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Similarity plays a fundamental role in theories of knowledge and behavior. It serves

as an organizing principle by which individuals classify objects, form concepts, and

make generalizations. Indeed, the concept of similarity is ubiquitous in psychological

theory. It underlies the accounts of stimulus and response generalization in learning,

it is employed to explain errors in memory and pattern recognition, and it is central

to the analysis of connotative meaning.

Similarity or dissimilarity data appear in di¤erent forms: ratings of pairs, sorting

of objects, communality between associations, errors of substitution, and correlation

between occurrences. Analyses of these data attempt to explain the observed simi-

larity relations and to capture the underlying structure of the objects under study.

The theoretical analysis of similarity relations has been dominated by geometric

models. These models represent objects as points in some coordinate space such

that the observed dissimilarities between objects correspond to the metric distances

between the respective points. Practically all analyses of proximity data have been

metric in nature, although some (e.g., hierarchical clustering) yield tree-like struc-

tures rather than dimensionally organized spaces. However, most theoretical and

empirical analyses of similarity assume that objects can be adequately represented as

points in some coordinate space and that dissimilarity behaves like a metric distance

function. Both dimensional and metric assumptions are open to question.

It has been argued by many authors that dimensional representations are appro-

priate for certain stimuli (e.g., colors, tones) but not for others. It seems more ap-

propriate to represent faces, countries, or personalities in terms of many qualitative

features than in terms of a few quantitative dimensions. The assessment of similarity

between such stimuli, therefore, may be better described as a comparison of features

rather than as the computation of metric distance between points.

A metric distance function, d, is a scale that assigns to every pair of points a non-

negative number, called their distance, in accord with the following three axioms:

Minimality: dða; bÞb dða; aÞ ¼ 0:

Symmetry: dða; bÞ ¼ dðb; aÞ:

The triangle inequality: dða; bÞ þ dðb; cÞb dða; cÞ:

To evaluate the adequacy of the geometric approach, let us examine the validity of

the metric axioms when d is regarded as a measure of dissimilarity. The minimality

axiom implies that the similarity between an object and itself is the same for all



objects. This assumption, however, does not hold for some similarity measures. For

example, the probability of judging two identical stimuli as ‘‘same’’ rather that ‘‘dif-

ferent’’ is not constant for all stimuli. Moreover, in recognition experiments the o¤-

diagonal entries often exceed the diagonal entries; that is, an object is identified as

another object more frequently than it is identified as itself. If identification proba-

bility is interpreted as a measure of similarity, then these observations violate mini-

mality and are, therefore, incompatible with the distance model.

Similarity has been viewed by both philosophers and psychologists as a prime

example of a symmetric relation. Indeed, the assumption of symmetry underlies

essentially all theoretical treatments of similarity. Contrary to this tradition, the

present paper provides empirical evidence for asymmetric similarities and argues that

similarity should not be treated as a symmetric relation.

Similarity judgments can be regarded as extensions of similarity statements, that is,

statements of the form ‘‘a is like b.’’ Such a statement is directional; it has a subject,

a, and a referent, b, and it is not equivalent in general to the converse similarity

statement ‘‘b is like a.’’ In fact, the choice of subject and referent depends, at least in

part, on the relative salience of the objects. We tend to select the more salient stimu-

lus, or the prototype, as a referent, and the less salient stimulus, or the variant, as a

subject. We say ‘‘the portrait resembles the person’’ rather than ‘‘the person resem-

bles the portrait.’’ We say ‘‘the son resembles the father’’ rather than ‘‘the father

resembles the son.’’ We say ‘‘an ellipse is like a circle,’’ not ‘‘a circle is like an

ellipse,’’ and we say ‘‘North Korea is like Red China’’ rather than ‘‘Red China is like

North Korea.’’

As will be demonstrated later, this asymmetry in the choice of similarity statements

is associated with asymmetry in judgments of similarity. Thus, the judged similarity

of North Korea to Red China exceeds the judged similarity of Red China to North

Korea. Likewise, an ellipse is more similar to a circle than a circle is to an ellipse.

Apparently, the direction of asymmetry is determined by the relative salience of the

stimuli; the variant is more similar to the prototype than vice versa.

The directionality and asymmetry of similarity relations are particularly noticeable

in similies and metaphors. We say ‘‘Turks fight like tigers’’ and not ‘‘tigers fight like

Turks.’’ Since the tiger is renowned for its fighting spirit, it is used as the referent

rather than the subject of the simile. The poet writes ‘‘my love is as deep as the

ocean,’’ not ‘‘the ocean is as deep as my love,’’ because the ocean epitomizes depth.

Sometimes both directions are used but they carry di¤erent meanings. ‘‘A man is like

a tree’’ implies that man has roots; ‘‘a tree is like a man’’ implies that the tree has a

life history. ‘‘Life is like a play’’ says that people play roles. ‘‘A play is like life’’ says

that a play can capture the essential elements of human life. The relations between

8 Tversky



the interpretation of metaphors and the assessment of similarity are briefly discussed

in the final section.

The triangle inequality di¤ers from minimality and symmetry in that it cannot be

formulated in ordinal terms. It asserts that one distance must be smaller than the sum

of two others, and hence it cannot be readily refuted with ordinal or even interval

data. However, the triangle inequality implies that if a is quite similar to b, and b is

quite similar to c, then a and c cannot be very dissimilar from each other. Thus, it

sets a lower limit to the similarity between a and c in terms of the similarities between

a and b and between b and c. The following example (based on William James) casts

some doubts on the psychological validity of this assumption. Consider the similarity

between countries: Jamaica is similar to Cuba (because of geographical proximity);

Cuba is similar to Russia (because of their political a‰nity); but Jamaica and Russia

are not similar at all.

This example shows that similarity, as one might expect, is not transitive. In addi-

tion, it suggests that the perceived distance of Jamaica to Russia exceeds the perceived

distance of Jamaica to Cuba, plus that of Cuba to Russia—contrary to the triangle

inequality. Although such examples do not necessarily refute the triangle inequality,

they indicate that it should not be accepted as a cornerstone of similarity models.

It should be noted that the metric axioms, by themselves, are very weak. They are

satisfied, for example, by letting dða; bÞ ¼ 0 if a ¼ b, and dða; bÞ ¼ 1 if a0 b. To

specify the distance function, additional assumptions are made (e.g., intradimen-

sional subtractivity and interdimensional additivity) relating the dimensional struc-

ture of the objects to their metric distances. For an axiomatic analysis and a critical

discussion of these assumptions, see Beals, Krantz, and Tversky (1968), Krantz and

Tversky (1975), and Tversky and Krantz (1970).

In conclusion, it appears that despite many fruitful applications (see e.g., Carroll

& Wish, 1974; Shepard, 1974), the geometric approach to the analysis of similarity

faces several di‰culties. The applicability of the dimensional assumption is lim-

ited, and the metric axioms are questionable. Specifically, minimality is somewhat

problematic, symmetry is apparently false, and the triangle inequality is hardly

compelling.

The next section develops an alternative theoretical approach to similarity, based

on feature matching, which is neither dimensional nor metric in nature. In subse-

quent sections this approach is used to uncover, analyze, and explain several empiri-

cal phenomena, such as the role of common and distinctive features, the relations

between judgrnents of similarity and di¤erence, the presence of asymmetric simi-

larities, and the e¤ects of context on similarity. Extensions and implications of the

present development are discussed in the final section.
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Feature Matching

Let D ¼ fa; b; c; . . .g be the domain of objects (or stimuli) under study. Assume that

each object in D is represented by a set of features or attributes, and let A;B;C

denote the sets of features associated with the objects a; b; c, respectively. The fea-

tures may correspond to components such as eyes or mouth; they may represent

concrete properties such as size or color; and they may reflect abstract attributes such

as quality or complexity. The characterization of stimuli as feature sets has been

employed in the analysis of many cognitive processes such as speech perception

(Jakobson, Fant, & Halle, 1961), pattern recognition (Neisser, 1967), perceptual

learning (Gibson, 1969), preferential choice (Tversky, 1972), and semantic judgment

(Smith, Shoben, & Rips, 1974).

Two preliminary comments regarding feature representations are in order. First, it

is important to note that our total data base concerning a particular object (e.g., a

person, a country, or a piece of furniture) is generally rich in content and complex in

form. It includes appearance, function, relation to other objects, and any other

property of the object that can be deduced from our general knowledge of the world.

When faced with a particular task (e.g., identification or similarity assessment) we

extract and compile from our data base a limited list of relevant features on the basis

of which we perform the required task. Thus, the representation of an object as a

collection of features is viewed as a product of a prior process of extraction and

compilation.

Second, the term feature usually denotes the value of a binary variable (e.g., voiced

vs. voiceless consonants) or the value of a nominal variable (e.g., eye color). Feature

representations, however, are not restricted to binary or nominal variables; they are

also applicable to ordinal or cardinal variables (i.e., dimensions). A series of tones

that di¤er only in loudness, for example, could be represented as a sequence of nested

sets where the feature set associated with each tone is included in the feature sets

associated with louder tones. Such a representation is isomorphic to a directional

unidimensional structure. A nondirectional unidimensional structure (e.g., a series of

tones that di¤er only in pitch) could be represented by a chain of overlapping sets.

The set-theoretical representation of qualitative and quantitative dimensions has

been investigated by Restle (1959).

Let sða; bÞ be a measure of the similarity of a to b defined for all distinct a; b in D.

The scale s is treated as an ordinal measure of similarity. That is, sða; bÞ > sðc; dÞ
means that a is more similar to b than c is to d. The present theory is based on the

following assumptions.
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1. matching:

sða; bÞ ¼ FðA V B;A� B;B�AÞ:

The similarity of a to b is expressed as a function F of three arguments: A V B, the

features that are common to both a and b; A� B, the features that belong to a but

not to b; B�A, the features that belong to b but not to a. A schematic illustration of

these components is presented in figure 1.1.

2. monotonicity:

sða; bÞb sða; cÞ

whenever

A V BIA V C; A� BHA� C;

and

B�AHC�A:

Moreover, the inequality is strict whenever either inclusion is proper.

That is, similarity increases with addition of common features and/or deletion of

distinctive features (i.e., features that belong to one object but not to the other). The

monotonicity axiom can be readily illustrated with block letters if we identify their

features with the component (straight) lines. Under this assumption, E should be

more similar to F than to I because E and F have more common features than E and

I. Furthermore, I should be more similar to F than to E because I and F have fewer

distinctive features than I and E.

Figure 1.1
A graphical illustration of the relation between two feature sets.
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Any function F satisfying assumptions 1 and 2 is called a matching function. It

measures the degree to which two objects—viewed as sets of features—match each

other. In the present theory, the assessment of similarity is described as a feature-

matching process. It is formulated, therefore, in terms of the set-theoretical notion of

a matching function rather than in terms of the geometric concept of distance.

In order to determine the functional form of the matching function, additional

assumptions about the similarity ordering are introduced. The major assumption of

the theory (independence) is presented next; the remaining assumptions and the

proof of the representation theorem are presented in the appendix. Readers who are

less interested in formal theory can skim or skip the following paragraphs up to the

discussion of the representation theorem.

Let F denote the set of all features associated with the objects of D, and let

X;Y;Z; . . . etc. denote collections of features (i.e., subsets of F). The expression

FðX;Y;ZÞ is defined whenever there exists a; b in D such that A V B ¼ X, A� B ¼
Y, and B�A ¼ Z, whence sða; bÞ ¼ FðA V B;A� B;B�AÞ ¼ FðX;Y;ZÞ. Next,

define VFW if one or more of the following hold for some X;Y;Z: FðV;Y;ZÞ ¼
FðW;Y;ZÞ, FðX;V;ZÞ ¼ FðX;W;ZÞ, FðX;Y;VÞ ¼ FðX;Y;WÞ.

The pairs ða; bÞ and ðc; dÞ are said to agree on one, two, or three components,

respectively, whenever one, two, or three of the following hold: ðA V BÞF ðC V DÞ,
ðA� BÞF ðC�DÞ, ðB�AÞF ðD� CÞ.

3. independence Suppose the pairs ða; bÞ and ðc; dÞ, as well as the pairs ða 0; b 0Þ and
ðc 0; d 0Þ, agree on the same two components, while the pairs ða; bÞ and ða 0; b 0Þ, as well
as the pairs ðc; dÞ and ðc 0; d 0Þ, agree on the remaining (third) component. Then

sða; bÞb sða 0; b 0Þ i¤ sðc; dÞb sðc 0; d 0Þ.

To illustrate the force of the independence axiom consider the stimuli presented in

figure 1.2, where

A V B ¼ C V D ¼ round profile ¼ X,

A 0 V B 0 ¼ C 0 V D 0 ¼ sharp profile ¼ X 0,

A� B ¼ C�D ¼ smiling mouth ¼ Y,

A 0 � B 0 ¼ C 0 �D 0 ¼ frowning mouth ¼ Y 0,

B�A ¼ B 0 �A 0 ¼ straight eyebrow ¼ Z,

D� C ¼ D 0 � C 0 ¼ curved eyebrow ¼ Z 0.
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By independence, therefore,

sða; bÞ ¼ FðA V B;A� B;B�AÞ

¼ FðX;Y;ZÞbFðX 0;Y 0;ZÞ

¼ FðA 0 V B 0;A 0 � B 0;B 0 �A 0Þ

¼ sða 0; b 0Þ

if and only if

sðc; dÞ ¼ FðC V D;C�D;D� CÞ

¼ FðX;Y;Z 0ÞbFðX 0;Y 0;Z 0Þ

¼ FðC 0 V D 0;C 0 �D 0;D 0 � C 0Þ

¼ sðc 0; d 0Þ.

Thus, the ordering of the joint e¤ect of any two components (e.g., X;Y vs. X 0;Y 0)

is independent of the fixed level of the third factor (e.g., Z or Z 0).

It should be emphasized that any test of the axioms presupposes an interpretation

of the features. The independence axiom, for example, may hold in one interpreta-

tion and fail in another. Experimental tests of the axioms, therefore, test jointly the

adequacy of the interpretation of the features and the empirical validity of the

Figure 1.2
An illustration of independence.
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assumptions. Furthermore, the above examples should not be taken to mean that

stimuli (e.g., block letters, schematic faces) can be properly characterized in terms of

their components. To achieve an adequate feature representation of visual forms,

more global properties (e.g., symmetry, connectedness) should also be introduced.

For an interesting discussion of this problem, in the best tradition of Gestalt psy-

chology, see Goldmeier (1972; originally published in 1936).

In addition to matching (1), monotonicity (2), and independence (3), we also

assume solvability (4), and invariance (5). Solvability requires that the feature space

under study be su‰ciently rich that certain (similarity) equations can be solved.

Invariance ensures that the equivalence of intervals is preserved across factors. A

rigorous formulation of these assumptions is given in the Appendix, along with a

proof of the following result.

Representation Theorem Suppose assumptions 1, 2, 3, 4, and 5 hold. Then there

exist a similarity scale S and a nonnegative scale f such that for all a; b; c; d in D,

(i) Sða; bÞb Sðc; dÞ i¤ sða; bÞb sðc; dÞ;
(ii) Sða; bÞ ¼ yfðA V BÞ � afðA� BÞ � bfðB�AÞ, for some y; a; bb 0;

(iii) f and S are interval scales.

The theorem shows that under assumptions 1–5, there exists an interval similarity

scale S that preserves the observed similarity order and expresses similarity as a

linear combination, or a contrast, of the measures of the common and the distinctive

features. Hence, the representation is called the contrast model. In parts of the

following development we also assume that f satisfies feature additivity. That is,

fðX U YÞ ¼ fðXÞ þ fðYÞ whenever X and Y are disjoint, and all three terms are

defined.1

Note that the contrast model does not define a single similarity scale, but rather a

family of scales characterized by di¤erent values of the parameters y, a, and b. For

example, if y ¼ 1 and a and b vanish, then Sða; bÞ ¼ fðA V BÞ; that is, the similarity

between objects is the measure of their common features. If, on the other hand,

a ¼ b ¼ 1 and y vanishes then �Sða; bÞ ¼ fðA� BÞ þ fðB�AÞ; that is, the dis-

similarity between objects is the measure of the symmetric di¤erence between the

respective feature sets. Restle (1961) has proposed these forms as models of similarity

and psychological distance, respectively. Note that in the former model (y ¼ 1,

a ¼ b ¼ 0), similarity between objects is determined only by their common features,

whereas in the latter model (y ¼ 0, a ¼ b ¼ 1), it is determined by their distinctive

features only. The contrast model expresses similarity between objects as a weighted
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di¤erence of the measures of their common and distinctive features, thereby allowing

for a variety of similarity relations over the same domain.

The major constructs of the present theory are the contrast rule for the assessment

of similarity, and the scale f, which reflects the salience or prominence of the various

features. Thus, f measures the contribution of any particular (common or distinctive)

feature to the similarity between objects. The scale value fðAÞ associated with stim-

ulus a is regarded, therefore, as a measure of the overall salience of that stimulus.

The factors that contribute to the salience of a stimulus include intensity, frequency,

familiarity, good form, and informational content. The manner in which the scale f

and the parameters ðy; a; bÞ depend on the context and the task are discussed in the

following sections.

Let us recapitulate what is assumed and what is proven in the representation

theorem. We begin with a set of objects, described as collections of features, and a

similarity ordering which is assumed to satisfy the axioms of the present theory.

From these assumptions, we derive a measure f on the feature space and prove that

the similarity ordering of object pairs coincides with the ordering of their contrasts,

defined as linear combinations of the respective common and distinctive features.

Thus, the measure f and the contrast model are derived from qualitative axioms

regarding the similarity of objects.

The nature of this result may be illuminated by an analogy to the classical theory

of decision under risk (von Neumann & Morgenstern, 1947). In that theory, one

starts with a set of prospects, characterized as probability distributions over some

consequence space, and a preference order that is assumed to satisfy the axioms of

the theory. From these assumptions one derives a utility scale on the consequence

space and proves that the preference order between prospects coincides with the

order of their expected utilities. Thus, the utility scale and the expectation princi-

ple are derived from qualitative assumptions about preferences. The present theory

of similarity di¤ers from the expected-utility model in that the characterization of

objects as feature sets is perhaps more problematic than the characterization of

uncertain options as probability distributions. Furthermore, the axioms of utility

theory are proposed as (normative) principles of rational behavior, whereas the

axioms of the present theory are intended to be descriptive rather than prescriptive.

The contrast model is perhaps the simplest form of a matching function, yet it is

not the only form worthy of investigation. Another matching function of interest is

the ratio model,

Sða; bÞ ¼ fðA V BÞ
fðA V BÞ þ afðA� BÞ þ bfðB�AÞ ; a; bb 0;
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where similarity is normalized so that S lies between 0 and 1. The ratio model gen-

eralizes several set-theoretical models of similarity proposed in the literature. If

a ¼ b ¼ 1, Sða; bÞ reduces to fðA V BÞ=fðA U BÞ (see Gregson, 1975, and Sjöberg,

1972). If a ¼ b ¼ 1
2 , Sða; bÞ equals 2fðA V BÞ=ðfðAÞ þ fðBÞÞ (see Eisler & Ekman,

1959). If a ¼ 1 and b ¼ 0, Sða; bÞ reduces to fðA V BÞ=fðAÞ (see Bush & Mosteller,

1951). The present framework, therefore, encompasses a wide variety of similarity

models that di¤er in the form of the matching function F and in the weights assigned

to its arguments.

In order to apply and test the present theory in any particular domain, some

assumptions about the respective feature structure must be made. If the features

associated with each object are explicitly specified, we can test the axioms of the

theory directly and scale the features according to the contrast model. This approach,

however, is generally limited to stimuli (e.g., schematic faces, letters, strings of sym-

bols) that are constructed from a fixed feature set. If the features associated with the

objects under study cannot be readily specified, as is often the case with natural

stimuli, we can still test several predictions of the contrast model which involve only

general qualitative assumptions about the feature structure of the objects. Both

approaches were employed in a series of experiments conducted by Itamar Gati

and the present author. The following three sections review and discuss our main

findings, focusing primarily on the test of qualitative predictions. A more detailed

description of the stimuli and the data are presented in Tversky and Gati (in press).

Asymmetry and Focus

According to the present analysis, similarity is not necessarily a symmetric relation.

Indeed, it follows readily (from either the contrast or the ratio model) that

sða; bÞ ¼ sðb; aÞ i¤ afðA� BÞ þ bfðB�AÞ ¼ afðB�AÞ þ bfðA� BÞ

i¤ ða� bÞfðA� BÞ ¼ ða� bÞfðB�AÞ:

Hence, sða; bÞ ¼ sðb; aÞ if either a ¼ b, or fðA� BÞ ¼ fðB�AÞ, which implies

fðAÞ ¼ fðBÞ, provided feature additivity holds. Thus, symmetry holds whenever the

objects are equal in measure ðfðAÞ ¼ fðBÞÞ or the task is nondirectional ða ¼ bÞ. To
interpret the latter condition, compare the following two forms:

(i) Assess the degree to which a and b are similar to each other.

(ii) Assess the degree to which a is similar to b.
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In (i), the task is formulated in a nondirectional fashion; hence it is expected that

a ¼ b and sða; bÞ ¼ sðb; aÞ. In (ii), on the other hand, the task is directional, and

hence a and b may di¤er and symmetry need not hold.

If sða; bÞ is interpreted as the degree to which a is similar to b, then a is the subject

of the comparison and b is the referent. In such a task, one naturally focuses on

the subject of the comparison. Hence, the features of the subject are weighted more

heavily than the features of the referent (i.e., a > bÞ. Consequently, similarity is

reduced more by the distinctive features of the subject than by the distinctive features

of the referent. It follows readily that whenever a > b,

sða; bÞ > sðb; aÞ i¤ fðBÞ > fðAÞ:

Thus, the focusing hypothesis (i.e., a > b) implies that the direction of asymmetry is

determined by the relative salience of the stimuli so that the less salient stimulus is

more similar to the salient stimulus than vice versa. In particular, the variant is more

similar to the prototype than the prototype is to the variant, because the prototype

is generally more salient than the variant.

Similarity of Countries

Twenty-one pairs of countries served as stimuli. The pairs were constructed so that

one element was more prominent than the other (e.g., Red China–North Vietnam,

USA–Mexico, Belgium–Luxemburg). To verify this relation, we asked a group of 69

subjects2 to select in each pair the country they regarded as more prominent. The

proportion of subjects that agreed with the a priori ordering exceeded 2
3 for all pairs

except one. A second group of 69 subjects was asked to choose which of two phrases

they preferred to use: ‘‘country a is similar to country b,’’ or ‘‘country b is similar to

country a.’’ In all 21 cases, most of the subjects chose the phrase in which the less

prominent country served as the subject and the more prominent country as the ref-

erent. For example, 66 subjects selected the phrase ‘‘North Korea is similar to Red

China’’ and only 3 selected the phrase ‘‘Red China is similar to North Korea.’’ These

results demonstrate the presence of marked asymmetries in the choice of similarity

statements, whose direction coincides with the relative prominence of the stimuli.

To test for asymmetry in direct judgments of similarity, we presented two groups

of 77 subjects each with the same list of 21 pairs of countries and asked subjects to

rate their similarity on a 20-point scale. The only di¤erence between the two groups

was the order of the countries within each pair. For example, one group was asked to

assess ‘‘the degree to which the USSR is similar to Poland,’’ whereas the second

group was asked to assess ‘‘the degree to which Poland is similar to the USSR.’’ The
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lists were constructed so that the more prominent country appeared about an equal

number of times in the first and second positions.

For any pair ðp; qÞ of stimuli, let p denote the more prominent element, and let q

denote the less prominent element. The average sðq; pÞ was significantly higher than

the average sðp; qÞ across all subjects and pairs: t test for correlated samples yielded

tð20Þ ¼ 2:92, p < :01. To obtain a statistical test based on individual data, we com-

puted for each subject a directional asymmetry score defined as the average similarity

for comparisons with a prominent referent; that is, sðq; pÞ, minus the average simi-

larity for comparisons with a prominent subject, sðp; qÞ. The average di¤erence was

significantly positive: tð153Þ ¼ 2:99, p < :01.

The above study was repeated using judgments of di¤erence instead of judgments

of similarity. Two groups of 23 subjects each participated in this study. They received

the same list of 21 pairs except that one group was asked to judge the degree to

which country a di¤ered from country b, denoted dða; bÞ, whereas the second group

was asked to judge the degree to which country b was di¤erent from country a,

denoted dðb; aÞ. If judgments of di¤erence follow the contrast model, and a > b, then

we expect the prominent stimulus p to di¤er from the less prominent stimulus q more

than q di¤ers from p; that is, dðp; qÞ > dðq; pÞ. This hypothesis was tested using the

same set of 21 pairs of countries and the prominence ordering established earlier. The

average dðp; qÞ, across all subjects and pairs, was significantly higher than the aver-

age dðq; pÞ: t test for correlated samples yielded tð20Þ ¼ 2:72, p < :01. Furthermore,

the average asymmetry score, computed as above for each subject, was significantly

positive, tð45Þ ¼ 2:24, p < :05.

Similarity of Figures

A major determinant of the salience of geometric figures is goodness of form. Thus, a

‘‘good figure’’ is likely to be more salient than a ‘‘bad figure,’’ although the latter is

generally more complex. However, when two figures are roughly equivalent with

respect to goodness of form, the more complex figure is likely to be more salient. To

investigate these hypotheses and to test the asymmetry prediction, two sets of eight

pairs of geometric figures were constructed. In the first set, one figure in each pair

(denoted p) had better form than the other (denoted q). In the second set, the two

figures in each pair were roughly matched in goodness of form, but one figure

(denoted p) was richer or more complex than the other (denoted q). Examples of

pairs of figures from each set are presented in figure 1.3.

A group of 69 subjects was presented with the entire list of 16 pairs of figures,

where the two elements of each pair were displayed side by side. For each pair, the

subjects were asked to indicate which of the following two statements they preferred
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to use: ‘‘The left figure is similar to the right figure,’’ or ‘‘The right figure is similar to

the left figure.’’ The positions of the stimuli were randomized so that p and q

appeared an equal number of times on the left and on the right. The results showed

that in each one of the pairs, most of the subjects selected the form ‘‘q is similar to

p.’’ Thus, the more salient stimulus was generally chosen as the referent rather than

the subject of similarity statements.

To test for asymmetry in judgments of similarity, we presented two groups of 67

subjects each with the same 16 pairs of figures and asked the subjects to rate (on a

20-point scale) the degree to which the figure on the left was similar to the figure on

the right. The two groups received identical booklets, except that the left and right

positions of the figures in each pair were reversed. The results showed that the aver-

age sðq; pÞ across all subjects and pairs was significantly higher than the average

sðp; qÞ. A t test for correlated samples yielded tð15Þ ¼ 2:94, p < :01. Furthermore, in

both sets the average asymmetry scores, computed as above for each subject, were

significantly positive: In the first set tð131Þ ¼ 2:96, p < :01, and in the second set

tð131Þ ¼ 2:79, p < :01.

Similarity of Letters

A common measure of similarity between stimuli is the probability of confusing them

in a recognition or an identification task: The more similar the stimuli, the more

likely they are to be confused. While confusion probabilities are often asymmetric

(i.e., the probability of confusing a with b is di¤erent from the probability of con-

Figure 1.3
Examples of pairs of figures used to test the prediction of asymmetry. The top two figures are examples of
a pair (from the first set) that di¤ers in goodness of form. The bottom two are examples of a pair (from the
second set) that di¤ers in complexity.
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fusing b with a), this e¤ect is typically attributed to a response bias. To eliminate this

interpretation of asymmetry, one could employ an experimental task where the

subject merely indicates whether the two stimuli presented to him (sequentially or

simultaneously) are identical or not. This procedure was employed by Yoav Cohen

and the present author in a study of confusion among block letters.

The following eight block letters served as stimuli: , , , , , , , . All

pairs of letters were displayed on a cathode-ray tube, side by side, on a noisy back-

ground. The letters were presented sequentially, each for approximately 1 msec. The

right letter always followed the left letter with an interval of 630 msec in between.

After each presentation the subject pressed one of two keys to indicate whether the

two letters were identical or not.

A total of 32 subjects participated in the experiment. Each subject was tested

individually. On each trial, one letter (known in advance) served as the standard. For

one half of the subjects the standard stimulus always appeared on the left, and for the

other half of the subjects the standard always appeared on the right. Each one of the

eight letters served as a standard. The trials were blocked into groups of 10 pairs in

which the standard was paired once with each of the other letters and three times

with itself. Since each letter served as a standard in one block, the entire design con-

sisted of eight blocks of 10 trials each. Every subject was presented with three repli-

cations of the entire design (i.e., 240 trials). The order of the blocks in each design

and the order of the letters within each block were randomized.

According to the present analysis, people compare the variable stimulus, which

serves the role of the subject, to the standard (i.e., the referent). The choice of stan-

dard, therefore, determines the directionality of the comparison. A natural partial

ordering of the letters with respect to prominence is induced by the relation of inclu-

sion among letters. Thus, one letter is assumed to have a larger measure than another

if the former includes the latter. For example, includes and but not . For

all 19 pairs in which one letter includes the other, let p denote the more prominent

letter and q denote the less prominent letter. Furthermore, let sða; bÞ denote the per-

centage of times that the subject judged the variable stimulus a to be the same as the

standard b.

It follows from the contrast model, with a > b, that the proportion of ‘‘same’’

responses should be larger when the variable is included in the standard than when

the standard is included in the variable, that is, sðq; pÞ > sðp; qÞ. This prediction was

borne out by the data. The average sðq; pÞ across all subjects and trials was 17.1%,

whereas the average sðp; qÞ across all subjects and trials was 12.4%. To obtain a sta-

tistical test, we computed for each subject the di¤erence between sðq; pÞ and sðp; qÞ
across all trials. The di¤erence was significantly positive, tð31Þ ¼ 4:41, p < :001.
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These results demonstrate that the prediction of directional asymmetry derived from

the contrast model applies to confusion data and not merely to rated similarity.

Similarity of Signals

Rothkopf (1957) presented 598 subjects with all ordered pairs of the 36 Morse Code

signals and asked them to indicate whether the two signals in each pair were the

same or not. The pairs were presented in a randomized order without a fixed stan-

dard. Each subject judged about one fourth of all pairs.

Let sða; bÞ denote the percentage of ‘‘same’’ responses to the ordered pair ða; bÞ,
i.e., the percentage of subjects that judged the first signal a to be the same as the

second signal b. Note that a and b refer here to the first and second signal, and not to

the variable and the standard as in the previous section. Obviously, Morse Code

signals are partially ordered according to temporal length. For any pair of signals

that di¤er in temporal length, let p and q denote, respectively, the longer and shorter

element of the pair.

From the total of 555 comparisons between signals of di¤erent length, reported in

Rothkopf (1957), sðq; pÞ exceeds sðp; qÞ in 336 cases, sðp; qÞ exceeds sðq; pÞ in 181

cases, and sðq; pÞ equals sðp; qÞ in 38 cases, p < :001, by sign test. The average dif-

ference between sðq; pÞ and sðp; qÞ across all pairs is 3.3%, which is also highly sig-

nificant. A t test for correlated samples yields tð554Þ ¼ 9:17, p < :001.

The asymmetry e¤ect is enhanced when we consider only those comparisons in

which one signal is a proper subsequence of the other. (For example, � � is a sub-

sequence of � � - as well as of � - �). From a total of 195 comparisons of this type, sðq; pÞ
exceeds sðp; qÞ in 128 cases, sðp; qÞ exceeds sðq; pÞ in 55 cases, and sðq; pÞ equals

sðp; qÞ in 12 cases, p < :001 by sign test. The average di¤erence between sðq; pÞ and
sðp; qÞ in this case is 4.7%, tð194Þ ¼ 7:58, p < :001.

A later study following the same experimental paradigm with somewhat di¤erent

signals was conducted by Wish (1967). His signals consisted of three tones separated

by two silent intervals, where each component (i.e., a tone or a silence) was either

short or long. Subjects were presented with all pairs of 32 signals generated in this

fashion and judged whether the two members of each pair were the same or not.

The above analysis is readily applicable to Wish’s (1967) data. From a total of 386

comparisons between signals of di¤erent length, sðq; pÞ exceeds sðp; qÞ in 241 cases,

sðp; qÞ exceeds sðq; pÞ in 117 cases, and sðq; pÞ equals sðp; qÞ in 28 cases. These data

are clearly asymmetric, p < :001 by sign test. The average di¤erence between sðq; pÞ
and sðp; qÞ is 5.9%, which is also highly significant, tð385Þ ¼ 9:23, p < :001.

In the studies of Rothkopf and Wish there is no a priori way to determine the

directionality of the comparison, or equivalently to identify the subject and the ref-
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erent. However, if we accept the focusing hypothesis ða > bÞ and the assumption that

longer signals are more prominent than shorter ones, then the direction of the

observed asymmetry indicates that the first signal serves as the subject that is com-

pared with the second signal that serves the role of the referent. Hence, the direc-

tionality of the comparison is determined, according to the present analysis, from the

prominence ordering of the stimuli and the observed direction of asymmetry.

Rosch’s Data

Rosch (1973, 1975) has articulated and supported the view that perceptual and

semantic categories are naturally formed and defined in terms of focal points, or

prototypes. Because of the special role of prototypes in the formation of categories,

she hypothesized that (i) in sentence frames involving hedges such as ‘‘a is essentially

b,’’ focal stimuli (i.e., prototypes) appear in the second position; and (ii) the per-

ceived distance from the prototype to the variant is greater than the perceived dis-

tance from the variant to the prototype. To test these hypotheses, Rosch (1975) used

three stimulus domains: color, line orientation, and number. Prototypical colors were

focal (e.g., pure red), while the variants were either non-focal (e.g., o¤-red) or less

saturated. Vertical, horizontal, and diagonal lines served as prototypes for line ori-

entation, and lines of other angles served as variants. Multiples of 10 (e.g., 10, 50,

100) were taken as prototypical numbers, and other numbers (e.g., 11, 52, 103) were

treated as variants.

Hypothesis (i) was strongly confirmed in all three domains. When presented with

sentence frames such as ‘‘ is virtually ,’’ subjects generally placed the pro-

totype in the second blank and the variant in the first. For instance, subjects pre-

ferred the sentence ‘‘103 is virtually 100’’ to the sentence ‘‘100 is virtually 103.’’ To

test hypothesis (ii), one stimulus (the standard) was placed at the origin of a semicir-

cular board, and the subject was instructed to place the second (variable) stimulus on

the board so as ‘‘to represent his feeling of the distance between that stimulus and the

one fixed at the origin.’’ As hypothesized, the measured distance between stimuli was

significantly smaller when the prototype, rather than the variant, was fixed at the

origin, in each of the three domains.

If focal stimuli are more salient than non-focal stimuli, then Rosch’s findings sup-

port the present analysis. The hedging sentences (e.g., ‘‘a is roughly b’’) can be

regarded as a particular type of similarity statements. Indeed, the hedges data are

in perfect agreement with the choice of similarity statements. Furthermore, the

observed asymmetry in distance placement follows from the present analysis of

asymmetry and the natural assumptions that the standard and the variable serve,

respectively, as referent and subject in the distance-placement task. Thus, the place-
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ment of b at distance t from a is interpreted as saying that the (perceived) distance

from b to a equals t.

Rosch (1975) attributed the observed asymmetry to the special role of distinct

prototypes (e.g., a perfect square or a pure red) in the processing of information.

In the present theory, on the other hand, asymmetry is explained by the relative

salience of the stimuli. Consequently, it implies asymmetry for pairs that do not

include the prototype (e.g., two levels of distortion of the same form). If the concept

of prototypicality, however, is interpreted in a relative sense (i.e., a is more proto-

typical than b) rather than in an absolute sense, then the two interpretations of

asymmetry practically coincide.

Discussion

The conjunction of the contrast model and the focusing hypothesis implies the pres-

ence of asymmetric similarities. This prediction was confirmed in several experiments

of perceptual and conceptual similarity using both judgmental methods (e.g., rating)

and behavioral methods (e.g., choice).

The asymmetries discussed in the previous section were observed in comparative

tasks in which the subject compares two given stimuli to determine their similarity.

Asymmetries were also observed in production tasks in which the subject is given a

single stimulus and asked to produce the most similar response. Studies of pattern

recognition, stimulus identification, and word association are all examples of pro-

duction tasks. A common pattern observed in such studies is that the more salient

object occurs more often as a response to the less salient object than vice versa. For

example, ‘‘tiger’’ is a more likely associate to ‘‘leopard’’ than ‘‘leopard’’ is to ‘‘tiger.’’

Similarly, Garner (1974) instructed subjects to select from a given set of dot pat-

terns one that is similar—but not identical—to a given pattern. His results show

that ‘‘good’’ patterns are usually chosen as responses to ‘‘bad’’ patterns and not

conversely.

This asymmetry in production tasks has commonly been attributed to the di¤er-

ential availability of responses. Thus, ‘‘tiger’’ is a more likely associate to ‘‘leopard’’

than vice versa, because ‘‘tiger’’ is more common and hence a more available

response than ‘‘leopard.’’ This account is probably more applicable to situations

where the subject must actually produce the response (as in word association or pat-

tern recognition) than to situations where the subject merely selects a response from

some specified set (as in Garner’s task).

Without questioning the importance of response availability, the present theory

suggests another reason for the asymmetry observed in production tasks. Consider

the following translation of a production task to a question-and-answer scheme.
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Question: What is a like? Answer: a is like b. If this interpretation is valid and the

given object a serves as a subject rather than as a referent, then the observed asym-

metry of production follows from the present theoretical analysis, since sða; bÞ >
sðb; aÞ whenever fðBÞ > fðAÞ.

In summary, it appears that proximity data from both comparative and produc-

tion tasks reveal significant and systematic asymmetries whose direction is deter-

mined by the relative salience of the stimuli. Nevertheless, the symmetry assumption

should not be rejected altogether. It seems to hold in many contexts, and it serves as

a useful approximation in many others. It cannot be accepted, however, as a univer-

sal principle of psychological similarity.

Common and Distinctive Features

In the present theory, the similarity of objects is expressed as a linear combination, or

a contrast, of the measures of their common and distinctive features. This section

investigates the relative impact of these components and their e¤ect on the relation

between the assessments of similarity and di¤erence. The discussion concerns only

symmetric tasks, where a ¼ b, and hence sða; bÞ ¼ sðb; aÞ.

Elicitation of Features

The first study employs the contrast model to predict the similarity between objects

from features that were produced by the subjects. The following 12 vehicles served as

stimuli: bus, car, truck, motorcycle, train, airplane, bicycle, boat, elevator, cart, raft,

sled. One group of 48 subjects rated the similarity between all 66 pairs of vehicles

on a scale from 1 (no similarity) to 20 (maximal similarity). Following Rosch and

Mervis (1975), we instructed a second group of 40 subjects to list the characteristic

features of each one of the vehicles. Subjects were given 70 sec to list the features

that characterized each vehicle. Di¤erent orders of presentation were used for dif-

ferent subjects.

The number of features per vehicle ranged from 71 for airplane to 21 for sled.

Altogether, 324 features were listed by the subjects, of which 224 were unique and

100 were shared by two or more vehicles. For every pair of vehicles we counted the

number of features that were attributed to both (by at least one subject), and the

number of features that were attributed to one vehicle but not to the other. The fre-

quency of subjects that listed each common or distinctive feature was computed.

In order to predict the similarity between vehicles from the listed features, the

measures of their common and distinctive features must be defined. The simplest
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measure is obtained by counting the number of common and distinctive features

produced by the subjects. The product-moment correlation between the (average)

similarity of objects and the number of their common features was .68. The correla-

tion between the similarity of objects and the number of their distinctive features was

�.36. The multiple correlation between similarity and the numbers of common and

distinctive features (i.e., the correlation between similarity and the contrast model)

was .72.

The counting measure assigns equal weight to all features regardless of their fre-

quency of mention. To take this factor into account, let Xa denote the proportion of

subjects who attributed feature X to object a, and let NX denote the number of

objects that share feature X. For any a; b, define the measure of their common fea-

tures by fðA V BÞ ¼
P

XaXb=NX, where the summation is over all X in A V B, and

the measure of their distinctive features by

fðA� BÞ þ fðB�AÞ ¼
X

Ya þ
X

Zb

where the summations range over all Y A A� B and Z A B�A, that is, the distinc-

tive features of a and b, respectively. The correlation between similarity and the

above measure of the common features was .84; the correlation between similarity

and the above measure of the distinctive features was �.64. The multiple correlation

between similarity and the measures of the common and the distinctive features was

.87.

Note that the above methods for defining the measure f were based solely on the

elicited features and did not utilize the similarity data at all. Under these conditions,

a perfect correlation between the two should not be expected because the weights

associated with the features are not optimal for the prediction of similarity. A given

feature may be frequently mentioned because it is easily labeled or recalled, although

it does not have a great impact on similarity, and vice versa. Indeed, when the fea-

tures were scaled using the additive tree procedure (Sattath & Tversky, in press) in

which the measure of the features is derived from the similarities between the objects,

the correlation between the data and the model reached .94.

The results of this study indicate that (i) it is possible to elicit from subjects

detailed features of semantic stimuli such as vehicles (see Rosch & Mervis, 1975); (ii)

the listed features can be used to predict similarity according to the contrast model

with a reasonable degree of success; and (iii) the prediction of similarity is improved

when frequency of mention and not merely the number of features is taken into

account.
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Similarity versus Di¤erence

It has been generally assumed that judgments of similarity and di¤erence are com-

plementary; that is, judged di¤erence is a linear function of judged similarity with a

slope of �1. This hypothesis has been confirmed in several studies. For example,

Hosman and Kuennapas (1972) obtained independent judgments of similarity and

di¤erence for all pairs of lowercase letters on a scale from 0 to 100. The product–

moment correlation between the judgments was �.98, and the slope of the regression

line was �.91. We also collected judgments of similarity and di¤erence for 21 pairs of

countries using a 20-point rating scale. The sum of the two judgments for each pair

was quite close to 20 in all cases. The product–moment correlation between the

ratings was again �.98. This inverse relation between similarity and di¤erence,

however, does not always hold.

Naturally, an increase in the measure of the common features increases similarity

and decreases di¤erence, whereas an increase in the measure of the distinctive fea-

tures decreases similarity and increases di¤erence. However, the relative weight

assigned to the common and the distinctive features may di¤er in the two tasks. In

the assessment of similarity between objects the subject may attend more to their

common features, whereas in the assessment of di¤erence between objects the subject

may attend more to their distinctive features. Thus, the relative weight of the com-

mon features will be greater in the former task than in the latter task.

Let dða; bÞ denote the perceived di¤erence between a and b. Suppose d satisfies

the axioms of the present theory with the reverse inequality in the monotonicity

axiom, that is, dða; bÞa dða; cÞ whenever A V BIA V C, A� BHA� C, and

B�AHC�A. Furthermore, suppose s also satisfies the present theory and assume

(for simplicity) that both d and s are symmetric. According to the representation

theorem, therefore, there exist a nonnegative scale f and nonnegative constants y and

l such that for all a; b; c; e,

sða; bÞ > sðc; eÞ i¤ yfðA V BÞ � fðA� BÞ � fðB�AÞ

> yfðC V EÞ � fðC� EÞ � fðE� CÞ;

and

dða; bÞ > dðc; eÞ i¤ fðA� BÞ þ fðB�AÞ � lfðA V BÞ

> fðC� EÞ þ fðE� CÞ � lfðC V EÞ:

The weights associated with the distinctive features can be set equal to 1 in the sym-

metric case with no loss of generality. Hence, y and l reflect the relative weight of the

common features in the assessment of similarity and di¤erence, respectively.
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Note that if y is very large then the similarity ordering is essentially determined

by the common features. On the other hand, if l is very small, then the di¤erence

ordering is determined primarily by the distinctive features. Consequently, both

sða; bÞ > sðc; eÞ and dða; bÞ > dðc; eÞ may be obtained whenever

fðA V BÞ > fðC V EÞ

and

fðA� BÞ þ fðB�AÞ > fðC� EÞ þ fðE� CÞ:

That is, if the common features are weighed more heavily in judgments of similarity

than in judgments of di¤erence, then a pair of objects with many common and many

distinctive features may be perceived as both more similar and more di¤erent than

another pair of objects with fewer common and fewer distinctive features.

To test this hypothesis, 20 sets of four countries were constructed on the basis of a

pilot test. Each set included two pairs of countries: a prominent pair and a non-

prominent pair. The prominent pairs consisted of countries that were well known to

our subjects (e.g., USA–USSR, Red China–Japan). The nonprominent pairs con-

sisted of countries that were known to the subjects, but not as well as the prominent

ones (e.g., Tunis–Morocco, Paraguay–Ecuador). All subjects were presented with

the same 20 sets. One group of 30 subjects selected between the two pairs in each set

the pair of countries that were more similar. Another group of 30 subjects selected

between the two pairs in each set the pair of countries that were more di¤erent.

Let Ps and Pd denote, respectively, the percentage of choices where the prominent

pair of countries was selected as more similar or as more di¤erent. If similarity and

di¤erence are complementary (i.e., y ¼ l), then Ps þPd should equal 100 for all

pairs. On the other hand, if y > l, then Ps þPd should exceed 100. The average

value of Ps þPd, across all sets, was 113.5, which is significantly greater than 100,

tð59Þ ¼ 3:27, p < :01.

Moreover, on the average, the prominent pairs were selected more frequently than

the nonprominent pairs in both the similarity and the di¤erence tasks. For example,

67% of the subjects in the similarity group selected West Germany and East Ger-

many as more similar to each other than Ceylon and Nepal, while 70% of the sub-

jects in the di¤erence group selected West Germany and East Germany as more

di¤erent from each other than Ceylon and Nepal. These data demonstrate how the

relative weight of the common and the distinctive features varies with the task and

support the hypothesis that people attend more to the common features in judgments

of similarity than in judgments of di¤erence.
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Similarity in Context

Like other judgments, similarity depends on context and frame of reference. Some-

times the relevant frame of reference is specified explicitly, as in the questions, ‘‘How

similar are English and French with respect to sound?’’ ‘‘What is the similarity of a

pear and an apple with respect to taste?’’ In general, however, the relevant feature

space is not specified explicitly but rather inferred from the general context.

When subjects are asked to assess the similarity between the USA and the USSR,

for instance, they usually assume that the relevant context is the set of countries and

that the relevant frame of reference includes all political, geographical, and cultural

features. The relative weights assigned to these features, of course, may di¤er for

di¤erent people. With natural, integral stimuli such as countries, people, colors, and

sounds, there is relatively little ambiguity regarding the relevant feature space. How-

ever, with artificial, separable stimuli, such as figures varying in color and shape, or

lines varying in length and orientation, subjects sometimes experience di‰culty in

evaluating overall similarity and occasionally tend to evaluate similarity with respect

to one factor or the other (Shepard, 1964) or change the relative weights of attributes

with a change in context (Torgerson, 1965).

In the present theory, changes in context or frame of reference correspond to

changes in the measure of the feature space. When asked to assess the political simi-

larity between countries, for example, the subject presumably attends to the political

aspects of the countries and ignores, or assigns a weight of zero to, all other features.

In addition to such restrictions of the feature space induced by explicit or implicit

instructions, the salience of features and hence the similarity of objects are also

influenced by the e¤ective context (i.e., the set of objects under consideration). To

understand this process, let us examine the factors that determine the salience of a

feature and its contribution to the similarity of objects.

The Diagnosticity Principle

The salience (or the measure) of a feature is determined by two types of factors:

intensive and diagnostic. The former refers to factors that increase intensity or signal-

to-noise ratio, such as the brightness of a light, the loudness of a tone, the saturation

of a color, the size of a letter, the frequency of an item, the clarity of a picture, or the

vividness of an image. The diagnostic factors refer to the classificatory significance of

features, that is, the importance or prevalence of the classifications that are based on

these features. Unlike the intensive factors, the diagnostic factors are highly sensitive

to the particular object set under study. For example, the feature ‘‘real’’ has no

diagnostic value in the set of actual animals since it is shared by all actual animals
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and hence cannot be used to classify them. This feature, however, acquires consider-

able diagnostic value if the object set is extended to include legendary animals, such

as a centaur, a mermaid, or a phoenix.

When faced with a set of objects, people often sort them into clusters to reduce

information load and facilitate further processing. Clusters are typically selected so

as to maximize the similarity of objects within a cluster and the dissimilarity of

objects from di¤erent clusters. Hence, the addition and/or deletion of objects can

alter the clustering of the remaining objects. A change of clusters, in turn, is expected

to increase the diagnostic value of features on which the new clusters are based, and

therefore, the similarity of objects that share these features. This relation between

similarity and grouping—called the diagnosticity hypothesis—is best explained in

terms of a concrete example. Consider the two sets of four schematic faces (displayed

in figure 1.4), which di¤er in only one of their elements (p and q).

The four faces of each set were displayed in a row and presented to a di¤erent

group of 25 subjects who were instructed to partition them into two pairs. The most

frequent partition of set 1 was c and p (smiling faces) versus a and b (nonsmiling

faces). The most common partition of set 2 was b and q (frowning faces) versus a and

c (nonfrowning faces). Thus, the replacement of p by q changed the grouping of a: In

set 1 a was paired with b, while in set 2 a was paired with c.

According to the above analysis, smiling has a greater diagnostic value in set 1

than in set 2, whereas frowning has a greater diagnostic value in set 2 than in set 1.

By the diagnosticity hypothesis, therefore, similarity should follow the grouping.

That is, the similarity of a (which has a neutral expression) to b (which is frowning)

should be greater in set 1, where they are grouped together, than in set 2, where they

are grouped separately. Likewise, the similarity of a to c (which is smiling) should be

greater in set 2, where they are grouped together, than in set 1, where they are not.

To test this prediction, two di¤erent groups of 50 subjects were presented with

sets 1 and 2 (in the form displayed in figure 1.4) and asked to select one of the three

faces below (called the choice set) that was most similar to the face on the top (called

the target). The percentage of subjects who selected each of the three elements of

the choice set is presented below the face. The results confirmed the diagnosticity

hypothesis: b was chosen more frequently in set 1 than in set 2, whereas c was

chosen more frequently in set 2 than in set 1. Both di¤erences are statistically signif-

icant, p < :01. Moreover, the replacement of p by q actually reversed the similarity

ordering: In set 1, b is more similar to a than c, whereas in set 2, c is more similar to

a than b.

A more extensive test of the diagnosticity hypothesis was conducted using seman-

tic rather than visual stimuli. The experimental design was essentially the same,
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Figure 1.4
Two sets of schematic faces used to test the diagnosticity hypothesis. The percentage of subjects who
selected each face (as most similar to the target) is presented below the face.
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except that countries served as stimuli instead of faces. Twenty pairs of matched sets

of four countries of the form fa; b; c; pg and fa; b; c; qg were constructed. An exam-

ple of two matched sets is presented in figure 1.5.

Note that the two matched sets (1 and 2) di¤er only by one element (p and q). The

sets were constructed so that a (in this case Austria) is likely to be grouped with b

(e.g., Sweden) in set 1, and with c (e.g., Hungary) in set 2. To validate this assump-

tion, we presented two groups of 25 subjects with all sets of four countries and asked

them to partition each quadruple into two pairs. Each group received one of the two

matched quadruples, which were displayed in a row in random order. The results

confirmed our prior hypothesis regarding the grouping of countries. In every case but

one, the replacement of p by q changed the pairing of the target country in the pre-

dicted direction, p < :01 by sign test. For example, Austria was paired with Sweden

by 60% of the subjects in set 1, and it was paired with Hungary by 96% of the sub-

jects in set 2.

To test the diagnosticity hypothesis, we presented two groups of 35 subjects with

20 sets of four countries in the format displayed in figure 1.5. These subjects were

asked to select, for each quadruple, the country in the choice set that was most simi-

lar to the target country. Each group received exactly one quadruple from each pair.

If the similarity of b to a, say, is independent of the choice set, then the proportion of

subjects who chose b rather than c as most similar to a should be the same regardless

of whether the third element in the choice set is p or q. For example, the proportion

of subjects who select Sweden rather than Hungary as most similar to Austria should

be independent of whether the odd element in the choice set is Norway or Poland.

Figure 1.5
Two sets of countries used to test the diagnosticity hypothesis. The percentage of subjects who selected
each country (as most similar to Austria) is presented below the country.
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In contrast, the diagnosticity hypothesis implies that the change in grouping,

induced by the substitution of the odd element, will change the similarities in a pre-

dictable manner. Recall that in set 1 Poland was paired with Hungary, and Austria

with Sweden, while in set 2 Norway was paired with Sweden, and Austria with

Hungary. Hence, the proportion of subjects who select Sweden rather than Hungary

(as most similar to Austria) should be higher in set 1 than in set 2. This prediction is

strongly supported by the data in figure 1.5, which show that Sweden was selected

more frequently than Hungary in set 1, while Hungary was selected more frequently

than Sweden in set 2.

Let b(p) denote the percentage of subjects who chose country b as most similar to

a when the odd element in the choice set is p, and so on. As in the above examples,

the notation is chosen so that b is generally grouped with q, and c is generally

grouped with p. The di¤erences bðpÞ � bðqÞ and cðqÞ � cðpÞ, therefore, reflect the

e¤ects of the odd elements, p and q, on the similarity of b and c to the target a. In

the absence of context e¤ects, both di¤erences should equal 0, while under the

diagnosticity hypothesis both di¤erences should be positive. In figure 1.5, for exam-

ple, bðpÞ � bðqÞ ¼ 49� 14 ¼ 35, and cðqÞ � cðpÞ ¼ 60� 36 ¼ 24. The average dif-

ference, across all pairs of quadruples, equals 9%, which is significantly positive,

tð19Þ ¼ 3:65, p < :01.

Several variations of the experiment did not alter the nature of the results. The

diagnosticity hypothesis was also confirmed when (i) each choice set contained four

elements, rather than three, (ii) the subjects were instructed to rank the elements of

each choice set according to their similarity to the target, rather than to select the

most similar element, and (iii) the target consisted of two elements, and the subjects

were instructed to select one element of the choice set that was most similar to the

two target elements. For further details, see Tversky and Gati (in press).

The Extension E¤ect

Recall that the diagnosticity of features is determined by the classifications that are

based on them. Features that are shared by all the objects under consideration can-

not be used to classify these objects and are, therefore, devoid of diagnostic value.

When the context is extended by the enlargement of the object set, some features that

had been shared by all objects in the original context may not be shared by all

objects in the broader context. These features then acquire diagnostic value and

increase the similarity of the objects that share them. Thus, the similarity of a pair

of objects in the original context will usually be smaller than their similarity in the

extended context.

Essentially the same account was proposed and supported by Sjöberg3 in studies of

similarity between animals, and between musical instruments. For example, Sjöberg
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showed that the similarities between string instruments (banjo, violin, harp, electric

guitar) were increased when a wind instrument (clarinet) was added to this set. Since

the string instruments are more similar to each other than to the clarinet, however,

the above result may be attributed, in part at least, to subjects’ tendency to stan-

dardize the response scale, that is, to produce the same average similarity for any set

of comparisons.

This e¤ect can be eliminated by the use of a somewhat di¤erent design, employed

in the following study. Subjects were presented with pairs of countries having a

common border and assessed their similarity on a 20-point scale. Four sets of eight

pairs were constructed. Set 1 contained eight pairs of European countries (e.g., Italy–

Switzerland). Set 2 contained eight pairs of American countries (e.g., Brazil–

Uruguay). Set 3 contained four pairs from set 1 and four pairs from set 2, while set 4

contained the remaining pairs from sets 1 and 2. Each one of the four sets was pre-

sented to a di¤erent group of 30–36 subjects.

According to the diagnosticity hypothesis, the features ‘‘European’’ and ‘‘Ameri-

can’’ have no diagnostic value in sets 1 and 2, although they both have a diagnostic

value in sets 3 and 4. Consequently, the overall average similarity in the heteroge-

neous sets (3 and 4) is expected to be higher than the overall average similarity in the

homogeneous sets (1 and 2). This prediction was confirmed by the data, tð15Þ ¼ 2:11,

p < :05.

In the present study all similarity assessments involve only homogeneous pairs

(i.e., pairs of countries from the same continent sharing a common border). Unlike

Sjöberg’s3 study, which extended the context by introducing nonhomogeneous pairs,

our experiment extended the context by constructing heterogeneous sets composed of

homogeneous pairs. Hence, the increase of similarity with the enlargement of con-

text, observed in the present study, cannot be explained by subjects’ tendency to

equate the average similarity for any set of assessments.

The Two Faces of Similarity

According to the present analysis, the salience of features has two components:

intensity and diagnosticity. The intensity of a feature is determined by perceptual and

cognitive factors that are relatively stable across contexts. The diagnostic value of a

feature is determined by the prevalence of the classifications that are based on it,

which change with the context. The e¤ects of context on similarity, therefore, are

treated as changes in the diagnostic value of features induced by the respective

changes in the grouping of the objects.

This account was supported by the experimental finding that changes in grouping

(produced by the replacement or addition of objects) lead to corresponding changes

in the similarity of the objects. These results shed light on the dynamic interplay
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between similarity and classification. It is generally assumed that classifications are

determined by similarities among the objects. The preceding discussion supports the

converse hypothesis: that the similarity of objects is modified by the manner in which

they are classified. Thus, similarity has two faces: causal and derivative. It serves as a

basis for the classification of objects, but it is also influenced by the adopted classifi-

cation. The diagnosticity principle which underlies this process may provide a key to

the analysis of the e¤ects of context on similarity.

Discussion

In this section we relate the present development to the representation of objects in

terms of clusters and trees, discuss the concepts of prototypicality and family resem-

blance, and comment on the relation between similarity and metaphor.

Features, Clusters, and Trees

There is a well-known correspondence between features or properties of objects and

the classes to which the objects belong. A red flower, for example, can be charac-

terized as having the feature ‘‘red,’’ or as being a member of the class of red objects.

In this manner we associate with every feature in F the class of objects in D which

possesses that feature. This correspondence between features and classes provides a

direct link between the present theory and the clustering approach to the representa-

tion of proximity data.

In the contrast model, the similarity between objects is expressed as a function of

their common and distinctive features. Relations among overlapping sets are often

represented in a Venn diagram (see figure 1.1). However, this representation becomes

cumbersome when the number of objects exceeds four or five. To obtain useful

graphic representations of the contrast model; two alternative simplifications are

entertained.

First, suppose the objects under study are all equal in prominence, that is,

fðAÞ ¼ fðBÞ for all a; b in D. Although this assumption is not strictly valid in general,

it may serve as a reasonable approximation in certain contexts. Assuming feature

additivity and symmetry, we obtain

Sða; bÞ ¼ yfðA V BÞ � fðA� BÞ � fðB�AÞ

¼ yfðA V BÞ þ 2fðA V BÞ � fðA� BÞ � fðB�AÞ � 2fðA V BÞ

¼ ðyþ 2ÞfðA V BÞ � fðAÞ � fðBÞ

¼ lfðA V BÞ þ m;
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since fðAÞ ¼ fðBÞ for all a; b in D. Under the present assumptions, therefore, simi-

larity between objects is a linear function of the measure of their common features.

Since f is an additive measure, fðA V BÞ is expressible as the sum of the measures

of all the features that belong to both a and b. For each subset L of D, let FðLÞ de-
note the set of features that are shared by all objects in L, and are not shared by any

object that does not belong to L. Hence,

Sða; bÞ ¼ lfðA V BÞ þ m

¼ l
X

fðXÞ
� �

þ m X A A V B

¼ l
X

fðFðLÞÞ
� �

þ m LI fa; bg:

Since the summation ranges over all subsets of D that include both a and b, the sim-

ilarity between objects can be expressed as the sum of the weights associated with all

the sets that include both objects.

This form is essentially identical to the additive clustering model proposed by

Shepard and Arabie4. These investigators have developed a computer program,

ADCLUS, which selects a relatively small collection of subsets and assigns weight to

each subset so as to maximize the proportion of (similarity) variance accounted for

by the model. Shepard and Arabie4 applied ADCLUS to several studies including

Shepard, Kilpatric, and Cunningham’s (1975) on judgments of similarity between the

integers 0 through 9 with respect to their abstract numerical character. A solution

with 19 subsets accounted for 95% of the variance. The nine major subsets (with the

largest weights) are displayed in table 1.1 along with a suggested interpretation. Note

that all the major subsets are readily interpretable, and they are overlapping rather

than hierarchical.

Table 1.1
ADCLUS Analysis of the Similarities among the Integers 0 through 9 (from Shepard & Arabie4)

Rank Weight Elements of subset Interpretation of subset

1st .305 2 4 8 powers of two

2nd .288 6 7 8 9 large numbers

3rd .279 3 6 9 multiples of three

4th .202 0 1 2 very small numbers

5th .202 1 3 5 7 9 odd numbers

6th .175 1 2 3 small nonzero numbers

7th .163 5 6 7 middle numbers (largish)

8th .160 0 1 additive and multiplicative identities

9th .146 0 1 2 3 4 smallish numbers
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The above model expresses similarity in terms of common features only. Alter-

natively, similarity may be expressed exclusively in terms of distinctive features. It

has been shown by Sattath5 that for any symmetric contrast model with an additive

measure f, there exists a measure g defined on the same feature space such that

Sða; bÞ ¼ yfðA V BÞ � fðA� BÞ � fðB�AÞ

¼ l� gðA� BÞ � gðB�AÞ for some l > 0:

This result allows a simple representation of dissimilarity whenever the feature

space F is a tree (i.e., whenever any three objects in D can be labeled so that

A V B ¼ A V CHB V C). Figure 1.6 presents an example of a feature tree, con-

structed by Sattath and Tversky (in press) from judged similarities between lowercase

letters, obtained by Kuennapas and Janson (1969). The major branches are labeled

to facilitate the interpretation of the tree.

Each (horizontal) arc in the graph represents the set of features shared by all the

objects (i.e., letters) that follow from that arc, and the arc length corresponds to the

measure of that set. The features of an object are the features of all the arcs which

lead to that object, and its measure is its (horizontal) distance to the root. The tree

distance between objects a and b is the (horizontal) length of the path joining them,

that is, fðA� BÞ þ fðB�AÞ. Hence, if the contrast model holds, a ¼ b, and F is a

tree, then dissimilarity (i.e., �S) is expressible as tree distance.

A feature tree can also be interpreted as a hierarchical clustering scheme where

each arc length represents the weight of the cluster consisting of all the objects that

follow from that arc. Note that the tree in figure 1.6 di¤ers from the common hier-

archical clustering tree in that the branches di¤er in length. Sattath and Tversky

(in press) describe a computer program, ADDTREE, for the construction of additive

feature trees from similarity data and discuss its relation to other scaling methods.

It follows readily from the above discussion that if we assume both that the feature

set F is a tree, and that fðAÞ ¼ fðBÞ for all a; b in D, then the contrast model reduces

to the well-known hierarchical clustering scheme. Hence, the additive clustering

model (Shepard & Arabie)4, the additive similarity tree (Sattath & Tversky, in press),

and the hierarchical clustering scheme (Johnson, 1967) are all special cases of the

contrast model. These scaling models can thus be used to discover the common and

distinctive features of the objects under study. The present development, in turn,

provides theoretical foundations for the analysis of set-theoretical methods for the

representation of proximities.
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Figure 1.6
The representation of letter similarity as an additive (feature) tree. From Sattath and Tversky (in press).



Similarity, Prototypicality, and Family Resemblance

Similarity is a relation of proximity that holds between two objects. There exist other

proximity relations such as prototypicality and representativeness that hold between

an object and a class. Intuitively, an object is prototypical if it exemplifies the cate-

gory to which it belongs. Note that the prototype is not necessarily the most typical

or frequent member of its class. Recent research has demonstrated the importance of

prototypicality or representativeness in perceptual learning (Posner & Keele, 1968;

Reed, 1972), inductive inference (Kahneman & Tversky, 1973), semantic memory

(Smith, Rips, & Shoben, 1974), and the formation of categories (Rosch & Mervis,

1975). The following discussion analyzes the relations of prototypicality and family

resemblance in terms of the present theory of similarity.

Let Pða;LÞ denote the (degree of ) prototypicality of object a with respect to class

L, with cardinality n, defined by

Pða;LÞ ¼ pn l
X

fðA V BÞ �
X

ðfðA� BÞ þ fðB�AÞÞ
� �

;

where the summations are over all b in L. Thus, Pða;LÞ is defined as a linear com-

bination (i.e., a contrast) of the measures of the features of a that are shared with the

elements of L and the features of a that are not shared with the elements of L. An

element a of L is a prototype if it maximizes Pða;LÞ. Note that a class may have

more than one prototype.

The factor pn reflects the e¤ect of category size on prototypicality, and the

constant l determines the relative weights of the common and the distinctive

features. If pn ¼ 1=n, l ¼ y, and a ¼ b ¼ 1, then Pða;LÞ ¼ 1=n
P

Sða; bÞ (i.e., the

prototypicality of a with respect to L equals the average similarity of a to all mem-

bers of L). However, in line with the focusing hypotheses discussed earlier, it appears

likely that the common features are weighted more heavily in judgments of proto-

typicality than in judgments of similarity.

Some evidence concerning the validity of the proposed measure was reported by

Rosch and Mervis (1975). They selected 20 objects from each one of six categories

(furniture, vehicle, fruit, weapon, vegetable, clothing) and instructed subjects to list

the attributes associated with each one of the objects. The prototypicality of an

object was defined by the number of attributes or features it shared with each mem-

ber of the category. Hence, the prototypicality of a with respect to L was defined

by
P

Nða; bÞ, where Nða; bÞ denotes the number of attributes shared by a and b,

and the summation ranges over all b in L. Clearly, the measure of prototypicality

employed by Rosch and Mervis (1975) is a special case of the proposed measure,

where l is large and fðA V BÞ ¼ Nða; bÞ.
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These investigators also obtained direct measures of prototypicality by instructing

subjects to rate each object on a 7-point scale according to the extent to which it fits

the ‘‘idea or image of the meaning of the category.’’ The rank correlations between

these ratings and the above measure were quite high in all categories: furniture, .88;

vehicle, .92; weapon, .94; fruit, .85; vegetable, .84; clothing, .91. The rated proto-

typicality of an object in a category, therefore, is predictable by the number of fea-

tures it shares with other members of that category.

In contrast to the view that natural categories are definable by a conjunction of

critical features, Wittgenstein (1953) argued that several natural categories (e.g., a

game) do not have any attribute that is shared by all their members, and by them

alone. Wittgenstein proposed that natural categories and concepts are commonly

characterized and understood in terms of family resemblance, that is, a network of

similarity relations that link the various members of the class. The importance of

family resemblance in the formation and processing of categories has been e¤ectively

underscored by the work of Rosch and her collaborators (Rosch, 1973; Rosch &

Mervis, 1975; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). This research

demonstrated that both natural and artificial categories are commonly perceived and

organized in terms of prototypes, or focal elements, and some measure of proximity

from the prototypes. Furthermore, it lent substantial support to the claim that people

structure their world in terms of basic semantic categories that represent an optimal

level of abstraction. Chair, for example, is a basic category; furniture is too general

and kitchen chair is too specific. Similarly, car is a basic category; vehicle is too

general and sedan is too specific. Rosch argued that the basic categories are selected

so as to maximize family resemblance—defined in terms of cue validity.

The present development suggests the following measure for family resemblance,

or category resemblance. Let L be some subset of D with cardinality n. The category

resemblance of L denoted RðLÞ is defined by

RðLÞ ¼ rn l
X

fðA V BÞ �
X

ðfðA� BÞ þ fðB�AÞÞ
� �

;

the summations being over all a; b in L. Hence, category resemblance is a linear

combination of the measures of the common and the distinctive features of all pairs

of objects in that category. The factor rn reflects the e¤ect of category size on cate-

gory resemblance, and the constant l determines the relative weight of the common

and the distinctive features. If l ¼ y, a ¼ b ¼ 1, and rn ¼ 2=nðn� 1Þ, then

RðLÞ ¼
P

Sða; bÞ
n

2

� � ;
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the summation being over all a; b in L; that is, category resemblance equals average

similarity between all members of L. Although the proposed measure of family

resemblance di¤ers from Rosch’s, it nevertheless captures her basic notion that fam-

ily resemblance is highest for those categories which ‘‘have the most attributes com-

mon to members of the category and the least attributes shared with members of

other categories’’ (Rosch et al., 1976, p. 435).

The maximization of category resemblance could be used to explain the forma-

tion of categories. Thus, the set L rather than G is selected as a natural category

whenever RðLÞ > RðGÞ. Equivalently, an object a is added to a category L whenever

RðfL U agÞ > RðLÞ. The fact that the preferred (basic) categories are neither the

most inclusive nor the most specific imposes certain constraints on rn.

If rn ¼ 2=nðn� 1Þ then RðLÞ equals the average similarity between all members of

L. This index leads to the selection of minimal categories because average similarity

can generally be increased by deleting elements. The average similarity between

sedans, for example, is surely greater than the average similarity between cars; nev-

ertheless, car rather than sedan serves as a basic category. If rn ¼ 1 then RðLÞ equals
the sum of the similarities between all members of L. This index leads to the selec-

tion of maximal categories because the addition of objects increases total similarity,

provided S is nonnegative.

In order to explain the formation of intermediate-level categories, therefore, cate-

gory resemblance must be a compromise between an average and a sum. That is, rn
must be a decreasing function of n that exceeds 2=nðn� 1Þ. In this case, RðLÞ
increases with category size whenever average similarity is held constant, and vice

versa. Thus, a considerable increase in the extension of a category could outweigh a

small reduction in average similarity.

Although the concepts of similarity, prototypicality, and family resemblance are

intimately connected, they have not been previously related in a formal explicit

manner. The present development o¤ers explications of similarity, prototypicality,

and family resemblance within a unified framework, in which they are viewed as

contrasts, or linear combinations, of the measures of the appropriate sets of common

and distinctive features.

Similes and Metaphors

Similes and metaphors are essential ingredients of creative verbal expression. Perhaps

the most interesting property of metaphoric expressions is that despite their novelty

and nonliteral nature, they are usually understandable and often informative. For

example, the statement that Mr. X resembles a bulldozer is readily understood as

saying that Mr. X is a gross, powerful person who overcomes all obstacles in getting
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a job done. An adequate analysis of connotative meaning should account for man’s

ability to interpret metaphors without specific prior learning. Since the message con-

veyed by such expressions is often pointed and specific, they cannot be explained in

terms of a few generalized dimensions of connotative meaning, such as evaluation or

potency (Osgood, 1962). It appears that people interpret similes by scanning the fea-

ture space and selecting the features of the referent that are applicable to the subject

(e.g., by selecting features of the bulldozer that are applicable to the person). The

nature of this process is left to be explained.

There is a close tie between the assessment of similarity and the interpretation of

metaphors. In judgments of similarity one assumes a particular feature space, or a

frame of reference, and assesses the quality of the match between the subject and the

referent. In the interpretation of similes, one assumes a resemblance between the

subject and the referent and searches for an interpretation of the space that would

maximize the quality of the match. The same pair of objects, therefore, can be

viewed as similar or di¤erent depending on the choice of a frame of reference.

One characteristic of good metaphors is the contrast between the prior, literal

interpretation, and the posterior, metaphoric interpretation. Metaphors that are too

transparent are uninteresting; obscure metaphors are uninterpretable. A good meta-

phor is like a good detective story. The solution should not be apparent in advance to

maintain the reader’s interest, yet it should seem plausible after the fact to maintain

coherence of the story. Consider the simile ‘‘An essay is like a fish.’’ At first, the

statement is puzzling. An essay is not expected to be fishy, slippery, or wet. The

puzzle is resolved when we recall that (like a fish) an essay has a head and a body,

and it occasionally ends with a flip of the tail.

Notes

This paper benefited from fruitful discussions with Y. Cohen, I. Gati, D. Kahneman, L. Sjöberg, and
S. Sattath.

1. To derive feature additivity from qualitative assumptions, we must assume the axioms of an extensive
structure and the compatibility of the extensive and the conjoint scales; see Krantz et al. (1971, Section
10.7).

2. The subjects in all our experiments were Israeli college students, ages 18–28. The material was presented
in booklets and administered in a group setting.

3. Sjöberg, L. A cognitive theory of similarity. Göteborg Psychological Reports (No. 10), 1972.

4. Shepard, R. N., & Arabie, P. Additive cluster analysis of similarity data. Proceedings of the U.S.–Japan
Seminar on Theory, Methods, and Applications of Multidimensional Scaling and Related Techniques. San
Diego, August 1975.

5. Sattath, S. An equivalence theorem. Unpublished note, Hebrew University, 1976.
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Appendix: An Axiomatic Theory of Similarity

Let D ¼ fa; b; c; . . .g be a collection of objects characterized as sets of features, and

let A;B;C, denote the sets of features associated with a; b; c, respectively. Let sða; bÞ
be an ordinal measure of the similarity of a to b, defined for all distinct a; b in D.

The present theory is based on the following five axioms. Since the first three axioms

are discussed in the paper, they are merely restated here; the remaining axioms are

briefly discussed.

1. matching: sða; bÞ ¼ FðA V B;A� B;B�AÞ where F is some real-valued func-

tion in three arguments.

2. monotonicity: sða; bÞb sða; cÞ whenever A V BIA V C, A� BHA� C, and

B�AHC�A. Moreover, if either inclusion is proper then the inequality is strict.

Let F be the set of all features associated with the objects of D, and let X;Y;Z, etc.

denote subsets of F. The expression FðX;Y;ZÞ is defined whenever there exist a; b in

D such that A V B ¼ X, A� B ¼ Y, and B�A ¼ Z, whence sða; bÞ ¼ FðX;Y;ZÞ.
Define VFW if one or more of the following hold for some X;Y;Z:

FðV;Y;ZÞ ¼ FðW;Y;ZÞ, FðX;V;ZÞ ¼ FðX;W;ZÞ, FðX;Y;VÞ ¼ FðX;Y;WÞ. The

pairs ða; bÞ and ðc; dÞ agree on one, two, or three components, respectively, whenever

one, two, or three of the following hold: ðA V BÞF ðC V DÞ, ðA� BÞF ðC�DÞ,
ðB�AÞF ðD� CÞ.
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3. independence: Suppose the pairs ða; bÞ and ðc; dÞ, as well as the pairs ða 0; b 0Þ
and ðc 0; d 0Þ, agree on the same two components, while the pairs ða; bÞ and ða 0; b 0Þ, as
well as the pairs ðc; dÞ and ðc 0; d 0Þ, agree on the remaining (third) component. Then

sða; bÞb sða 0; b 0Þ i¤ sðc; dÞb sðc 0; d 0Þ:

4. solvability:

(i) For all pairs ða; bÞ, ðc; dÞ, ðe; fÞ, of objects in D there exists a pair ðp; qÞ which

agrees with them, respectively, on the first, second, and third component, that is,

P V QFA V B, P�QFC�D, and Q� PFF� E.

(ii) Suppose sða; bÞ > t > sðc; dÞ. Then there exist e; f with sðe; fÞ ¼ t, such that if

ða; bÞ and ðc; dÞ agree on one or two components, then ðe; fÞ agrees with them on

these components.

(iii) There exist pairs ða; bÞ and ðc; dÞ of objects in D that do not agree on any

component.

Unlike the other axioms, solvability does not impose constraints on the similarity

order; it merely asserts that the structure under study is su‰ciently rich so that cer-

tain equations can be solved. The first part of axiom 4 is analogous to the existence

of a factorial structure. The second part of the axiom implies that the range of s is a

real interval: There exist objects in D whose similarity matches any real value that is

bounded by two similarities. The third part of axiom 4 ensures that all arguments of

F are essential.

Let F1, F2, and F3 be the sets of features that appear, respectively, as first, second,

or third arguments of F. (Note that F2 ¼ F3.) Suppose X and X 0 belong to F1, while

Y and Y 0 belong to F2. Define ðX;X 0Þ1 F ðY;Y 0Þ2 whenever the two intervals are

matched, that is, whenever there exist pairs ða; bÞ and (a 0; b 0) of equally similar

objects in D which agree on the third factor. Thus, ðX;X 0Þ1 F ðY;Y 0Þ2 whenever

sða; bÞ ¼ FðX;Y;ZÞ ¼ FðX 0;Y 0;ZÞ ¼ sða 0; b 0Þ:

This definition is readily extended to any other pair of factors. Next, define

ðV;V 0Þi F ðW;W 0Þi, i ¼ 1; 2; 3 whenever ðV;V 0Þi F ðX;X 0Þj F ðW;W0Þi, for some

ðX;X 0Þj, j0 i. Thus, two intervals on the same factor are equivalent if both match

the same interval on another factor. The following invariance axiom asserts that if

two intervals are equivalent on one factor, they are also equivalent on another factor.

5. invariance: Suppose V;V 0, W;W 0 belong to both Fi and Fj, i; j ¼ 1; 2; 3. Then

ðV;V 0Þi F ðW;W 0Þi i¤ ðV;V 0Þj F ðW;W 0Þj:
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representation theorem

Suppose axioms 1–5 hold. Then there exist a similarity scale S and a nonnegative

scale f such that for all a; b; c; d in D

(i) Sða; bÞb Sðc; dÞ i¤ sða; bÞb sðc; dÞ,
(ii) Sða; bÞ ¼ yfðA V BÞ � afðA� BÞ � bfðB�AÞ, for some y; a; bb 0.

(iii) f and S are interval scales.

While a self-contained proof of the representation theorem is quite long, the theo-

rem can be readily reduced to previous results.

Recall that Fi is the set of features that appear as the ith argument of F, and let

Ci ¼ Fi=F, i ¼ 1; 2; 3. Thus, Ci is the set of equivalence classes of Fi with respect to

F. It follows from axioms 1 and 3 that each Ci is well defined, and it follows from

axiom 4 that C ¼ C1 �C2 �C3 is equivalent to the domain of F. We wish to show

that C, ordered by F, is a three-component, additive conjoint structure, in the sense

of Krantz, Luce, Suppes, and Tversky (1971, Section 6.11.1).

This result, however, follows from the analysis of decomposable similarity struc-

tures, developed by Tversky and Krantz (1970). In particular, the proof of part (c) of

theorem 1 in that paper implies that, under axioms 1, 3, and 4, there exist non-

negative functions f i defined on Ci, i ¼ 1; 2; 3, so that for all a; b; c; d in D

sða; bÞb sðc; dÞ i¤ Sða; bÞb Sðc; dÞ

where

Sða; bÞ ¼ f1ðA V BÞ þ f2ðA� BÞ þ f3ðB�AÞ;

and f1; f2; f3 are interval scales with a common unit.

According to axiom 5, the equivalence of intervals is preserved across factors. That

is, for all V;V 0, W;W 0 in Fi V Fj, i; j ¼ 1; 2; 3,

fiðVÞ � fiðV 0Þ ¼ fiðWÞ � fiðW 0Þ i¤ fjðVÞ � fjðV 0Þ ¼ fjðWÞ � fjðW 0Þ:

Hence by part (i) of theorem 6.15 of Krantz et al. (1971), there exist a scale f and

constants y i such that fiðXÞ ¼ yifðXÞ, i ¼ 1; 2; 3. Finally, by axiom 2, S increases in

f1 and decreases in f2 and f3. Hence, it is expressible as

Sða; bÞ ¼ yfðA V BÞ � afðA� BÞ � bfðB�AÞ;

for some nonnegative constants y; a; b.
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