transmissions are guaranteed to

deliver, and 10% link loss means that each link has 10%

packet loss rate. Under the latter setting (10% link loss), it is

difficult for a source node far away from the sink to deliver its

packets to the sink since a packet has high probability to get

lost on a long path.

VII. CONCLUSION AND FUTURE WORK

Although there have been many approaches proposed for

debugging the operation of sensor network systems in a

controlled laboratory, few works have been done toward an in-

situ diagnosis tool for monitoring the statuses of operational

systems in the field. In this paper, we propose PAD, a passive

diagnosis approach that can be efficiently implemented and

applied to a normally working sensor network system

providing in-situ network diagnosis. The proposed lightweight

packet marking scheme collects necessary hints without

injecting extra traffic overhead to the original system. The

probabilistic inference model residing at the sink captures the

unique features of the sensor networks and yields accurate

results. The inference engine works well even with incomplete

or suspicious inputs in a nondeterministic manner.We

implement our diagnosis approach and validate its

effectiveness in a field test in our sea monitoring project. The

sea monitoring project is an ongoing project. We are currently

utilizing PADas an important diagnosis tool to detect possible

faulty components in the system and guarantee its correct

operations. On the other hand, we are relying on such a

platform to further test the effectiveness and efficiency of

PAD and hope to improve it according to our future

observations.

REFERENCES

[1] HP Openview, [Online]. Available:

http://www.openview.hp.com

[2] IBM Tivoli, [Online]. Available:

http://www.ibm.com/software/tivoli

[3] Microsoft Operations Manager, [Online]. Available:

http://www.microsoft.com/mom

[4] OceanSense: Sensor Network for Sea Monitoring,

[Online].

Available:http://www.cse.ust.hk/~liu/Ocean/index.html

[5] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.

Maltz, and M. Zhang, “Towards highly reliable enterprise

network services via inference of multi-level dependencies,”

in Proc. ACM SIGCOMM, 2007, pp. 13–24.

[6] X. Bai, D. Xuan, Z. Yun, T. H. Lai, and W. Jia, “Complete

optimal deployment patterns for full-coverage and k-

connectivity �_ �_ __ wireless sensor networks,” in Proc.

ACMMobiHoc, 2008, pp. 401–410.

[7] J. Cao, L. Zhang, J. Yang, and S. K. Das, “A reliable

mobile agent communication protocol,” in Proc. IEEE ICDCS,

2004, pp. 468–475. [8] G. F. Cooper, “Probabilistic inference

using belief networks is NP-hard,” Stanford Knowledge

Systems Laboratory, Tech. Rep., 1987.

[9] P. Dagum and M. Luby, “Approximately probabilistic

reasoning in Bayesian belief networks is NP-hard,” Artif.

Intell., pp. 141–153, 1993. [10] Q. Fang, J. Gao, and L. J.

Guibas, “Locating and bypassing routing holes in sensor

networks,” in Proc. IEEE INFOCOM, 2004, vol. 4, pp. 2458–

2468.

[11] R. K. Ganti, P. Jayachandran, H. Luo, and T. F.

Abdelzaher, “Datalink streaming in wireless sensor networks,”

in Proc. ACM SenSys, 2006, pp. 209–222.

[12] B. Gedik, L. Liu, and P. Yu, “ASAP: An adaptive

sampling approachto data collection in sensor networks,”

IEEE Trans. Parallel Distrib.Syst., vol. 18, no. 12, pp. 1766–

1783, Dec. 2007.

[13] S. Guo, Z. Zhong, and T. He, “FIND: Faulty node

detection for wirelesssensor networks,” in Proc. ACM SenSys,

2009, pp. 253–266.

[14] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,

L. Luo, R.Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh,

“Energy-efficient surveillancesystem using wireless sensor

networks,” in Proc. ACM MobiSys,2004, pp. 270–283.

[15] S. Kandula, D. Katabi, and J.-P. Vasseur, “Shrink: A tool

for failurediagnosis in IP networks,” in Proc. MineNet, 2005,

pp. 173–178.

[16] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A

component-basedarchitecture for power-efficient media access

control in wireless sensornetworks,” in Proc. ACM SenSys,

2007, pp. 59–72.

[17] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren, “IP fault localizationvia risk modeling,” in Proc.

USENIX NSDI, 2005, pp. 57–70.[18] S. Lim, C. Yu, and C.

R. Das, “Rcast: A randomized communicationscheme for

improving energy efficiency in MANETs,” in Proc. IEEE

ICDCS, 2005, pp. 123–132.[19] H. Liu, P. Wan, C.-W. Yi, X.

Jia, S. A. M. Makki, and N. Pissinou,“Maximal lifetime

scheduling in sensor surveillance networks,” inProc. IEEE

INFOCOM, 2005, vol. 4, pp. 2482–2491.

[20] Y. Liu, Q. Zhang, and L. Ni, “Opportunity-based

topology control inwireless sensor networks,” in Proc. IEEE

ICDCS, 2008, pp. 421–428.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems:

Networks ofPlausible Inference. San Mateo, CA: Morgan

Kaufmann, 1988.

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.4, pg : 117- 126 01 Oct. 2012

127

http://www.ijset.com/

