An Intriguing Geometry Problem

Tom Rike

Berkeley Math Circle

May 5, 2002

1 History and Background

Problem. Let $A B C$ be an isosceles triangle $(\mathrm{AB}=\mathrm{AC})$ with $\angle B A C=20^{\circ}$. Point D is on side $A C$ such that $\angle D B C=60^{\circ}$. Point E is on side $A B$ such that $\angle E C B=50^{\circ}$. Find, with proof, the measure of $\angle E D B$.

This geometry problem which is the major focus of the talk today dates back to at least 1922, when it appeared in the Mathematical Gazette, Volume 11, p. 173. It appears to be an easy problem, but it is deceivingly difficult. I first saw the problem in the late 1960's when my go teacher at the time gave it to me. I worked for a long time on the problem. However, I persisted in treating it as an elementary angle-chasing problem and did not solve it. A few years later the problem surfaced in a talk for high school students by Bill Leonard from California State College in Fullerton. As soon as he showed the problem on the screen, I covered my ears and put my head down, because I did not want to hear the solution. Nevertheless, I did not manage to solve the problem and finally when I encountered it in Geometry Revisited [1] by Coxeter and Greitzer, I read the solution one line at a time, trying to complete the proof. It was still difficult for me, since I was teaching Junior High School at the time and had not studied any geometry since high school. I then found the problem in some books I ordered for my classes: Trigonometric Novelties [10] and One Hundred Mathematical Curiosities [9]. Both were written by William Ransom in the 1950's. I had not even considered trying to prove it using trigonometry. Of course there were no calculators in the early 1970's selling for less than $\$ 200$ that had trigonometric function keys. The Mathematical Association of America was now publishing a new series of books, the Dolciani Mathematical Expositions. The second volume, Mathematical Gems II [3] by Ross Honsberger, had a section entitled "Four Minor Gems from Geometry". In this section, a 1951 proof by S.T. Thompson was presented based on intersecting diagonals of a regular 18 -gon. Also during this period, a problem with 60° and 70° angles instead of 60° and 50° angles surfaced in the 1976 Carleton University Mathematics Competition for high school students. It was widely discussed in Crux Mathematicorum [2] with a call for non-trigonometric solutions. Many were forthcoming in the months that followed. In the May-June 1994 issue of Quantum there appeared a very interesting article entitled " Nine Solutions to One Problem" [5] by Constantine Knop. This talk will be a discussion of these solutions. In 1997, an article in Mathematical Horizons [7] contained an article entitled "A Better Angle From Outside" by Andy Liu which discusses several problems that can be solved with the key idea used in the sixth proof in Knop's article. In 2000, Essays on Numbers and Figures [8] by V.V. Prasolov became Volume 16 in the American Mathematical Society series Mathematical World. The essay in this volume, "Intersection Points of the Diagonals
of Regular Polygons", was to be the main topic of the talk today, but there is too much else to discuss, so it will only be mentioned as a generalization of the method of S.T. Thompson, mentioned above. Last year, Mathematical Chestnuts from Around the World [4] by Ross Honsberger, was published as Dolciani Mathematical Exposition Number 24. A problem from Knop's article, proposed by a gifted ninth grader, is discussed and three solutions are given. (See problem 1 below) Also last year, an article entitled "Dividable TrianglesWhat Are They?" came out in the May issue of Mathematics Teacher [6] which approaches these problems from the different point of view of dissecting isosceles triangles into isosceles triangles.

2 Eight Solutions

Here are the starting points and sketches for eight solutions.

1. Draw segment $D F$ parallel to $B C$ with F on $A B$. Draw $C F$ intersecting $B D$ at G. Now find the equilateral triangles and isosceles triangles.
2. Use the Law of Sines in triangle $B E D$ and triangle $B C D$. Use $B E=B C$ to connect the results. Simplify and solve for $\angle E D B$.
3. Draw lines through D and B parallel to $B C$ and $D C$, respectively, intersecting at H. Draw $C G$ with G on $B D$ and $\angle G C B=60^{\circ}$. Show E is the incenter of triangle $B D H$.
4. Mark K on $A C$ such that $\angle K B C=20^{\circ}$. Draw $K B$ and $K E$. Show $B E=B C=$ $B K=K E=K D$.
5. (Maria Gelband) Reflect E through $A C$ to point H. Show D is on the circumcircle of triangle $B E H$.
6. (Sergei Saprikin) Let the bisector of $\angle A B C$ intersect $A C$ at point T. Show D is an excenter of triangle $B E T$.
7. (Alexey Borodin) Let O be the circumcenter of triangle $D E C$. Show $B D$ is the perpendicular bisector of $E O$.
8. (Alexander Kornienko) Reflect triangle $A B C$ through $A B$ to triangle $A B C^{\prime}$ and also relect it through $A C$ to triangle $A C B^{\prime}$. Show that C^{\prime}, E, and D are collinear.

3 Problems

1. (Sergey Yurin, 9th grade) In an isosceles triangle $A B C, A B=A C$, and $\angle A=20^{\circ}$. Point P is taken on the side $A C$ such that $A P=B C$. Find $\angle P B C$.

Use the idea of excenters and incenters to solve the following problems.
2. (Carleton University Mathematics Competition for High School Students, 1976)
$A B C$ is an isosceles triangle with $\angle A B C=\angle A C B=80^{\circ} . P$ is the point on $A B$ such that $\angle P C B=70^{\circ} . Q$ is the point on $A C$ such that $\angle Q B C=60^{\circ}$. Find $\angle P Q A$.
3. (Pythagoras Olympiad in The Netherlands, 1980) In triangle $A B C$, point D is such that $\angle D C A=\angle D C B=\angle D B C=10^{\circ}$ and $\angle D B A=20^{\circ}$. Find the measure of $\angle C A D$.
4. (Alberta High School Mathematics Competition, 1989-90) In quadrilateral $A B C D$ with diagonals $B D$ and $A C, \angle A B D=40^{\circ}, \angle C B D=70^{\circ}, \angle C D B=50^{\circ}, \angle A D B=80^{\circ}$. Find the measure of $\angle C A D$.
5. (Junior Problem A-6, Tournament of Towns, Spring 1997) Let P be a point inside triangle $A B C$ with $A B=B C, \angle A B C=80^{\circ}, \angle P A C=40^{\circ}$ and $\angle A C P=30^{\circ}$. Find the measure of $\angle B P C$.
6. Senior Problem A-2, Tournament of Towns, Spring 1997) D is the point on $B C$ and E is the point on $C A$ such that $A D$ and $B E$ are the bisectors of $\angle A$ and $\angle B$ of triangle $A B C$. If $D E$ is the bisector of $\angle A D C$, find the measure of $\angle A$.

4 References

1. H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, Mathematical Association of America, 1967.
2. Crux Mathematicorum, Problem 134, 2(1976) p. 68.
3. Ross Honsberger, "Four Minor Gems from Geometry", Mathematical Gems II, Mathematical Association of America, 1976.
4. Ross Honsberger, "Three Solutions to a Variation on an Old Chestnut", Mathematical Chestnuts from Around the World, Mathematical Association of America, 2001.
5. Constantine Knop, " Nine Solutions to One Problem", Quantum, May-June 1994, pp. 46-49.
6. Roza Leikin, "Dividable Triangles-What Are They?", Mathematics Teacher, May 2001, pp. 392-398.
7. Andy Liu, "A Better Angle From Outside",Mathematical Horizons, November 1997, pp. 27-29.
8. V.V. Prasolov, Essays on Numbers and Figures, American Mathematical Association, 2000.
9. William Ransom, One Hundred Mathematical Curiosities, J. Weston Walsh, 1955.
10. William Ransom, Trigonometric Novelties, J. Weston Walsh, 1959.
11. P.J. Taylor and A.M. Storozhev, Tournament of Towns 1993-1997, Australian Mathematics Trust, 1998.

If you have comments, questions or find glaring errors, please contact me by e-mail at the following address: trike@ousd.k12.ca.us

5 Eight Solutions (more detailed)

1. Draw segment $D F$ parallel to $B C$ with F on $A B$. Draw $C F$ intersecting $B D$ at G. Triangles $B G C$ and $D G F$ are equilateral. Triangle CEB is isosceles $(\angle B E C=50=$ $\angle B C E$), so $B E=B C=B G$. Then triangle $B E G$ is isosceles with a vertex angle of 20° and base angles of 80°. Since $80^{\circ}+\angle E G F+60^{\circ}=180^{\circ}$, we have $\angle E G F=40^{\circ}$. But in triangle $B F C, \angle B F C=40^{\circ}$, so triangle $E F G$ is isosceles and $E F G D$ is a kite.
2. Use the Law of Sines in triangle $B E D$ and triangle $B C D$ and $B E=B C$ to get $\frac{\sin \left(160^{\circ}-x\right)}{\sin x}=\frac{B D}{B E}=\frac{B D}{B C}=\frac{\sin \left(80^{\circ}\right)}{\sin 40^{\circ}}$. Simplify to get $\sin \left(20^{\circ}+x\right)=2 \cos 40^{\circ} \sin x$.
3. Draw lines through D and H parallel to $B C$ and $D C$, respectively, intersecting at H. Draw $C G$ with G on $B D$ and $\angle G C B=60^{\circ} . B E=B C=C G, B H=C D$ and $\angle E B H=\angle G C D=20^{\circ}$, so $\triangle E B H \cong \triangle G C D$. Therefore $\angle B H E=\angle C D G=40^{\circ}$. But $\angle B H D=80^{\circ}$, so $\angle E H D=40^{\circ}=\angle B H E$ and E is the incenter of triangle $B D H$.
4. Mark K on $A C$ such that $\angle K B C=20^{\circ}$. Draw $K B$ and $K E . B E=B C=B K$ and $\angle E B K=60^{\circ}$, so triangle $E B K$ is equilateral and triangle $K B C$ is isosceles with $\angle B K C=80^{\circ} . \angle E K D=40^{\circ}$ since $\angle E K C=140^{\circ}$. In triangle $B D K, \angle B D K=40^{\circ}$, so that triangle $B K D$ is isosceles with $K D=K B=K E$. Then triangle $K D E$ is isosceles with a 40° vertex angle at K. The base angles are 70°, so $\angle E D C=30^{\circ}$.
5. Reflect E through $A C$ to point H. Triangle $E C H$ is equilateral with line $C D$, the perpendicular bisector of $E H$. But $B E=B C$, so $B C H E$ is a kite. Draw symmetry line $B H$. Ray $B D$ bisects angle $E B H$. Consider the circumcircle of triangle $B E H$. Line $B D$ passes through the midpoint of arc $E H$ and ray $B D$ passes through the midpoint of arc $E H$. Since D is on the ray and the line it must be on the circle. Then the measure of inscribed angle $E D B$ has the same measure as inscribed angle $E H B$
6. Let the bisector of $\angle A B C$ intersect $A C$ at point T. $B D$ bisects $\angle E B T . \triangle B E T \cong$ $\triangle B C T$ by SAS, so $\angle E T B=\angle C T B=60^{\circ}$. Therefore $\angle E T D=60^{\circ}$ which is the measure of the angle formed by the extension of $B T$ and $A T$ and D is an excenter of triangle $B E T$. (D is equidistant from the lines $B T, E T$, and $B E$.) Therefore $E D$ bisects $\angle A E T$ and we have $\angle B E D=50^{\circ}+30^{\circ}+50^{\circ}=130^{\circ}$.
7. Let O be the circumcenter of triangle $D E C$. Then central angle $E O D$ is twice the measure of inscribed angle $E C D$. So $\angle E O D=60^{\circ}$ and triangle $E O D$ is equilateral. Now D lies on the perpendicular bisector of $E O$ and $B D$ bisects angle $B E O$. If the perpendicular bisector of $E O$ is different from $B D$, then D would lie on the circumcircle of triangle $E O B$. Then opposite angles of cyclic quadrilateral $E B O D$ would be supplementary, but $\angle E B O+\angle E D O=40^{\circ}+60^{\circ} \neq 180^{\circ}$. Therefore $B D$ bisects $\angle E D O$.
8. Reflect triangle $A B C$ through $A B$ to triangle $A B C^{\prime}$ and also reflect it through $A C$ to triangle $A C B^{\prime}$. $A C^{\prime} B^{\prime}$ is equilateral and $\angle B C^{\prime} B^{\prime}=20^{\circ}$. Draw $C^{\prime} E$. Therefore $C^{\prime} E$ bisects $\angle A C^{\prime} B^{\prime}$. Draw $D B . A D=D B=D B^{\prime}$, so D is on the perpendicular bisector of $A B^{\prime}$ which coincides with the angle bisector since the triangle is equilateral.
