
Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

176

The Macrotheme Review
A multidisciplinary journal of global macro trends

“pse” – universal framework for visual programming

Stefan Sedivy*, Ingrid Zuziakova**, Peter Fabo*, Lubomir Pepucha*
*Research Centre University of Zilina, Slovakia

**Faculty of Civil Engineering, University of Zilina, Slovakia

Abstract

The subject of this paper is an overview of the characteristics of a universal

interactive framework for creating simulation models based on the programming

language Python and a library SciPy - Scientific Python. The basic structure of

the framework, programming model, the procedure for creating custom

components, dissemination and use with external simulation tools is described

and examples are presented.

Keywords: python, programming, simulation, framework, block editor, open source

I. INTRODUCTION

Python programming language has in recent years built up a strong position in the rapid-

prototyping and became dominant programming tool in many scientific and technical areas. Draft

framework for the creation of simulation models based on the fact that the Python language [1]

and its extensive infrastructure currently lacks suitable block editor, which could be easily tied

with the visual form of the model with its program implementation.

Any available universal simulation environments such as. Matlab-Simulink, Scilab-Xcos,

Modelica and others are built on the top of existing infrastructure and expansion or modification

required has to be done using non-trivial knowledge of the internal structure of the programming

environment, moreover, sometimes associated with additional costs for the purchase of specific

development tools. Fundamental axiom of our proposed framework is therefore the exclusive use

of a single programming language Python for all parts of the framework including its

modification, creation of custom components and its extensions. Technological methods directly

contained in the structure of Python itself, such as usage of libraries created in other languages

are not affected.

II. FRAMEWORK REQUIREMENTS

Framework requirements were defined as follows

 Publicly available open-source project released under the GNU-GPL

 Exclusive use of a homogeneous multi-platform infrastructure of Python programming

language, it is simple and widely accepted by technical and scientific community, cross-

platform, open source with plenty of libraries a.e. PyQt [2], SciPy [3], Matplotlib [4], in

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

177

the field of natural and technical sciences, with a broad community support and with

available literature

 Simple and intuitive internal structure of the framework allowing its easy extension and

modification. Output structures of the framework should easily allow building simulation

tools and specialized generators for specific simulators (eg. SPICE, Modelica)

 Framework environment itself must be suitable for the development of simulation models

from different areas, with maximum ease of use, conceptually should be built as a

separate plugin easy to implement in specialized applications

 Single bond to the host operating system through standard Python library system allowing

the framework to interact with its environment (eg. integration of measuring and

laboratory equipment) and communication via the Internet

 The possibility of using scripts in the actual framework, creating dynamic models and the

dynamic changes in the parameters of components using the adaptive simulation tools.

 The possibility of real-time simulation with interactive components in the diagram for use

the program as a demonstration of interactive teaching tool.

III. FRAMEWORK STRUCTURE

Basic entities with which the user operates are the Component and the Net. The basic concepts

are illustrated in Figure 1.

Fig. 1 Basic concepts, Component and Net

Standard entity Component presents a graphical representation of the selected algorithm that

transforms the input information to the output information. In general, Component has m

arranged inputs and n arranged outputs - terminals. Net represents the link between a component,

and its task is to transfer information from one component output terminal to the input terminals

of other components.

Net contains a reference to the start and end component which it links together, the number of

the terminal of the component and the list of vertex of which it is formed. Each component and

interconnection is clearly identified in a diagram by its unique number, optionally a name.

Arranged set of components and nets connecting them forms a Diagram. Each component can

be parameterized using optional parameters, which can be static - their values are defined by the

user at the beginning of the simulation, or dynamic - their values can be changed during the

simulation based on its condition.

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

178

Fig. 2 The link among multiple Nets.

In addition to standard entities, there are connecting entities specifically established into the

framework - Connection node component enabling connection among multiple independent Nets

in Figure 2, and Port that allows connection between the parts of the diagram or multiple separate

diagrams in the case of larger models in Figure 3.

Fig. 3 Usage of component Port.

In general, in the framework can be defined a link between any terminals of components in the

form of a multigraph – eg. the case of electrical circuits. For the purposes of simulation models

this can be limited to the shape of a oriented tree, where the root of the tree is the output terminal

and the leaves of the tree are the input terminals.

Carrier of the information in the framework are the terminals of components. Information is

stored in the terminal in the form of one-dimensional array. If the array contains more than one

value, in the graphical representation is Net connected to the terminal with a thicker line than a

bus. The arrays of the values of multiple terminals can be aggregated by means of special

components BusCompressor to any depth and extend back through BusExtractor components, as

shown in Figure 3 and Figure 4.

Graphical representation of components and their interconnections itself is separated from the

logical structure of the diagram, virtual links are therefore not shown in the diagram. At the same

time the separation of logical and graphical representation allows the framework implementation

to support various graphic libraries used by Python infrastructure.

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

179

Fig. 4 The link among multiple Nets.

From the point of user view the components are grouped according to their functional or

logical meaning

• Sources - Resources - generators, load datas from a file, load informations from connected

devices and the Internet

• Sinks - Appliances of information - write to a file, console output, graphs, sending

information to an internet connection

• Control - Control Components Communications

• Linear - components for linear transformation of information

• Nonlinear - components for the nonlinear transformation of information

• Signal - Components for connectingediting , aggregation links scalar to vector and its

decomposition

• Discrete - discrete and logical components

• Interactive - components for interactive management chart during the simulation

Components from all groups in the diagram can be combined.

In the simulation of more extensive diagrams can create separate diagrams - blocks and use

them in the simulation as separate components. Block diagram are expanded as macros with a

separate namespace, Figure 5 and 6.

Fig. 5 Block representing discrete IIR filter second order, Xn is an input port and Yn is an output

port of block.

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

180

Fig. 6 Simulation of IIR filter block, transient response

The internal structure of the framework is designed so that it can be easily edited and modified

according to the specific requests of users. To create a new simulation components need to inherit

from class Component basic structure of the component. Then define its input and output

terminals, the relationship between values of terminals and the graphic display component.

IV. EXAMPLE OF USE

For basic demonstration and a test, the framework has been extended by a simple simulation

tool based on the one-step integration method Runge-Kutta 2
nd

 order. The part of simulation tools

are methods for validating connections among components and a recursive algorithm to find and

check of the occurrence of loops in the tree. For the transformation of the input vector component

on the output are used precompiled methods of Numpy libraries and the simulation itself runs in a

separate thread outside the graphic system.

Fig. 7 Simulation system of linear differential equations.

Fig. 8 The use of interactive components in the diagram. Interactive components Dial is for real-

time the simulation is used to frequency setting generated by the oscillation of the oscillator.

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

181

Fig. 9 Simulation of Van der Pol oscillator with non-linear damping.

Fig. 10 Simulation of nonstationary parametric solutions of differential equations - Hennon map

and bifurcations in one-dimensional discrete dynamical system

V. CONCLUSIONS

Framework was developed primarily for the creation of simulation models for predictive

simulation parameters of road infrastructure within the project at Research Centre of the

University of Žilina.

Description of the application framework includes a number of other options that the Article

does not discussed, such as interactive management of the experiment and collect data from

laboratory instruments, cooperation and data exchange between the Framework in the Internet

environment, the possibility of creating interactive educational text in an environment Ipython

and many others. Sources framework of the “pse” are free available on the web site of the

Research Center of University of Žilina (http://www.researchcentre.sk/)

ACKNOWLEDGMENT

The research is supported by the European Regional Development

Fund and the Slovak state budget by the projects "Research Centre of the

University of Žilina" - ITMS 26220220183 and “Support and

development of Center of transport research – CVD PLUS” - ITMS 26220220160.

Stefan Sedivy* – Ingrid Zuziakova** - Peter Fabo* - Lubomir Pepucha*, The Macrotheme Review 4(6), Fall 2015

182

REFERENCES

[1] www.python.org

[2] http://www.riverbankcomputing.co.uk/software/pyqt/intro

[3] Travis E. Oliphant. Python for Scientific Computing, Computing in Science & Engineering, 9, 10-

20 (2007), DOI:10.1109/MCSE.2007.58

[4] Hunter, J. D., Matplotlib: A 2D graphics environment, Computing In Science & Engineering, vol. 9.,

number 3, pages 90-95 (2007)

http://www.python.org/
http://dx.doi.org/10.1109/MCSE.2007.58

