
Ira R. Forman
Nate Forman

M A N N I N G

PRAISE FOR ...

Java Reflection in Action

Java Reflection in Action is unique in presenting a clear account of all
e pro-

 create
ions of
nough

is book
 philo-
.
ll sorts
s disci-
s based
pt the
 of the
diverse
nd pro-
ales for
 so on,
va pro-
ht out

.

swego,
 in Java

they're
ture as
r, each

BM
atterns
the cool things you can do with reflection, and at the same tim
viding the sound conceptual basis that developers need to
advanced applications. The book includes careful explanat
sometimes perplexing programming techniques along with e
background to understand how to extend and vary them. Th
overcomes reflection’s reputation as a mysterious and esoteric
sophical pursuit, or as a set of messy error-prone coding tricks

 As reflection becomes increasingly common and useful in a
of applications, it is great to finally have a book that feature
plined yet still creative and fun software engineering practice
on reflection. Even occasional users will immediately ado
book’s patterns and idioms to solve common problems. Many
examples can be directly adapted for customized solutions in
areas such as XML processing, automated software testing, a
gram analysis tools. Readers will also find underlying ration
code performing introspection, proxies, class loading, and
that are often seen but not often explained well in everyday Ja
grams. And even experts will find new ideas and well-thoug
advice for using some of the more subtle aspects of reflection

 —Prof. Doug Lea, SUNY O
author of Concurrent Programming

Java has brought reflection to the programming masses, but
still struggling with it. The Formans turn struggle into adven
they guide you through one compelling example after anothe
one illustrating reflection’s power while avoiding its pitfalls.

 —Dr. John Vlissides, I
 —coauthor of Design P

Java Reflection
in Action

IRA R. FORMAN
 NATE FORMAN

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Linda Recktenwald
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-18-4

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 07 06 05 04

 To Janet/Mom

 This project wouldn’t have happened
without your love and support.

contents
preface xiii
acknowledgments xv
about this book xvii
about the title xx
about the cover illustration xxi

1 A few basics 1
1.1 Reflection’s value proposition 3

1.2 Enter George the programmer 4
Choosing reflection 5 ■ Programming a reflective solution 6

1.3 Examining running programs 8

1.4 Finding a method at runtime 10

1.5 Representing types with class objects 12
Representing primitive types 13 ■ Representing interfaces 13
Representing array types 14

1.6 Understanding method objects 14
Using dynamic invocation 15 ■ Using primitives with dynamic
invocation 16 ■ Avoiding invocation pitfalls 17

1.7 Diagramming for reflection 19
vii

viii CONTENTS
1.8 Navigating the inheritance hierarchy 20
Introspecting the inheritance hierarchy 22 ■ Exposing some
surprises 23 ■ Another reflective circularity 24

1.9 Summary 26

2 Accessing fields reflectively 27
2.1 Serializing objects 28

Serializing to XML 29 ■ Choosing reflection 30
Designing serialization with reflection 30

2.2 Finding fields at runtime 31

2.3 Understanding field objects 33

2.4 Getting and setting field values 34

2.5 Examining modifiers 35
Introducing Member 36 ■ Interface introspection pitfall 37
Introspecting for instance variables 37

2.6 Accessing nonpublic members 38

2.7 Working with arrays 40

2.8 Serialization: putting it all together 41
Serializing each component 43 ■ Serializing instance variables 43

2.9 Using reflective serialization 45

2.10 Summary 48

3 Dynamic loading and reflective construction 49
3.1 George’s deployment problem 50

Designing with patterns 51 ■ Programming a reflective solution 52
Enhancing the factory method with reflection 54 ■ Combining
benefits of delegation and reflection 54

3.2 Loading classes dynamically 55
Basics of forName 55 ■ Getting array classes 56
Primitives and forName 56

3.3 Constructing objects reflectively 57
Reflective construction basics 57 ■ Using constructor objects 57
Constructing arrays reflectively 59

3.4 Designing for dynamic loading 60
Disadvantages of reflective construction with arguments 61
Initializing through an interface 62

CONTENTS ix
3.5 Implementing deserialization 63
Initiating deserialization 64 ■ Constructing the instances 65
Restoring the object structure 66

3.6 George’s serialization: limitations 69
No interaction with readObject or writeObject 69 ■ No handling of
final instance variables 70 ■ Only no-argument constructors 70
No handling of illegal XML characters 70 ■ Performance 71

3.7 Summary 71

4 Using Java’s dynamic proxy 73
4.1 Working with proxies 74

4.2 George’s tracing problem 76

4.3 Exploring Proxy 77
Understanding invocation handlers 79
Handling the methods of Object 80

4.4 Implementing a tracing proxy 81

4.5 A note on factories 84

4.6 Chaining proxies 86
Structuring invocation handlers for chaining 86 ■ Implementing
a synchronized proxy 88 ■ Chaining the two proxies 89

4.7 Stubbing interfaces for unit testing 90
Examining stubs 90 ■ Design for stubbing with Proxy 91
Implementation of stubbing with Proxy 93

4.8 Generating SOAP remote proxies 99

4.9 Pitfalls of using Proxy 103

4.10 Summary 105

5 Call stack introspection 107
5.1 George’s logging problem 108

5.2 Performing call stack introspection 111

5.3 Logging with call stack introspection 112

5.4 Pitfalls 114

5.5 Class invariant checking 115

5.6 Summary 120

x CONTENTS
6 Using the class loader 121
6.1 George’s test problem 122

6.2 Essentials of ClassLoader 123
Understanding the delegation model 123 ■ Programming a simple
class loader 127 ■ Reinitializing static fields: a solution 128

6.3 Multiple namespaces 130

6.4 Dynamic class replacement 132
Designing for replacement 132 ■ Implementing replacement 134
Simplifying assumptions 137

6.5 Additional considerations 138
Security 139 ■ Don’t reinvent the wheel 139 ■ Modifying bytecode in a
class loader 140 ■ When not to invent a specialized class loader 140
Additional examples 141 ■ Endorsed Standards Override 142

6.6 Summary 142

7 Reflective code generation 143
7.1 Reflective code generation 143

7.2 Generating HelloWorld.java 145

7.3 Class-to-class transformation framework 147
C2C 148 ■ Args 152 ■ C2CConstructor 154
C2CTransformation 157

7.4 Example: extent management 159

7.5 C2IdentitySubclassOfC and its subclasses 168

7.6 UQueue 170

7.7 Using the framework 173

7.8 Relation to Aspect-Oriented Programming 175

7.9 Summary 176

8 Design patterns 179
8.1 Singleton 181

8.2 Decorator class-to-class transformations 187

8.3 Proxy (again) 197

8.4 Another composition feature 201

CONTENTS xi
8.5 Problematic issues in writing
class-to-class transformations 201

8.6 Summary 204

9 Evaluating performance 207
9.1 Evaluating performance 207

9.2 Categorizing performance impact 209

9.3 Using microbenchmarks 210

9.4 Benchmarking two ways to use Proxy 214

9.5 Understanding Amdahl’s Law 218

9.6 Applying Amdahl’s Law 221

9.7 Summary 223

10 Reflecting on the future 225
10.1 Looking forward: Java 1.5 226

JSR 14—Generics 227 ■ JSR 175—Annotation Facility 229
JSR 201—Language extensions 234
Impact of Java 1.5 on reflective code 235

10.2 Looking forward: competition for Java reflection 236
C# 236 ■ Python 236 ■ Smalltalk 236 ■ CLOS 237
Ruby 237 ■ Perl 237

10.3 Looking forward: Aspect-Oriented Programming 237

10.4 Looking forward: your career 238

appendix A Reflection and metaobject protocols 241
appendix B Handling compilation errors in the

“Hello world!” program 253
appendix C UML 256

glossary 258
references 260
index 267

preface

We wrote this book because reflection inspires us. It produces solutions so elegant
that they elicit the same sense of wonderment that we often felt as children. It is
this inspiration that has driven both of us in our study and practice of reflective
programming over the last ten years.

 In the early 1990s, Ira Forman was a member of the development team for
IBM’s SOMobjects Toolkit, generally known as SOM. It was not a programming lan-
guage. Rather, SOM was an API to a highly capable and reflective object model.

 For the second release of SOM in 1994, Ira and Scott Danforth wrote the Meta-
class Framework, which used the reflective facilities of SOM to provide useful tools
for the rest of the development team and the IBM customers. This may well be the
first commercial instance of what has become known as Aspect-Oriented Pro-
gramming. Included in the Metaclass Framework was a tool to dynamically create
proxy classes. Another tool could wrap the methods of a class with code to exe-
cute before and after every method execution (this was the way the trace facility
was created without modifying the SOM kernel). Yet another modified a class to
be a singleton. In addition, there was a metaclass to support the conversion of
plain-old classes into replicated classes (in the context of the SOM Replication
Framework, which was programmed by Hari Madduri and Ira). These experi-
ences convinced Ira that reflective programming is cool.
xiii

xiv PREFACE
 Despite all of its technical innovation, SOM was not a financial success.1 In
1996, Java pushed SOM out of the marketplace. Allowing those innovations to be
lost was unacceptable. So, while employed to work on other matters, Ira and Scott
pushed on to write Putting Metaclasses to Work, which was published in 1999.

 About that time, Ira’s son Nate was looking for a topic for a master’s paper at
the University of Texas at Austin. Nate accepted Ira’s suggestion: study the use of
reflection to support the application of Gang-of-Four2 design patterns. The result-
ing paper led to some interesting insights into both reflection and patterns. But
most of all, it reinforced our conviction that reflective programming is cool.

 Nate graduated and went to work as a Java developer, first at Liaison Technol-
ogy and currently at Ticom Geomatics. Nate was able to leverage Java reflection to
the benefit of his employers, producing flexible application frameworks and APIs.
These experiences proved to us that reflection is more than cool—it’s valuable.

 With this value in mind, we teamed up to teach reflection. In 2001 and 2002,
we taught a course titled Software Patterns, UML, and Reflection as part of the Soft-
ware Engineering Program at the University of Texas. Also, each October since
2001, we have presented a Java Reflection tutorial at the OOPSLA Conference.

 One of our OOPSLA traditions is to have dinner with John Vlissides. At the first
dinner, John asserted, “You two should write a book,” and went on to suggest a stim-
ulating topic. This father and son team will be forever grateful for that suggestion.

 We hope that, through this book, you will find Java reflection as cool and valu-
able as we do.

1 SOM was IBM’s product to compete with Microsoft’s COM for control of the architecture
of object-oriented programming. Both SOM and COM were designed on the assumption
that the world needed a better C++. The world, however, wanted something else, as was
evident by the astoundingly rapid rise of Java to preeminence in object-oriented program-
ming. In 1996, SOM exited the marketplace, but, with its bigger market share, COM sur-
vived. Now, the battle for control of the architecture of object-oriented programming has
moved to C# versus Java. Control of an architecture is where the big money is made in in-
formation technology. In the 1980s, IBM ceded control over the hardware architecture of
personal computers to Intel; as a result, today we speak about “Intel inside” and not “IBM
compatible.” For more information about the importance of controlling an architecture,
see Computer Wars: How the West Can Win in a Post-IBM World by Charles H. Ferguson and
Charles R. Morris (Random House, 1993).

2 This term refers to the four authors of Design Patterns: Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides.

acknowledgments

The first person we must thank is John Vlissides. At our first annual OOPSLA din-
ner, John suggested that we should write a book together. We are grateful for this
suggestion and for John’s encouragement over the years.

 We are grateful to Dewayne Perry for giving us the opportunity to teach this
material in the Software Engineering Program at the University of Texas. We also
thank the students who persevered as we honed our explanations of reflection. In
particular, we thank Chris Hamilton and Atif Saeed, whose master’s papers started
us on the road to chapters 7 and 8.

 For their excellent reviews of our manuscript we thank Bill Alexander, Muham-
mad Ashikuzzaman, Walter Cazzola, Scott Danforth, Prasannavignesh Ganesan,
Jim Heath, Stuart Halloway, Berndt Hamboeck, Jack Herrington, Lane Holloway,
Michael Houghtaling, Norman Richards, Scott Shaw, Kent Spaulding, Bruce Tate,
Luigi Viggiano, Rick Warren, and the set of unknown reviewers. Your detailed and
helpful comments have made this a better book.

 Special thanks to Norman Richards who reviewed the final manuscript for
technical acurracy shortly before it went to press.

 We thank the people with whom we consulted or who made memorable com-
ments during our presentations: Craig Becker, Joshua Bloch, Neal Gafter, Jesse Gor-
don, Chance Harris, Doug Lea, Stuart McDow, Phil Mitchell, Stu Nickolas, Lance
Obermeyer, Charlie Richter, Kim Rochat, Wayne Vicknair, and Lane Warshaw.
xv

xvi ACKNOWLEDGMENTS
 We are indebted to all of the hard-working folks at Manning Publications who
helped bring this book to fruition. In particular, we thank

Marjan Bace—the publisher who recognized the importance of reflection
and whose eye for organization and style was tremendously helpful.

Jackie Carter—our development editor, whose insights improved the manu-
script dramatically and whose advice guided us through the process.

David Roberson—who arranged for manuscript reviews and provided com-
ments.

Linda Recktenwald—who performed a really great editing job.

Dottie Marsico—who did the typesetting and the graphics.

Susan Forsyth—who ensured quality and did not falter during the last phase
of production.

Mary Piergies—who managed the production team and got the book out
the door.

Throughout this book, we follow a fictional character, George the programmer.
George’s situations represent hard-working programmers and the challenges they
face. Sometimes these stories were from our own experience. Many other times,
these stories were inspired by coworkers. We are grateful to Thomas Chen,
George Copeland, Rick Efruss, Erik Kartzmark, Chaitanya Laxminarayan, Kevin
Locke, Rob Ratcliff, Matt Sanchez, and Keith Yarbrough, for being George at one
time or another. Your experiences have taught us—thank you.

about this book

How this book is organized
The ten chapters of this book are organized as follows:

 Chapters 1, 2, and 3 introduce the basics of Java reflection: how to access class
objects; how to dynamically examine classes, methods, fields, and constructors;
and how to dynamically load classes.

 Chapter 4 introduces the first advanced reflective feature: dynamic proxies.
The chapter covers the facilities of the Proxy class and how to use them. There are
several useful examples, including how to add properties to objects and how to
create a test stub generator.

 Chapter 5 covers the topic of examining the call stack. This is important for
reflectively solving problems related to what a running program is doing.

 Chapter 6 delves into customizing class loaders. This topic is necessary to
reflective programming because some problems require the collection of meta-
data that is available only when classes are loaded.

 Chapter 7 begins a two-chapter sequence on reflective code generation. This
chapter introduces a framework for class-to-class transformations, a particular
kind of code generator that starts with a compiled class and produces a new com-
piled class, which usually has some additional property.

 Chapter 8 continues the sequence by using the framework for class-to-class
transformations to support implementation of designs that use patterns.
xvii

xviii ABOUT THIS BOOK
 Chapter 9 presents performance-measurement techniques for making design
decisions among reflective features.

 Chapter 10 takes a look at the future of reflection in Java. This includes an
overview of the impact of Java 1.5 on reflective programming, which other pro-
duction languages will influence the future of reflection in Java, and the influ-
ence of Aspect-Oriented Programming.

 Appendix A is a reprise of the introduction to reflection but with a more aca-
demic point of view. The appendix presents a brief history of reflection and the
terminology that you are likely to encounter when reading advanced papers.

 Appendix B explains how to handle compilation errors in the program that
dynamically compiles the “Hello World!” program.

 Appendix C summarizes the UML conventions used to diagram reflective
programs.

Who should read this book
This book is a practical guide for intermediate programmers. The book has one
goal: to make your programming job easier. We accomplish this in two ways:

■ Teach Java reflection—The book concentrates on small teachable examples,
mainly in the area of software development and test tools, a problem area
common to all programmers. We describe the reflective facilities and also
prescribe effective ways to use them.

■ Convey an understanding of reflection in general—Reflection is much broader
than what is incorporated in Java. We discuss the limitations of Java reflec-
tion and show techniques for working around them. This discussion furthers
your understanding of Java reflection by using it in the techniques. It also
motivates ideas about next-generation features, preparing you to use them.

This book is prescriptive. That is, it advocates techniques for using Java reflection
that we have used and profited from in our jobs.

Source code
The examples in this book have all been compiled and minimally tested. Source
code examples are available online from the publisher’s web site: www.man-
ning.com/forman. No warranty is implied as to the total correctness of the source
code in this book.

A note about Java programming style
In order to make this book as readable as possible, we have adopted a style of Java
programming that suits the static line size of the printed page rather than the

ABOUT THIS BOOK xix
dynamic interface of the program editor. With this style, we have succeeded in lim-
iting almost all classes to no more than two pages. This style tends to reduce
whitespace. We do not recommend this style, but we do hope you appreciate the
readability of the book.

Author online
Purchase of Java Reflection in Action includes free access to a private web forum
where you can make comments about the book, ask technical questions, and
receive help from the authos and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/forman. This page pro-
vides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum. It also provides links to
the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

about the title

By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-moti-
vated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our read-
ers are busy. They use books to do a job or solve a problem. They need books
that allow them to jump in and jump out easily and learn just what they want
just when they want it. They need books that aid them in action. The books in
this series are designed for such readers.
xx

about the cover illustration

The figure on the cover of Java Reflection in Action is an “Arabe Petreo,” an inhabit-
ant of Arabia Petraea, the name given in ancient times to the region between
Egypt and Mesopotamia. The capital city was Petra in what is today Jordan. Petra
is famous for its rock formations and the city was built into the high cliffs sur-
rounding it, making it the most impenetrable of ancient cities for centuries. The
illustration is taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. The book’s title page states:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo des-
ubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en
special para los que tienen la del viajero universal

 which we translate, as literally as possible, thus:

 General collection of costumes currently used in the nations of the known world, designed
and printed with great exactitude by R.M.V.A.R. This work is very useful especially for
those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the "exactitude" of their execution is evident in
this drawing. The “Arabe Petreo” is just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely
xxi

xxii ABOUT THE COVER ILLUSTRATION
as belonging to one or the other. The collection brings to life a sense of isola-
tion and distance of that period—and of every other historic period except our
own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

A few basics
In this chapter

■ Reflection basics
■ Class fundamentals
■ Using methods reflectively
1

2 CHAPTER 1

A few basics
We are often faced with problems that could be solved simply and elegantly with
reflection. Without it, our solutions are messy, cumbersome, and fragile. Consider
the following scenarios:

■ Your project manager is committed to a pluggable framework, knowing
that the system needs to accept new components even after it is built and
deployed. You set up some interfaces and prepare a mechanism for patch-
ing your JAR, but you know that this will not completely satisfy the need
for pluggability.

■ After months of developing a client-side application, marketing tells you
that using a different remote mechanism will increase sales. Although
switching is a good business decision, you now must reimplement all of your
remote interfaces.

■ The public API to your module needs to accept calls only from specific pack-
ages to keep outsiders from misusing your module. You add a parameter to
each of the API calls that will hold the package name of the calling class.
But, now legitimate users must change their calls, and unwelcome code can
fake a package name.

These scenarios illustrate, in turn, modularity, remote access, and security—and
do not seem to have much in common. But they do: each one contains a change
in requirements that can be satisfied only by making decisions and modifying
code based upon the structure of the program.

Reimplementing interfaces, patching JAR files, and modifying method calls are
all tedious and mechanical tasks. So mechanical, in fact, that you could write an
algorithm that describes the necessary steps:

1 Examine the program for its structure or data.

2 Make decisions using the results of the examination.

3 Change the behavior, structure, or data of the program based upon the
decisions.

While these steps may be familiar to you in your role as programmer, they are not
tasks that you would imagine a program doing. As a result, you assume that adapt-
ing code must be accomplished by a person sitting at a keyboard instead of by a
program running on a computer. Learning reflection allows you to get beyond
this assumption and make your program do this adaptation for you. Consider the
following simple example:

Reflection’s value proposition 3
public class HelloWorld {
 public void printName() {
 System.out.println(this.getClass().getName());
 }
}

The line

(new HelloWorld()).printName();

sends the string HelloWorld to standard out. Now let x be an instance of Hello-
World or one of its subclasses. The line

x.printName();

sends the string naming the class to standard out.
This small example is more dramatic than it seems—it contains each of the

steps previously mentioned. The printName method examines the object for its
class (this.getClass()). In doing so, the decision of what to print is made by del-
egating to the object’s class. The method acts on this decision by printing the
returned name. Without being overridden, the printName method behaves differ-
ently for each subclass than it does for HelloWorld. The printName method is flex-
ible; it adapts to the class that inherits it, causing the change in behavior. As we
build our examples in scope and complexity, we will show you many more ways to
attain flexibility using reflection.

1.1 Reflection’s value proposition

Reflection is the ability of a running program to examine itself and its software
environment, and to change what it does depending on what it finds.

To perform this self-examination, a program needs to have a representation of
itself. This information we call metadata. In an object-oriented world, metadata is
organized into objects, called metaobjects. The runtime self-examination of the
metaobjects is called introspection.

As we saw in the small example above, the introspection step is followed by
behavior change. In general, there are three techniques that a reflection API can
use to facilitate behavior change: direct metaobject modification, operations for
using metadata (such as dynamic method invocation), and intercession, in which
code is permitted to intercede in various phases of program execution. Java sup-
plies a rich set of operations for using metadata and just a few important interces-
sion capabilities. In addition, Java avoids many complications by not allowing
direct metaobject modification.

4 CHAPTER 1

A few basics
These features give reflection the power to make your software flexible. Appli-
cations programmed with reflection adapt more easily to changing requirements.
Reflective components are more likely to be reused flawlessly in other applica-
tions. These benefits are available in your current Java development kit.

Reflection is powerful, but it is not magical. You must master the subject in
order to make your software flexible. It's not enough to just learn the concepts and
the use of the API. You must also be able to distinguish between situations when
reflection is absolutely required from those when it may be used advantageously
from those when it should be shunned. The examples in this book will help you
acquire this skill. In addition, by the time you reach the end, you will understand
the three issues that have thus far impeded the broad use of reflection:

■ security

■ code complexity

■ runtime performance

You will learn that the concern over security was misguided. Java is so well crafted
and its reflection API so carefully constrained that security is controlled simply. By
learning when to use reflection and when not to, you will avoid unnecessarily
complex code that can often be the result of amateurish use of reflection. In addi-
tion, you will learn to evaluate the performance of your designs, thereby ensuring
the resulting code satisfies its performance requirements.

This introduction describes reflection, but scarcely reveals its value. Software
maintenance costs run three to four or more times development costs. The soft-
ware marketplace is increasing its demand for flexibility. Knowing how to produce
flexible code increases your value in the marketplace. Reflection—introspection
followed by behavior change—is the path to flexible software. The promise of
reflection is great and its time has come. Let’s begin.

1.2 Enter George the programmer

George is a programmer at Wildlife Components, a leading animal simulation
software company. In his daily work, George faces many challenges such as the
ones previously mentioned. Throughout this book, we will follow George as he
discovers the benefits of implementing reflective solutions.

For one project, George is working on a team that is implementing a user inter-
face. George’s team uses several standard Java visual components, others that are
developed in house, a few that are open source, and still others that have been
licensed from third parties. All of these components are integrated to form the
user interface for the team’s application.

Enter George the programmer 5
Each of these components provides a setColor method that takes a
java.awt.Color parameter. However, the hierarchies are set up such that the only
common base class for all of them is java.lang.Object. These components can-
not be referenced using a common type that supports this setColor method.

This situation presents a problem for George’s team. They just want to call set-
Color regardless of a component’s concrete type. The lack of a common type that
declares setColor means more work for the team. In case this scenario seems con-
trived, we invite you to explore the JDK API and see the number of classes that sup-
port the same method but implement no common interface.

1.2.1 Choosing reflection

Given a component, the team’s code must accomplish two steps:

1 Discover a setColor method supported by the component.

2 Call that setColor method with the desired color.

There are many alternatives for accomplishing these steps manually. Let’s exam-
ine the results of each of these.

If George’s team controlled all of the source code, the components could be
refactored to implement a common interface that declares setColor. Then, each
component could be referenced by that interface type and setColor could be
invoked without knowing the concrete type. However, the team does not control
the standard Java components or third-party components. Even if they changed
the open source components, the open source project might not accept the
change, leaving the team with additional maintenance.

Alternatively, the team could implement an adapter for each component. Each
such adapter could implement a common interface and delegate the setColor
call to the concrete component. However, because of the large number of compo-
nent classes that the team is using, the solution would cause an explosion in the
number of classes to maintain. In addition, because of the large number of com-
ponent instances, this solution would cause an explosion of the number of objects
in the system at runtime. These trade-offs make implementing an adapter an
undesirable option.

Using instanceof and casting to discover concrete types at runtime is another
alternative, but it leaves several maintenance problems for George’s team. First,
the code would become bloated with conditionals and casts, making it difficult to
read and understand. Second, the code would become coupled with each con-
crete type. This coupling would make it more difficult for the team to add,
remove, or change components. These problems make instanceof and casting an
unfavorable alternative.

6 CHAPTER 1

A few basics
Each of these alternatives involves program changes that adjust or discover the
type of a component. George understands that it is only necessary to find a
setColor method and call it. Having studied a little reflection, he understands
how to query an object’s class for a method at runtime. Once it is found, he
knows that a method can also be invoked using reflection. Reflection is uniquely
suited to solving this problem because it does not over-constrain the solution
with type information.

1.2.2 Programming a reflective solution

To solve his team’s problem, George writes the static utility method setObject-
Color in listing 1.1. George’s team can pass a visual component to this utility
method along with a color. This method finds the setColor method supported by
the object’s class and calls it with the color as an argument.

public static void setObjectColor(Object obj, Color color) {
 Class cls = obj.getClass();

 try {

 Method method = cls.getMethod("setColor",
 new Class[] {Color.class});

 method.invoke(obj, new Object[] {color});
 }

 catch (NoSuchMethodException ex) {
 throw new IllegalArgumentException(
 cls.getName()
 + " does not support method setColor(Color)");
 }

 catch (IllegalAccessException ex) {
 throw new IllegalArgumentException(
 "Insufficient access permissions to call"
 + "setColor(:Color) in class " + cls.getName());
 }

 catch (InvocationTargetException ex) {
 throw new RuntimeException(ex);
 }
}

Listing 1.1 George’s setObjectColor code

Query object
for its class

B
Query class
object for
setColor method

C

Call resulting method
on target obj

D

Class of obj does not
support setColor method

E

Invoker cannot call
setColor method

F

setColor method
throws an exceptionG

Enter George the programmer 7
This utility method satisfies the team’s goal of being able to set a component’s
color without knowing its concrete type. The method accomplishes its goals with-
out invading the source code of any of the components. It also avoids source code
bloating, memory bloating, and unnecessary coupling. George has implemented
an extremely flexible and effective solution.

Two lines in listing 1.1 use reflection to examine the structure of the parame-
ter obj:

b This line of code queries the object for its class.

C This line queries the class for a setColor method that takes a Color argument.

In combination, these two lines accomplish the first task of finding a setColor
method to call.

These queries are each a form of introspection, a term for reflective features
that allow a program to examine itself. We say that setObjectColor introspects on
its parameter, obj. There is a corresponding form of introspection for each fea-
ture of a class. We will examine each of these forms of introspection over the next
few chapters.

One line in listing 1.1 actually affects the behavior of the program:

D This line calls the resulting method on obj, passing it the color—This reflective
method call can also be referred to as dynamic invocation. Dynamic invoca-
tion is a feature that enables a program to call a method on an object at
runtime without specifying which method at compile time.

In the example, George does not know which setColor method to call when writing
the code because he does not know the type of the obj parameter. George’s program
discovers which setColor method is available at runtime through introspection.
Dynamic invocation enables George’s program to act upon the information gained
through introspection and make the solution work. Other reflective mechanisms
for affecting program behavior will be covered throughout the rest of the book.

Not every class supports a setColor method. With a static call to setColor, the
compiler reports an error if the object’s class does not support setColor. When
using introspection, it is not known until runtime whether or not a setColor
method is supported:

E The class of obj does not support a setColor method—It is important for intro-
spective code to handle this exceptional case. George has been guaranteed
by his team that each visual component supports setColor. If that method

8 CHAPTER 1

A few basics
is not supported by the type of the obj parameter, his utility method has
been passed an illegal argument. He handles this by having setObjectColor
throw an IllegalArgumentException.

The setObjectColor utility method may not have access to nonpublic setColor
methods. In addition, during the dynamic invocation, the setColor method may
throw an exception:

F The class containing listing 1.1 does not have access privileges to call a pro-
tected, package, or private visibility setColor method.

G The invoked setColor method throws an exception.

It is important for methods using dynamic invocation to handle these cases prop-
erly. For simplicity’s sake, the code in listing 1.1 handles these exceptions by wrap-
ping them in runtime exceptions. For production code, of course, this would be
wrapped in an exception that the team agrees on and declared in the utility
method’s throws clause.

All of this runtime processing also takes more time than casts and static invoca-
tion. The method calls for introspection are not necessary if the information is
known at compile time. Dynamic invocation introduces latency by resolving which
method to call and checking access at runtime rather than at compile time. Chap-
ter 9 discusses analysis techniques for balancing performance trade-offs with the
tremendous flexibility benefits that reflection can give you.

The rest of this chapter focuses on the concepts necessary to fully understand
listing 1.1. We examine, in detail, the classes that George uses to make it work.
We also discuss the elements supported by Java that allow George such a flexi-
ble solution.

1.3 Examining running programs

Reflection is a program’s ability to examine and change its behavior and structure
at runtime. The scenarios previously mentioned have already implied that reflec-
tion gives programmers some pretty impressive benefits. Let’s take a closer look at
what reflective abilities mean for the structure of Java.

Think of introspection as looking at yourself in a mirror. The mirror provides
you with a representation of yourself—your reflection—to examine. Examining
yourself in a mirror gives you all sorts of useful information, such as what shirt
goes with your brown pants or whether you have something green stuck in your
teeth. That information can be invaluable in adjusting the structure of your ward-
robe and hygiene.

Examining running programs 9
A mirror can also tell you things about your behavior. You can examine
whether a smile looks sincere or whether a gesture looks too exaggerated. This
information can be critical to understanding how to adjust your behavior to make
the right impression on other people.

Similarly, in order to introspect, a program must have access to a representa-
tion of itself. This self-representation is the most important structural element of a
reflective system. By examining its self-representation, a program can obtain the
right information about its structure and behavior to make important decisions.

Listing 1.1 uses instances of Class and Method to find the appropriate setColor
method to invoke. These objects are part of Java’s self-representation. We refer to
objects that are part of a program’s self-representation as metaobjects. Meta is a
prefix that usually means about or beyond. In this case, metaobjects are objects that
hold information about the program.

Class and Method are classes whose instances represent the program. We refer
to these as classes of metaobjects or metaobject classes. Metaobject classes are most of
what make up Java’s reflection API.

We refer to objects that are used to accomplish the main purposes of an appli-
cation as base-level objects. In the setObjectColor example above, the application
that calls George’s method as well as the objects passed to it as parameters are base-
level objects. We refer to the nonreflective parts of a program as the base program.

Metaobjects represent parts of the running application, and, therefore, may
describe the base program. Figure 1.1 shows the instanceof relationship between
base-level objects and the objects that represent their classes. The diagramming
convention used for figure 1.1 is the Unified Modeling Language (UML). For
readers unfamiliar with UML, we will describe the conventions briefly in
section 1.7. For the moment, it is important to understand that the figure can be
read as “fido, a base-level object, is an instance of Dog, a class object on the metalevel.”

Metaobjects are a convenient self-representation for reflective programming.
Imagine the difficulty that George would have in accomplishing his task if he had
tried to use the source code or the bytecodes as a representation. He would have to
parse the program to even begin examining the class for its methods. Instead, Java
metaobjects provide all of the information he needs without additional parsing.

Metaobjects often also provide ways of changing program structure, behavior,
or data. In our example, George uses dynamic invocation to call a method that he
finds through introspection. Other reflective abilities that make changes include
reflective construction, dynamic loading, and intercepting method calls. This
book shows how to use these mechanisms and others to solve common but diffi-
cult software problems.

10 CHAPTER 1

A few basics
1.4 Finding a method at runtime

At the beginning of our example, George’s setObjectColor method is passed a
parameter obj of type Object. The method cannot do any introspection until it
knows the class of that parameter. Therefore, its first step is to query for the
parameter’s class:

Class cls = obj.getClass();

The getClass method is used to access an object’s class at runtime. The getClass
method is often used to begin reflective programming because many reflective
tasks require objects representing classes. The getClass method is introduced by
java.lang.Object, so any object in Java can be queried for its class1.

The getClass method returns an instance of java.lang.Class. Instances of
Class are the metaobjects that Java uses to represent the classes that make up a
program. Throughout this book, we use the term class object to mean an instance
of java.lang.Class. Class objects are the most important kind of metaobject
because all Java programs consist solely of classes.

base level

metalevel

Dog

in
st
an
ce
Of

base-level
object

fido

class
object

Figure 1.1 Dog is a class object, a metaobject that represents the class Dog.
The object fido is an instance of Dog operating within the application. The
instanceof relationship, represented in this diagram by a dependency,
connects objects on the base level to an object that represents their class on
the metalevel.

1 The getClass method is final. This keeps Java programmers from fooling reflective programs. If it were
not final, a programmer could override getClass to return the wrong class.

Finding a method at runtime 11
Class objects provide programming metadata about a class’s fields, methods,
constructors, and nested classes. Class objects also provide information about the
inheritance hierarchy and provide access to reflective facilities. For this chapter,
we will concentrate on the use of Class in listing 1.1 and related fundamentals.

Once the setObjectColor method has discovered the class of its parameter, it
queries that class for the method it wants to call:

Method method = cls.getMethod("setColor", new Class[] {Color.class});

The first parameter to this query is a String containing the desired method’s
name, in this case, setColor. The second parameter is an array of class objects
that identify the types of the method’s parameters. In this case, we want a method
that accepts one parameter of type Color, so we pass getMethod an array of one
element containing the class object for Color.

Notice that the assignment does not use getClass to provide the class object for
Color. The getClass method is useful for obtaining the class for an object refer-
ence, but when we know only the name of the class, we need another way. Class
literals are Java’s way to specify a class object statically. Syntactically, any class
name followed by .class evaluates to a class object. In the example, George
knows that setObjectColor always wants a method that takes one Color argument.
He specifies this using Color.class.

Class has other methods for introspecting about methods. The signatures and
return types for these methods are shown in table 1.1. As in the previous example,
the queries use an array of Class to indicate the types of the parameters. In

Table 1.1 The methods defined by Class for method query

Method Description

Method getMethod (String name,
Class[] parameterTypes)

Returns a Method object that represents a public
method (either declared or inherited) of the target
Class object with the signature specified by the
second parameters

Method[] getMethods () Returns an array of Method objects that represent
all of the public methods (either declared or inher-
ited) supported by the target Class object

Method getDeclaredMethod (
 String name,
 Class[] parameterTypes)

Returns a Method object that represents a
declared method of the target Class object with
the signature specified by the second parameters

Method[] getDeclaredMethods () Returns an array of Method objects that represent
all of the methods declared by the target Class
object

12 CHAPTER 1

A few basics
querying for a parameterless method, it is legal to supply null, which is treated
the same as a zero-length array.
As their names indicate, getDeclaredMethod and getDeclaredMethods return
method objects for methods explicitly declared by a class. The set of declared
methods does not include methods that the class inherits. However, these two que-
ries do return methods of all visibilities—public, protected, package, and private.

The queries getMethod and getMethods return method objects for a class’s pub-
lic methods. The set of methods covered by these two includes both methods
declared by the class and those it inherits from superclasses. However, these que-
ries return only a class’s public methods.

A programmer querying a class using getDeclaredMethod might accidentally
specify a method that the class does not declare. In this case, the query fails with a
NoSuchMethodException. The same exception is thrown when getMethod fails to
find a method among a class’s public methods.

In the example, George needs to find a method, and he does so using one of
the methods from table 1.1. Once retrieved, these method objects are used to
access information about methods and even call them. We discuss method objects
in detail later in this chapter, but first let’s take a closer look at how class objects
are used with the methods from table 1.1.

1.5 Representing types with class objects

The discussion of the methods from table 1.1 indicates that Java reflection uses
instances of Class to represent types. For example, getMethod from listing 1.1 uses
an array of Class to indicate the types of the parameters of the desired method.
This seems fine for methods that take objects as parameters, but what about types
not created by a class declaration?

Consider listing 1.2, which shows a fragment of java.util.Vector. One
method has an interface type as a parameter, another an array, and the third a
primitive. To program effectively with reflection, you must know how to intro-
spect on classes such as Vector that have methods with such parameters.

public class Vector ... {

 public synchronized boolean addAll(Collection c) ...

 public synchronized void copyInto(Object[] anArray) ...

 public synchronized Object get(int index) ...

}

Listing 1.2 A fragment of java.util.Vector

Representing types with class objects 13
Java represents primitive, array, and interface types by introducing class objects to
represent them. These class objects cannot do everything that many other class
objects can. For instance, you cannot create a new instance of a primitive or inter-
face. However, such class objects are necessary for performing introspection.
Table 1.2 shows the methods of Class that support type representation.

The rest of this section explains in greater detail how Java represents primitive,
interface, and array types using class objects. By the end of this section, you
should know how to use methods such as getMethod to introspect on Vec-
tor.class for the methods shown in listing 1.2.

1.5.1 Representing primitive types

Although primitives are not objects at all, Java uses class objects to represent all
eight primitive types. These class objects can be indicated using a class literal when
calling methods such as those in table 1.1. For example, to specify type int, use
int.class. Querying the Vector class for its get method can be accomplished with

Method m = Vector.class.getMethod("get", new Class[] {int.class});

A class object that represents a primitive type can be identified using isPrimitive.
The keyword void is not a type in Java; it is used to indicate a method that does

not return a value. However, Java does have a class object to represent void. The
isPrimitive method returns true for void.class. In section 1.6, we cover intro-
spection on methods. When introspecting for the return type of a method,
void.class is used to indicate that a method returns no value.

1.5.2 Representing interfaces

Java also introduces a class object to represent each declared interface. These
class objects can be used to indicate parameters of interface type. The addAll

Table 1.2 Methods defined by Class that deal with type representation

Method Description

String getName() Returns the fully qualified name of the target Class object

Class getComponentType() If the target object is a Class object for an array, returns the
Class object representing the component type

boolean isArray() Returns true if and only if the target Class object repre-
sents an array

boolean isInterface() Returns true if and only if the target Class object repre-
sents an interface

boolean isPrimitive() Returns true if and only if the target Class object repre-
sents a primitive type or void

14 CHAPTER 1

A few basics
method of Vector takes an implementation of the Collection interface as an
argument. Querying the Vector class for its addAll method can be written as

Method m = Vector.class.getMethod("addAll",
 new Class[] {Collection.class});

A class object that represents an interface may be queried for the methods and
constants supported by that interface. The isInterface method of Class can be
used to identify class objects that represent interfaces.

1.5.3 Representing array types

Java arrays are objects, but their classes are created by the JVM at runtime. A new
class is created for each element type and dimension. Java array classes implement
both Cloneable and java.io.Serializable.

Class literals for arrays are specified like any other class literal. For instance, to
specify a parameter of a single-dimension Object array, use the class literal
Object[].class. A query of the Vector class for its copyInto method is written as

Method m = Vector.class.getMethod("copyInto", new Class[]{Object[].class});

Class objects that represent arrays can be identified using the isArray method of
Class. The component type for an array class can be obtained using getCompo-
nentType. Java treats multidimensional arrays like nested single-dimension arrays.
Therefore, the line

int[][].class.getComponentType()

evaluates to int[].class. Note the distinction between component type and ele-
ment type. For the array type int[][], the component type is int[] while the ele-
ment type is int.

Not all Java methods take non-interface, non-array object parameters like set-
Color from our George example. In many cases, it is important to introspect for
methods such as the Vector methods of listing 1.2. Now that you understand how
to introspect for any Java method, let’s examine what can be done once a method
is retrieved.

1.6 Understanding method objects

Most of the examples over the last few sections have used the identifier Method but
not explained it. Method is the type of the result of all of the method queries in
table 1.1. George uses this class in listing 1.1 to invoke setColor. From this con-
text, it should be no surprise that java.lang.reflect.Method is the class of the

Understanding method objects 15
metaobjects that represent methods. Table 1.3 shows some of the methods sup-
ported by the metaobject class Method.

Each Method object provides information about a method including its name,
parameter types, return type, and exceptions. A Method object also provides the
ability to call the method that it represents. For our example, we are most inter-
ested in the ability to call methods, so the rest of this section focuses on the invoke
method.

1.6.1 Using dynamic invocation

Dynamic invocation enables a program to call a method on an object at runtime
without specifying which method at compile time. In section 1.2, George does not
know which setColor method to call when he writes the program. His program
relies upon introspection to examine the class of a parameter, obj, at runtime to
find the right method. As a result of the introspection, the Method representing
setColor is stored in the variable method.

Following the introspection in listing 1.1, setColor is invoked dynamically with
this line:

method.invoke(obj, new Object[] {color});

Table 1.3 Methods defined by Method

Method Description

Class getDeclaringClass() Returns the Class object that declared the method repre-
sented by this Method object

Class[] getExceptionTypes() Returns an array of Class objects representing the types of
the exceptions declared to be thrown by the method repre-
sented by this Method object

int getModifiers() Returns the modifiers for the method represented by this
Method object encoded as an int

String getName() Returns the name of the method represented by this Method
object

Class[] getParameterTypes() Returns an array of Class objects representing the formal
parameters in the order in which they were declared

Class getReturnType() Returns the Class object representing the type returned by
the method represented by this Method object

Object invoke(Object obj, Object[] args) Invokes the method represented by this Method object on
the specified object with the arguments specified in the
Object array

16 CHAPTER 1

A few basics
where the variable color holds a value of type Color. This line uses the invoke
method to call the setColor method found previously using introspection. The
setColor method is invoked on obj and is passed the value of color as a parameter.

The first parameter to invoke is the target of the method call, or the Object on
which to invoke the method. George passes in obj because he wants to call set-
Color (the method represented by method) on obj. However, if setColor is
declared static by the class of obj, the first parameter is ignored because static
methods do not need invocation targets. For a static method, null can be sup-
plied as the first argument to invoke without causing an exception.

The second parameter to invoke, args, is an Object array. The invoke method
passes the elements of this array to the dynamically invoked method as actual
parameters. For a method with no parameters, the second parameter may be
either a zero-length array or null.

1.6.2 Using primitives with dynamic invocation

The second parameter to invoke is an array of Object, and the return value is also
an Object. Of course, many methods in Java take primitive values as parameters
and also return primitives. It is important to understand how to use primitives
with the invoke method.

If the type of a parameter is a primitive, invoke expects the corresponding args
array element to be a wrapper object containing the argument. For example,
when invoking a method with an int parameter, wrap the int argument in a
java.lang.Integer and pass it into the args array. The invoke method unwraps
the argument before it passes it to the actual code for the method being invoked.

The invoke method handles primitive return types by wrapping them before
they are returned. Thus, when invoking a method with an int return type, the
program receives an object of type Integer in return. If the method being
invoked is declared with a void return, invoke returns the value null.

So, primitives need to be wrapped when passed into a dynamic invocation and
unwrapped when received as a return value. For clarity, consider the following
dynamic call to hashCode method on our obj variable from the example.

Method method = obj.getClass().getMethod("hashCode", null);
int code = ((Integer) method.invoke(obj, null)).intValue();

The first line introspects for the method hashCode with no arguments. This query
does not fail because that method is declared by Object. The hashCode method
returns an int. The second line invokes hashCode dynamically and stores the
return value in the variable code. Notice that the return value comes back wrapped

Understanding method objects 17
in an Integer, and it is cast and unwrapped. The above snippet of code is illus-
trated in the sequence diagram in figure 1.2.

1.6.3 Avoiding invocation pitfalls

At one point, George thinks, “If I have a Method representing setColor, why do I need
to introspect for it every time? I’ll just cache the first one that comes along and optimize out
the rest of the queries.” When he tries this, he gets an IllegalArgumentException
from invoke on many of the subsequent calls. The exception message means that
the method was invoked on an object that is not an instance of the declaring class.

George’s optimization fails because it assumes that all methods with the same
signature represent the same method. This is not the case. In Java, each method is
identified by both its signature and its declaring class.

Let’s take a closer look at this failure. Figure 1.3 shows the classes Animal and
Shape, which both declare a setColor method with the same signature. These two
setColor methods are not the same method in Java because they do not have the
same declaring class.

:Class

:Method

obj

getMethod(“hashCode”,null)

invoke(obj,null)

hashCode()

int

Integer

Method

Figure 1.2 Sequence diagram illustrating the use of getMethod and invoke. The return
arrows are labeled with the type of the value that is returned. Note that the call to invoke
wraps the int return value in an Integer object.

18 CHAPTER 1

A few basics
Another class, Dog, extends Animal and inherits its setColor method. The set-
Color method for Dog is the same as the setColor method for Animal because Dog
inherits setColor from Animal. The setColor method for Dog is not the same
method as the one for Shape. Therefore, when dealing with this situation, it is usu-
ally simplest to introspect for a Method each time instead of caching.

Several other exceptions can occur when calling invoke. If the class calling
invoke does not have appropriate access privileges for the method, invoke throws
an IllegalAccessException. For example, this exception can occur when
attempting to invoke a private method from outside its declaring class.

IllegalArgumentException can be thrown by invoke under several circum-
stances. Supplying an invocation target whose class does not support the method
being invoked causes an IllegalArgumentException. Supplying an args array of
incorrect length or with entries of the wrong type also causes an IllegalArgument-
Exception. If any exception is thrown by the method being invoked, that excep-
tion is wrapped in an InvocationTargetException and then thrown.

Dynamic invocation is a truly important feature in Java reflection. Without it,
each method call must be hard-coded at compile time, denying programmers the
flexibility of doing what George does in listing 1.1. In later chapters, we return to
dynamic invocation for more advanced applications and expose other powerful
ways to use information gained through introspection.

Shape

+ setColor(c:Color)

Dog

two different
setColor
methods

+ setColor(c:Color)

Animal

Figure 1.3 A Unified Modeling Language (UML) class diagram. Dog
is a subclass of Animal. Animal and Shape both declare a set-
Color method of the same signature. The Java language considers
the two setColor methods shown to be different methods. How-
ever, the setColor method for Dog is the same method as the one
for Animal.

Diagramming for reflection 19
1.7 Diagramming for reflection

Throughout this book, we use the Unified Modeling Language (UML) for dia-
grams like figure 1.4. Those familiar with UML will probably notice that figure 1.4
combines UML class and object diagrams. Reflection represents all of the class dia-
gram entities at runtime using metaobjects. Therefore, combining class and
object diagrams is useful for clearly communicating reflective designs.

UML diagrams typically include only classes or only non-class objects. Model-
ing reflection calls for combining the two and using the instanceOf dependency
to connect an object with its instantiating class. UML defines the instanceOf
dependency with same meaning as the Java instanceof operator. However, this
book uses the instanceOf dependency only to show that an object is a direct
instance of a class. For clarity, we partition figure 1.4 into its base level and meta-
level, although that partition is not standard UML. For more detail on UML, see
appendix C.

base level

metalevel
class

objects

in
st
an
ce
Of

dolly
base-level

object

Sheep

Mammal
«interface»
Cloneable

Figure 1.4 This is a Unified Modeling Language (UML) diagram describing Dolly
the cloned sheep. The diagram shows an object, dolly, which is an instance of
the class Sheep. It describes Sheep as a Mammal that implements Cloneable.
The important thing to notice about this diagram is that it includes both objects
and classes, as is necessary for describing reflective systems.

20 CHAPTER 1

A few basics
1.8 Navigating the inheritance hierarchy

After George’s team has been using setObjectColor from listing 1.1 for a while,
one of his team members, Martha, runs into a problem. Martha tells George that
setObjectColor is not seeing a setColor method inherited by her component.
After exploring the inheritance hierarchy, George and Martha discover that the
inherited method is protected, and so it is not found by the line

Method method = cls.getMethod("setColor", new Class[] {Color.class});

George decides that he needs a method that introspects over methods of all visi-
bilities, declared or inherited. Looking back at the methods from table 1.1,
George notices that there is no method that does this, so he decides to write his
own. Listing 1.3 shows the source code for getSupportedMethod, a method that
George has written to accomplish that query. George has placed getSupported-
Method in his own convenience facility called Mopex. This is one of many useful
methods that George has put in Mopex, and throughout this book, we explain and
make use of them.

 public static Method getSupportedMethod(Class cls,
 String name,
 Class[] paramTypes)
 throws NoSuchMethodException
 {
 if (cls == null) {
 throw new NoSuchMethodException();
 }
 try {
 return cls.getDeclaredMethod(name, paramTypes);
 }
 catch (NoSuchMethodException ex) {
 return getSupportedMethod(cls.getSuperclass(), name, paramTypes);
 }

 }

The getSupportedMethod method is a recursive method that traverses the inherit-
ance hierarchy looking for a method with the correct signature using getDe-
claredMethod. It uses the line

return getSupportedMethod(cls.getSuperclass(), name, paramTypes);

Listing 1.3 Code for Mopex.getSupportedMethod

Navigating the inheritance hierarchy 21
to accomplish this traversal. The getSuperclass method returns the class object
representing the class that its target extends. If there is no extends clause, getSu-
perclass returns the class object for Object. If cls represents Object, getSuper-
class returns null, and getSupportedMethod throws a NoSuchMethodException on
the next call.

Now that George has implemented getSupportedMethod, which performs the
introspection that he wants, he can change setObjectColor to use this new func-
tionality. Listing 1.4 shows this update to setObjectColor.

 public static void setObjectColor(Object obj, Color color) {
 Class cls = obj.getClass();
 try {
 Method method = Mopex.getSupportedMethod(cls,
 "setColor",
 new Class[]{Color.class}
);
 method.invoke(obj, new Object[] {color});
 }
 catch (NoSuchMethodException ex) {
 throw new IllegalArgumentException(
 cls.getName() + " does not support"
 + "method setColor(:Color)");
 }
 catch (IllegalAccessException ex) {
 throw new IllegalArgumentException(
 "Insufficient access permissions to call"
 + "setColor(:Color) in class "
 + cls.getName());
 }
 catch (InvocationTargetException ex) {
 throw new RuntimeException(ex);
 }
 }

This update allows setObjectColor to retrieve metaobjects for private, package,
and protected methods that are not retrieved by getMethod. However, this update
does not guarantee permission to invoke the method. If setObjectColor does not
have access to Martha’s inherited method, an IllegalAccessException is thrown
instead of a NoSuchMethodException.

George has just observed one way that reflection can save him effort. Before
the reflective enhancement, he and Martha needed to explore the inheritance

Listing 1.4 setObjectColor updated to use getSupportedMethod

22 CHAPTER 1

A few basics
hierarchy to diagnose Martha’s problem. George’s enhancement traverses the
inheritance hierarchy and reports the problem, saving them the trouble. In chap-
ter 2, we discuss bypassing visibility checks using reflection. For now, let’s con-
tinue to discuss the tools that make George and Martha’s enhancement possible.

1.8.1 Introspecting the inheritance hierarchy

As shown in the previous section, runtime access to information about the inherit-
ance hierarchy can prevent extra work. Getting the superclass of a class is only
one of the operations that Java reflection provides for working with the inherit-
ance hierarchy. Table 1.4 shows the signatures and return types for the methods
of Class for dealing with inheritance and interface implementation.

The getInterfaces method returns class objects that represent interfaces. When
called on a class object that represents a class, getInterfaces returns class objects
for interfaces specified in the implements clause of that class’s declaration. When
called on a class object that represents an interface, getInterfaces returns class
objects specified in the extends clause of that interface’s declaration.

Note the method names getInterfaces and getSuperclass are slightly incon-
sistent with terminology defined by the Java Language Specification. A direct super-
class is the one named in the extends clause of a class declaration. A class X is a
superclass of a class Y if there is a sequence of one or more direct superclass links
from Y to X. There is a corresponding pair of definitions for direct superinterface
and superinterface. Consequently, getSuperclass returns the direct superclass
and getInterfaces returns the direct superinterfaces.

Table 1.4 Methods of Class that deal with inheritance

Method Description

Class[] getInterfaces() Returns an array of Class objects that represent the direct
superinterfaces of the target Class object

Class getSuperclass() Returns the Class object representing the direct superclass
of the target Class object or null if the target represents
Object, an interface, a primitive type, or void

boolean isAssignableFrom(Class cls) Returns true if and only if the class or interface represented
by the target Class object is either the same as or a super-
class of or a superinterface of the specified Class parameter

boolean isInstance(Object obj) Returns true if and only if the specified Object is assign-
ment-compatible with the object represented by the target
Class object

Navigating the inheritance hierarchy 23
To get all of the methods of a class, a program must walk the inheritance hier-
archy. Luckily, this walk is not necessary to query whether a class object represents
a subtype of another class object. This query can be accomplished using the isAs-
signableFrom method. The name isAssignableFrom tends to be confusing. It
helps to think of

X.isAssignableFrom(Y)

as “an X field can be assigned a value from a Y field.” For example, the following
lines evaluate to true:

Object.class.isAssignableFrom(String.class)

java.util.List.class.isAssignableFrom(java.util.Vector.class)

double.class.isAssignableFrom(double.class)

The line below, however, evaluates to false:

Object.class.isAssignableFrom(double.class)

The isInstance method is Java reflection’s dynamic version of instanceof. If the
target class object represents a class, isInstance returns true if its argument is an
instance of that class or any subclass of that class. If the target class object repre-
sents an interface, isInstance returns true if its argument’s class implements that
interface or any subinterface of that interface.

1.8.2 Exposing some surprises

In the Java reflection API, there are some relationships that may be surprising
upon first glance. Discussing these relationships now prepares us for encounter-
ing them later in the book and in reflective programming in general. Being pre-
pared in this manner allows for better reflective programming.

The isInstance method can be used to show a very interesting fact about the
arrangement of the classes in the Java reflection API. The line

Class.class.isInstance(Class.class)

evaluates to true. This means that the class object for Class is an instance of itself,
yielding the circular instanceOf dependency of figure 1.5. Class is an example of
a metaclass, which is a term used to describe classes whose instances are classes.
Class is Java’s only metaclass.

In Java, all objects have an instantiating class, and all classes are objects. With-
out the circular dependency, the system must support an infinite tower of class
objects, each one an instance of the one above it. Instead, Java uses this circularity
to solve this problem.

24 CHAPTER 1

A few basics
The circularity presented in figure 1.5 makes people uncomfortable because we
instinctively mistrust circular definitions. However, as programmers, we are famil-
iar with other kinds of circular definitions. For example, consider recursion. A
method that uses recursion is defined in terms of itself; that is, it has a circular
definition. When used properly, recursion works just fine. Similarly, there are
constraints on the definition of java.lang.Class that make this circularity work
just fine.

For more information about this circularity, see Putting Metaclasses to Work [33].
Putting Metaclasses to Work is an advanced book on reflection and metaobject pro-
tocols written by one of the authors of this book. It is a good resource for readers
who are interested in the theoretical and conceptual basis for reflection.

1.8.3 Another reflective circularity

Adding inheritance to our previous diagram yields the arrangement in figure 1.6.
Inheritance adds more circularity to the picture. Object is an instance Class,
which can be validated because the following line returns true:

base level

metalevel
class objects

«metaclass»
java.lang.Class

in
st
an
ce
Of

in
st
an
ce
Of

instanceOf

Dog

fido

Figure 1.5 The object fido is an instance of the Dog class. Dog is an instance
of the class Class. Class is also an instance of Class. Class is a metaclass
because it is a class whose instances are classes.

Navigating the inheritance hierarchy 25
Class.class.isInstance(Object.class)

Class is also a subclass of Object, validated by

Object.class.isAssignableFrom(Class.class)

which also returns true. Conceptually, we already know these facts because in
Java, each object has one instantiating class, and all classes are kinds of objects.
However, it is comforting that the reflective model is consistent with our previous
understanding of the language.

The new circularity implies additional constraints on the definitions of Object
and Class. These constraints are satisfied when the Java Virtual Machine loads the
java.lang package. Again, a full explanation of the constraints may be found in
Putting Metaclasses to Work [33].

Figure 1.6 also illustrates why Object is considered part of the reflection API. All
metaobjects extend Object, and so they inherit its methods. Therefore, each of
those methods can be used in reflective programming.

base level

metalevel
class objects

in
st
an
ce
Of

in
st
an
ce
Of

instanceOf

ins
tan

ceO
f «metaclass»

java.lang.Class

fido

Dog

java.lang.Object

Figure 1.6 Object is the top of the Java inheritance hierarchy, so classes of metaobjects,
including Class, are subclasses of Object. This means that the methods of Object are part
of the reflection API. All Java classes are instances of its only metaclass, Class. These two
conditions create a cycle in the diagram.

26 CHAPTER 1

A few basics
1.9 Summary

Reflection allows programs to examine themselves and make changes to their
structure and behavior at runtime. Even a simple use of reflection allows pro-
grammers to write code that does things that a programmer would normally do.
These simple uses include getting the class of an object, examining the meth-
ods of a class, calling a method discovered at runtime, and exploring the inher-
itance hierarchy.

The metaobject classes Class and Method represent the classes and methods
of running programs. Other metaobjects represent the other parts of the pro-
gram such as fields, the call stack, and the loader. Class has additional methods
to support these other metaobjects. Querying information from these metaob-
jects is called introspection.

Metaobjects also provide the ability to make changes to the structure and
behavior of the program. Using dynamic invocation, a Method metaobject can be
commanded to invoke the method that it represents. Reflection provides several
other ways to affect the behavior and structure of a program such as reflective
access, modification, construction, and dynamic loading.

There are several patterns for using reflection to solve problems. A reflective
solution often starts with querying information about the running program from
metaobjects. After gathering information using introspection, a reflective pro-
gram uses that information to make changes in the behavior of the program.

Each new metaobject class allows us to grow our examples in scope and value.
These examples reveal lessons that we have learned and techniques that we have
applied. Each one follows the same basic pattern of gathering information with
introspection and then using the information to change the program in some way.

Accessing fields
reflectively
In this chapter

■ Exploring the fields of a class
■ Getting and setting field values
■ Accessing nonpublic members
27

28 CHAPTER 2

Accessing fields reflectively
In chapter 1, we used reflection to call methods not known at compile time. Simi-
lar flexibility can be achieved with fields using reflection. Applications benefit
from such flexibility in many ways. Here are just a few examples:

■ Memory leaks in Java result from a program retaining references to
unwanted objects. These references prevent the garbage collector from
reclaiming memory. Memory leaks can cause either a gradual deterioration
in performance or worse, a program failure. A reflective program can
traverse those very same references and find unwanted objects using pro-
grammer-coded domain knowledge.

■ Serialization is the conversion of an object into a contiguous text or binary
representation. This representation can then be stored for later use. It can
also be transmitted across a network to another program as a message or as
a parameter or return value for a remote invocation. A general serialization
system requires metadata in order to perform object conversion.

■ Property sheets are visual editors that allow users to view and change the
values of fields in an object. Such editors facilitate maintenance interfaces
and configurators for many kinds of systems. They also assist in the visual
development of user interfaces. Property sheets require metadata about the
objects that can be edited.

These examples have one very important requirement in common: the need for
metadata about the fields and their referents.

Fortunately, Java provides this metadata through its reflection API. Using reflec-
tion, a program can introspect on classes for their fields. Once a desired field is
found, reflection can then be used to get and set its value. This chapter focuses on
introspecting for fields and getting their values. Setting field values is left for
chapter 3. Before exploring the details of these capabilities, let’s join George and
take a closer look at a serialization problem.

2.1 Serializing objects

Java has a built-in serialization facility. If the Serializable marker interface is
implemented by a class, its instances can be serialized by the JVM. This serialization
facility stores objects to and retrieves objects from a binary format. While this built-
in facility is convenient, there are several advantages to using a custom serializer.

First, most people cannot read the binary format. Therefore, certain applica-
tions benefit from text serialization. For example, you might want to serialize

Serializing objects 29
objects for display in a web browser. Also, a person can use a text editor to modify
the values in a text-serialized object. In addition, a text serializer might be useful
as an alternative to binary during debugging.

Second, the built-in Java facility requires the implementation of the Serializ-
able interface by the class of the object to be serialized. This requirement rules
out the serializing objects from third-party libraries whose classes do not imple-
ment Serializable. A custom serializer need not require classes to implement
Serializable.

Third, Java serialization is usable only within the Java platform. To send objects
to other platforms, it is necessary to use a serialization format that is recognized by
multiple platforms.

2.1.1 Serializing to XML

For the previous advantages, George’s team has decided that they need a custom
serializer and have chosen George to do the work. They have decided that their
objects should be serialized to eXtensible Markup Language (XML). XML is a self-
describing text format for encoding structured nested data. Using XML as a serial-
ization format provides all of the advantages previously mentioned, plus wide-
spread industry support for parsing, presentation, and Web services.

To structure data, XML uses tags that come in pairs where <tag-name> is an
opening tag and </tag-name>, with a slash, is a closing tag. This pair together
makes up an XML element. Other elements and text can be nested within the
opening and closing tags of an element, for example:

<zoo>
 <animal>Panda</animal>
 <animal>Giraffe</animal>
</zoo>

An element that contains no other elements or text can also appear like this

<zoo />

with the opening tag ending with a slash before its closing angle bracket. In this
case, no closing tag is necessary or appropriate. In addition, the opening tag of an
element may contain name-value pairs called attributes. For example, an empty
element with an attribute may look like this:

<tag-name attribute-name="attribute value" />

Each file, string, or stream of well-formed XML is called a document. An XML doc-
ument has one element called its root element under which all other document

30 CHAPTER 2

Accessing fields reflectively
content falls. There are several good Java libraries dealing with XML documents.
This example uses JDOM (see www.jdom.org).

2.1.2 Choosing reflection

George considers several design alternatives and decides to use reflection. There
are serious disadvantages to the other techniques on his list. He has seen many of
them tried and failed. Here are some examples:

■ Mandate support of a toXML method by each serializable object—This method
returns the XML serialized version of the object. This technique requires
editing of all existing classes to be serialized. Maintaining the serialization
code becomes a nightmare because of its distribution. Third-party and JDK
classes cannot be serialized in this way.

■ Use a third-party serialization library that uses preprocessors, generated code, or
source-to-source translation to enable serialization—These solutions have a steep
associated learning curve and may be difficult to debug when problems
arise. They also require developers to maintain extra code for each serializ-
able class.

■ Use a third-party serialization library that requires maintenance of mapping files to
enable serialization—These files are bulky and require hand-editing. Mapping
files must be modified each time a new serializable class is added and each
time an existing one is changed. This alternative is difficult to scale and
requires programmers to leave their programming language. (A serializa-
tion library that does not have such mapping files is using reflection.)

George chooses reflection because it enables a solution that does not invade exist-
ing classes. A reflective solution can work on in-house, third-party, and JDK classes
simply by using the available metadata. Let’s take a closer look at the necessary
steps for a reflective serialization solution.

2.1.3 Designing serialization with reflection

George decides on a reflective alternative. He writes one method, serialize-
Object, that takes as an argument one object to be serialized. This method should
work well with all of his department’s classes and third-party classes as they cur-
rently exist. To serialize objects in this way, serializeObject must accomplish sev-
eral tasks:

1 Get from its argument, the object to be serialized, a list of its fields.

2 Find the declaring class and field name that uniquely identifies each field.

Finding fields at runtime 31
3 Get the value for each field.

4 If the field value is an object and it has not already been serialized, serial-
ize that object.

5 If the field value is a primitive, store the value in a way that it can easily be
retrieved.

George has a difficult problem to solve, but reflection provides the tools for the
job.

Reflection allows George’s solution to scale well. It can examine and serialize
any Java object. No additional coding is required for the class whose instances are
serialized. The serialization code is the same for each class, so debugging happens
in one central place. In addition, the choice of XML as an output format allows for
human readability. George’s solution is not without its complications, as we
explain in chapter 3. However, it accurately showcases the strengths of using
reflection to solve problems.

The rest of this chapter explores the Java metaobjects for dealing with object
data and reflective techniques for accessing that data. We show how these facilities
can be leveraged to create a solution to George’s serialization problem. Some
parts of the serialization solution are also appropriate for the opposite process,
deserialization. However, deserialization also requires dynamic loading and,
therefore, is not addressed until chapter 3.

2.2 Finding fields at runtime

Serializing an object implies serializing the values of its fields. Therefore, the first
task for serializeObject is to get a list of its argument’s fields that need to be seri-
alized. The class object for the argument, obtained using getClass, can be que-
ried for a list of field objects.

As we saw with method introspection, Class defines two kinds of introspection
for accessing fields. The getDeclaredField and getDeclaredFields methods
query from the set of fields declared by the class, irrespective of visibility. The get-
Field and getFields methods query from the set of public fields declared and
inherited by the class. The signatures and return values for these methods are
shown in table 2.1.

If parameters for either getField or getDeclaredField specify a field that does
not exist, these methods throw a NoSuchFieldException. Querying for fields can
be disabled in the Java security manager. If this feature is disabled, all of these
methods throw a SecurityException.

32 CHAPTER 2

Accessing fields reflectively
Unfortunately, neither getFields nor getDeclaredFields provides exactly the
information necessary for serialization. To serialize an object, it is necessary to
obtain the values of all of its fields, both declared and inherited. To accomplish
this accumulation, George wrote the snippet shown in listing 2.1.

 Class cls = obj.getClass();
 List accum = new LinkedList();
 while (cls != null) {
 Field[] f = cls.getDeclaredFields();
 for (int i=0; i<f.length; i++) {
 accum.add(f[i]);
 }
 cls = cls.getSuperclass();
 }

 Field[] allFields = (Field[]) accum.toArray(new Field[accum.size()]);

Listing 2.1 uses getSuperclass to traverse the inheritance hierarchy of the class.
At each level, it uses getDeclaredFields to obtain all of the fields declared by that
superclass. The allFields array contains all of the fields supported by the class.
Having obtained this array, George’s code has accomplished the task of getting
the argument object’s list of fields and can move on to the next task.

Table 2.1 Methods of Class for field introspection

Method Description

Field getField(String name) Returns a Field object that represents the specified public
member field of the class or interface represented by this
Class object

Field[] getFields() Returns an array of Field objects that represents all the
accessible public fields of the class or interface represented
by this Class object

Field getDeclaredField(String name) Returns a Field object that represents the specified
declared field of the class or interface represented by this
Class object

Field[] getDeclaredFields() Returns an array of Field objects that represents each
field declared by the class or interface represented by this
Class object

Listing 2.1 Snippet to obtain all the fields in an object

Understanding field objects 33
2.3 Understanding field objects

George’s serializeObject method must associate the serialized value of a field
with the identity of the field. The Java Language Spedification defines a field as
being identified by both the declaring class and field name. Both are necessary
because Java allows a class to declare a field named the same as one declared by a
superclass. The declaring class information disambiguates which field is bound to
the name. Therefore, the second task for George’s serializeObject method is to
find both the declaring class and field name for each field.

In the previous section, George uses one or more applications of get-
DeclaredFields to obtain the supported fields for a given class. The methods
shown in table 2.1, including getDeclaredFields, return objects of type
java.lang.reflect.Field. A Field metaobject represents a particular field of a
class. Each Field metaobject provides metadata about the field’s name, declar-
ing class, and modifiers. Field also provides several methods for getting and set-
ting values. Table 2.2 shows the signatures and return types for the methods
defined by Field. Ellipses (...) below getBoolean and setBoolean indicate that a
long list of similar methods exists, one method for each primitive type. For
brevity, these methods are not included in the table.

Table 2.2 Methods defined by Field

Method Description

Class getType() Returns the Class object that represents the declared
type for the field represented by this Field object

Class getDeclaringClass() Returns the Class object that declared the field
represented by this Field object

String getName() Returns the name of the field represented by this
Field object

int getModifiers() Returns the modifiers for the field represented by this
Field object encoded as an int

Object get(Object obj) Returns the value in the specified object of the field rep-
resented by this Field

boolean getBoolean (Object obj)

...

Returns the value in the specified object of the boolean
field represented by this Field

continued on next page

34 CHAPTER 2

Accessing fields reflectively
If field refers to a field object, we can use the methods from table 2.2 to get the
values necessary to identify it uniquely:

String fieldName = field.getName();
String fieldDeclClass = field.getDeclaringClass().getName();

This string information is stored in the serialized form along with the value of the
field. The deserializer (in chapter 3) can use this information to and obtain the
corresponding field object in preparation for setting its value. With the corre-
sponding class object for fieldDeclClass and the field name, the deserializer can
obtain the field object corresponding to field. At deserialization time, the class
specified in fieldDeclClass may need to be loaded, which is why deserialization
is explored in chapter 3 under the dynamic loading discussion. Having identified
the argument’s fields uniquely, George’s serializeObject method can move on
to its next task.

2.4 Getting and setting field values

To successfully serialize an object, the values of its fields must be stored. George’s
serializeObject method must first obtain those values. If any of those values are
object references, each referenced object must also be serialized.

The argument to serializeObject is typed Object. Without knowing more
about the type of the argument, getting its field values is difficult because you can-
not access those fields directly or call accessor methods. You could cast to discover
the type, allowing you direct access. However, this casting would limit the applica-
bility of the serializer to only those types known when it is compiled, which is not a
very flexible solution.

Reflection enables manipulation of fields through reflective access and modifica-
tion. Table 2.2 contains a number of methods that begin with get and set. These

void set(Object obj, Object value) Sets the field of the specified object represented by this
Field object to the specified new value

void setBoolean(Object obj, boolean value)

...

Sets the field of the specified object represented by this
Field object to the specified boolean value

Table 2.2 Methods defined by Field (continued)

Method Description

Examining modifiers 35
methods are reflective accessors and modifiers that allow a program to use a field
object to get and set field values on an object that supports that field.

If field refers to a field object appropriate for class of the object obj, we can
access the value with:

Object value = field.get(obj);

If the field type is primitive, Java wraps the value in an appropriate wrapper
object. Alternatively, knowing the type of primitive, the code can access the value
directly using one of the primitive access methods (getBoolean and so on).

The following line sets the value of the field back to the value just extracted.

field.set(obj, value);

If the type of field is primitive, wrapping the value in the appropriate wrapper
class allows successful use of the set method. There is also a corresponding group
of methods for each primitive, which do not require wrapping. The set method is
useful later for deserialization.

If the field is not defined or inherited by the object in the first argument to get
or the first argument to set, these methods throw an IllegalArgumentException.
If a set method is called with a value argument that is not assignable to the field,
an IllegalArgumentException is thrown. An IllegalArgumentException is also
thrown if a primitive get method is called and the value of the field cannot be
converted into that primitive. If the class calling get or set does not have visibility
into the field, it throws an IllegalAccessException. These access checks can be
suppressed as explained in section 2.6.

2.5 Examining modifiers

Thus far, we have progressed through the steps for serialization, explaining how
to make them happen reflectively. However, now that we have examined Field in
more detail, we need to backtrack to step one for a moment. Step one is to get a
list of fields that need to be serialized. By examining the snippet in listing 2.1 we can
see that it does not do exactly what is needed.

Static fields should not be serialized. However, listing 2.1, accumulates both
static and nonstatic fields. George wants serializeObject to serialize only
instance variables, which are nonstatic fields. Therefore, it is important to be able
to differentiate between fields by their modifiers, such as static.

36 CHAPTER 2

Accessing fields reflectively
2.5.1 Introducing Member

Both Method and Field implement the interface java.lang.reflect.Member,
whose methods are shown in table 2.3. We have already explored getName and
getDeclaringClass. The getModifiers method returns an int, which serves as a
bit vector. The bit vector returned by getModifiers identifies the modifiers
present in the Member. It is interesting to note that all of the methods of Member are
supported by Class, as well. However, Class does not implement Member.

Syntactically, there are eleven modifiers in Java:

public static native
volatile protected abstract
synchronized strictfp private
final transient

Each of these modifiers is assigned a bit in the int returned by getModifiers. The
Java reflection API introduces the Modifier convenience class to decode the
return value of getModifiers. Table 2.4 shows the signatures and return values for
methods defined by the Modifier convenience class.

Table 2.3 Methods declared by the interface Member

Method Description

Class getDeclaringClass() Returns the Class object that declared the member

String getName() Returns the name of the member

int getModifiers() Returns the modifiers for the member encoded as an int

Table 2.4 Methods defined by Modifier

Method Description

static
boolean isPublic(int mod)

Returns true if and only if the public modifier is present in the
set of modifiers represented by the int argument

static
boolean isPrivate (int mod)

Returns true if and only if the private modifier is present in
the set of modifiers represented by the int argument

static
boolean isProtected (int mod)

Returns true if and only if the protected modifier is present
in the set of modifiers represented by the int argument

static
boolean isStatic(int mod)

Returns true if and only if the static modifier is present in the
set of modifiers represented by the int argument

continued on next page

Examining modifiers 37
2.5.2 Interface introspection pitfall

The Modifier class also has a toString static method that supplies a String value
that contains the identifier for each of the modifiers in a bit vector. Here is a little
exercise: What does the following fragment print?

System.out.print(Modifier.toString(Member.class.getModifiers()));

Due to the oddities of the definition of the Modifier class (as opposed to what the
Java syntax defines to be a modifier), this code fragment prints the string "public
abstract interface". This result may be surprising, but it is consistent with the
Interface Modifiers section of the Java Language Specification, which states, “Every
interface is implicitly abstract. This modifier is obsolete and should not be used
in new programs.” Both the result and the excerpt from the Java Language Specifi-
cation are consistent with the view of a Java interface as an abstract class with no
implied implementation that can be multiply inherited.

2.5.3 Introspecting for instance variables

Modifier enables serialization code to query a field to see if it is static. For exam-
ple, given field, a Field reference,

Modifier.isStatic(field.getModifiers());

static
boolean isFinal(int mod)

Returns true if and only if the final modifier is present in the
set of modifiers represented by the int argument

static
boolean isSynchronized(int mod)

Returns true if and only if the synchronized modifier is
present in the set of modifiers represented by the int argument

static
boolean isVolatile (int mod)

Returns true if and only if the volatile modifier is present in
the set of modifiers represented by the int argument

static
boolean isNative (int mod)

Returns true if and only if the native modifier is present in the
set of modifiers represented by the int argument

static
boolean isInterface(int mod)

Returns true if and only if the int argument comes from an
interface rather than a class

static
boolean isTransient(int mod)

Returns true if and only if the transient modifier is present
in the set of modifiers represented by the int argument

static
boolean isAbstract(int mod)

Returns true if and only if the abstract modifier is present in
the set of modifiers represented by the int argument

static
boolean isStrict (int mod)

Returns true if and only if the strictfp modifier is present in
the set of modifiers represented by the int argument

Table 2.4 Methods defined by Modifier (continued)

Method Description

38 CHAPTER 2

Accessing fields reflectively
returns true if and only if field represents a static field. We can combine the use
of Modifier with the code from listing 2.1 to get the Mopex.getInstanceVariables
method in listing 2.2.

 public static Field[] getInstanceVariables(Class cls) {
 List accum = new LinkedList();
 while (cls != null) {
 Field[] fields = cls.getDeclaredFields();
 for (int i=0; i<fields.length; i++) {
 if (!Modifier.isStatic(fields[i].getModifiers())) {
 accum.add(fields[i]);
 }
 }
 cls = cls.getSuperclass();
 }
 Field[] retvalue = new Field[accum.size()];
 return (Field[]) accum.toArray(retvalue);
 }

The getInstanceVariables method traverses up the inheritance hierarchy, accu-
mulating declared fields on the way up. However, this time it uses getModifiers
and Modifier.isStatic to filter out static fields. In the end, the returned array
has the entire set of nonstatic fields for the class.

In serializeObject, George uses getInstanceVariables from listing 2.2
instead of the snippet from listing 2.1. This change allows serializeObject to
really accomplish the first step of finding fields that need to be serialized.

2.6 Accessing nonpublic members

Earlier, we mentioned that Java access checks could be suppressed. This suppres-
sion allows reflective code to access protected, package, and private data that
would otherwise be unreachable. Without this access, a serialization solution can-
not be successful.

The class java.lang.reflect.AccessibleObject is the parent class of both
Field and Method. AccessibleObject introduces a method called setAccessible
that suppresses or enables runtime access checking. For field of type Field,

field.setAccessible(true);

disables all runtime access checks on uses of the metaobject referred to by field.
This allows reflective access to its value from outside the scope of its visibility. A

Listing 2.2 getInstanceVariables, a method of Mopex

Accessing nonpublic members 39
parameter of false reenables the runtime access checks. Put together with what
we have learned about modifiers, the lines

if (!Modifier.isPublic(field.getModifiers())) {
 field.setAccessible(true);
}
Object value = field.get();

perform the necessary access for reflective serialization. The setAccessible
method works for all of the get and set methods of Field and also for the invoke
method of Method. The method signatures and return types for AccessibleObject
are shown in table 2.5.

AccessibleObject also provides the isAccessible method to see whether or not
an AccessibleObject has been set accessible. The static setAccessible method is
supplied as a convenience for performing that operation on many Accessible-
Objects at once.

Setting objects as accessible can be disabled in the security manager. If this fea-
ture has been disabled, the setAccessible methods each throw a SecurityExcep-
tion. The default security manager permits the use of setAccessible on
members of classes loaded by the same class loader as the caller. Supplying a cus-
tom security manager can change this policy. For details on security managers,
consult the Java documentation.

The use of setAccessible should never be taken lightly, because the encapsu-
lating class is responsible for the internal consistency of an object. In the case of
serialization, the use of setAccessible is necessary because of the need to serialize
objects with private fields. Without this ability the utility of the serializer is greatly
reduced. Furthermore, reflection allows the serializer to be centralized for main-
tenance purposes.

Table 2.5 Methods defined by AccessibleObject

Method Description

void setAccessible(boolean flag) Sets the accessible flag of the target object to the
value of the argument

boolean isAccessible() Returns true if and only if the value of the accessible
flag of the target object is true

static
void setAccessible(
 AccessibleObject[] array,
 boolean flag)

Sets the accessible flags for each element of an array
of accessible objects

40 CHAPTER 2

Accessing fields reflectively
George’s serializeObject method can use the previous lines to access the
value of any field. Given this access, we are very close to a full serialization solution.

2.7 Working with arrays

There is one more issue to address before putting all of the tasks of serialize-
Object together. Recall that evaluating isArray for an object’s class tells you
whether the object is an array. On his first serialization attempt, George tried cast-
ing arrays to Object[]. This program threw a ClassCastException when serializ-
ing many objects because of attempts to cast primitive arrays.

Primitive arrays cannot be cast to Object[]. George needs an alternative that
allows him to work with arrays of objects and primitives uniformly. Java provides
java.lang.reflect.Array as a convenience facility for performing reflective oper-
ations on all array objects.

The length of an array must be determined in order to serialize it. If obj refers
to an array, the assignment statement

int length = Array.getLength(obj);

uses Array to introspect on obj for its length. Serialization also requires access to
the components of an array. The line

Array.get(obj, i)

performs reflective access on the ith element of the array. If the component type
of the array is primitive, get wraps the accessed value in its corresponding wrapper.

Table 2.6 shows signatures and return types for the methods of Array. There
are get and set methods for each primitive type. The ones that are not shown are
similar to the get and set methods for boolean.

Table 2.6 Methods defined by Array for component access and construction

Method Description

Object newInstance (Class componentType,
 int length)

Creates a new array that has the specified component
type and length.

Object newInstance (Class elementType,
 int[] dimensions)

Creates a new array that has the specified element type
and dimensions.length dimensions.

int getLength(Object array) Returns the number of components of the specified
array.

Object get(Object array, int index) Returns the component value at index. Wraps primitives
if necessary.

continued on next page

Serialization: putting it all together 41
The set and newInstance methods are valuable for deserialization. We discuss
them further in chapter 3. We now have all of the reflective tools necessary for the
serialization solution. Let’s turn our attention to the big picture of the serializa-
tion library.

2.8 Serialization: putting it all together

In analyzing the problem of serialization, we identified five tasks for George’s code
to perform. In examining the Field metaobject, we have established that reflection
provides all of the information necessary to perform those tasks. Let’s now exam-
ine the full reflective serialization solution. Listing 2.3 shows the serializeObject
method and a helper method that implements much of the main functionality.

public static Document serializeObject(Object source)
 throws Exception
{
 return serializeHelper(source,
 new Document(new Element("serialized")),
 new IdentityHashMap ());
}

private static Document serializeHelper(Object source,
 Document target,
 Map table)
 throws Exception
{
 String id = Integer.toString(table.size());
 table.put(source, id);
 Class sourceclass = source.getClass();

boolean getBoolean (Object array, int index)

...

If the component type of the specified array is bool-
ean, the component value at index is returned.

void set(Object array, int index, Object value
)

Sets the component at index to the specified value.
Unwraps primitives, if necessary.

void setBoolean(Object array,
 int index,
 boolean value)

...

If the component type of the specified array is bool-
ean, the component at index is set to the specified
value.

Table 2.6 Methods defined by Array for component access and construction (continued)

Method Description

Listing 2.3 George’s reflective serialization solution

B Creates a unique
identifier for object
 to be serialized

42 CHAPTER 2

Accessing fields reflectively
 Element oElt = new Element("object");
 oElt.setAttribute("class", sourceclass.getName());
 oElt.setAttribute("id", id);
 target.getRootElement().addContent(oElt);

 if (!sourceclass.isArray()) {
 Field[] fields = Mopex.getInstanceVariables(sourceclass);
 for (int i=0; i<fields.length; i++) {

 if (!Modifier.isPublic(fields[i].getModifiers()))
 fields[i].setAccessible(true);

 Element fElt = new Element("field");
 fElt.setAttribute("name", fields[i].getName());
 Class declClass = fields[i].getDeclaringClass();
 fElt.setAttribute("declaringclass",
 declClass.getName());

 Class fieldtype = fields[i].getType();
 Object child = fields[i].get(source);

 if (Modifier.isTransient(fields[i].getModifiers())){
 child = null;
 }
 fElt.addContent(serializeVariable(fieldtype, child,
 target, table));

 oElt.addContent(fElt);
 }
 }
 else {
 Class componentType = sourceclass.getComponentType();

 int length = Array.getLength(source);
 oElt.setAttribute("length", Integer.toString(length));
 for (int i=0; i<length; i++) {
 oElt.addContent(serializeVariable(componentType,
 Array.get(source,i),
 target,
 table));
 }
 }
 return target;

}

The serializeObject method is the user’s public method to access the facility.
That method creates the XML document and a table that stores references to all

C Creates an XML
element for object

Handles arrays
differently from scalars

D

EObtains nonstatic fields

FPermits access,
if necessary

GCreates
new XML
elements

HAdds components
of the array

Serialization: putting it all together 43
of the component objects to the argument. This table is used to ensure that
each component object is serialized only once no matter how many times it is
referenced. That guarantee allows serializeObject to serialize objects with con-
tainment cycles and multiple references to the same object. The details are dis-
cussed next.

2.8.1 Serializing each component

The serializeHelper method is called recursively on each component object to
be serialized. It creates the necessary XML structures, populates the reference
table, and populates the XML with the contents of an array or non-array object.
Here is a detailed discussion:

B A unique identifier is created for the object to be serialized. The object and
identifier are stored in the reference table using the object as the key. If the object
is encountered again during the serialization process, the identifier is easily
found. While the serialized form of the object is stored in the XML document, ref-
erences to it are replaced by its identifier so that only one copy appears.

C An XML element for the object is created and its class name and identifier are
stored as attributes. Eventually, through the recursive use of serializeHelper,
each component object of the original parameter to serializeObject has an XML
element created here.

D Arrays are handled differently from scalars. This test make the separation.

E Mopex.getInstanceVariables obtains all of the nonstatic fields supported by
the class of the object being serialized. For each instance variable, the following
two steps are performed.

F If the field is not accessible to serializeHelper, setAccessible is used to per-
mit access.

G An new XML element is created for each field in which the value and relevant
metadata are stored using the method serializeVariable. If the field is transient,
serializeVariable is passed null as the value of the field.

H For the array field, serializeHelper simply adds the components of the array.

2.8.2 Serializing instance variables

Both object and array serialization use the serializeVariable method to serialize
the value of each instance variable or array element. Listing 2.4 shows the imple-
mentation of serializeVariable.

44 CHAPTER 2

Accessing fields reflectively
 private static Element serializeVariable(Class fieldtype,
 Object child,
 Document target,
 Map table)
 throws Exception
 {
 if (child == null) {
 return new Element("null");
 }
 else if (!fieldtype.isPrimitive()) {
 Element reference = new Element("reference");
 if (table.containsKey(child)) {
 reference.setText(table.get(child).toString());
 }
 else {
 reference.setText(Integer.toString(table.size()));
 serializeHelper(child, target, table);
 }
 return reference;
 }
 else {
 Element value = new Element("value");
 value.setText(child.toString());
 return value;
 }

 }

The serializeVariable method examines the contents of a variable and decides
how to store it. If primitive, serializeVariable creates a value element containing
the String version of the primitive.

If the value is an object, that object may have already been serialized. The table
passed into serializeVariable is a map of serialized objects to their assigned
identifiers. The serializeVariable method queries the table for the identifier of
the object. If the table does not contain the object, it is serialized by calling
serializeHelper. Using this table, serializeVariable avoids duplicate serializa-
tion of multiply referenced objects and avoids looping endlessly for a set of
objects that have a cycle of references. After obtaining the identifier for the
object, serializeVariable stores the identifier in the field element as a reference
to the serialized object.

Listing 2.4 serializeVariable

Using reflective serialization 45
2.9 Using reflective serialization

To better understand the functionality provided by the serializer, let’s examine
one of George’s test cases. Figure 2.1 shows a class diagram that models the ani-
mal inventory of a small zoo. This is a good, simple test case because while each
class has fields that hold attributes of the instances, there is also a bit of complex
nesting because each Zoo contains many instances of Animal.

The data for the test case is depicted in the object diagram in figure 2.2. It repre-
sents a small subset of the animals in the National Zoological Park in Washington,
D.C. The animals represented are a pair of pandas, Tian Tian and Mei Xiang.

contains *

Animal

name: String
gender: String
classification: String
weight: int

city:
name:

String
String

Zoo

Figure 2.1 Class diagram for a small zoo inventory application. This is one of
George’s test cases for reflective serialization.

contains

con
tai

ns

panda1 : Animal

name="Tian Tian"

gender="male"

classification=

 "Ailuropoda melanoleuca"

weight=271

name="Mei Xiang"

gender="female"

classification=

 "Ailuropoda melanoleuca"

weight=221

panda2 : Animal

zoo1 : Zoo

city="Washington, D.C."
name:"National Zoological Park"

Figure 2.2 Object diagram for zoo application

46 CHAPTER 2

Accessing fields reflectively
The ZooTest program in listing 2.5 first creates two instances of Animal and a
containing instance of Zoo. After populating the Zoo, ZooTest serializes it with the
call to serializeObject. Following the serialization in ZooTest, the XML is printed
to standard out using a JDOM facility.

import org.jdom.Document;
import org.jdom.output.XMLOutputter;

public class ZooTest {

 public static void main(String[] args) {

 Animal panda1 = new Animal("Tian Tian",
 "male",
 "Ailuropoda melanoleuca",
 271);
 Animal panda2 = new Animal("Mei Xiang",
 "female",
 "Ailuropoda melanoleuca",
 221);
 Zoo national = new Zoo("National Zoological Park",
 "Washington, D.C.");

 national.add(panda1);
 national.add(panda2);

 try {
 XMLOutputter out = new XMLOutputter("\t",true);

 Document d = Driver.serializeObject(national);
 out.output(d, System.out);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

}

Listing 2.6 shows the first 40 lines of the output of the serialization process. Notice
that the values of the private fields are shown and the references are preserved.
George’s serializer is a success because of its use of reflection.

<?xml version="1.0" encoding="UTF-8"?>
<serialized>
 <object class="Zoo" id="0">

Listing 2.5 ZooTest program

Listing 2.6 ZooTest output

Using reflective serialization 47
 <field name="name" declaringclass="Zoo">
 <reference>1</reference>
 </field>
 <field name="city" declaringclass="Zoo">
 <reference>3</reference>
 </field>
 <field name="contains" declaringclass="Zoo">
 <reference>5</reference>
 </field>
 </object>
 <object class="java.lang.String" id="1">
 <field name="value" declaringclass="java.lang.String">
 <reference>2</reference>
 </field>
 <field name="offset" declaringclass="java.lang.String">
 <value>0</value>
 </field>
 <field name="count" declaringclass="java.lang.String">
 <value>24</value>
 </field>
 <field name="hash" declaringclass="java.lang.String">
 <value>0</value>
 </field>
 </object>
 <object class="[C" id="2" length="24">
 <value>N</value>
 <value>a</value>
 <value>t</value>
 <value>i</value>
 <value>o</value>
 <value>n</value>
 <value>a</value>
 <value>l</value>
 <value />
 <value>Z</value>
 <value>o</value>
 <value>o</value>

Let’s briefly examine the XML in listing 2.6. The instance of Zoo looks as
expected from figure 2.1 and figure 2.2. The second object is an instance of
String, and the offset, count, and hash fields are shown with their values. The
value field is shown with a reference to the char array ("[C" means char array, as
will be explained in the next chapter). The partial listing ends in the middle of
this array.

It might be tempting to make String a special case that is stored by value
instead of by reference. This change improves the readability and the compact-
ness of the XML. Doing so is risky, however, because some applications rely on ref-

48 CHAPTER 2

Accessing fields reflectively
erential equality (==) rather than equivalence (equals). While for known String
variables, best practices dictate the use of equals, the type of an object is not
always known. After weighing the trade-offs, George decided to represent strings
like any other object.

By using reflection, George has implemented a solution that works with any
object in his department’s application. None of his department’s previous code
needs to be changed to work with his serialization code. This generality is
achieved by introspecting on the information stored in Java’s metaobjects and
using reflective techniques for accessing the data. Similar generality can be
achieved in deserialization by using dynamic loading and reflective construction,
which are the topics of the next chapter.

2.10 Summary

Using field metadata allows a program to handle objects of classes that its writer
has never seen, including classes developed after the program was written. This
flexibility is important for applications such as memory leak checking, serializa-
tion, and property sheets, where any object in the system is a possible candidate
for processing.

Java reflection provides access to metadata about fields through metaobjects
that are instances of Field. Field objects expose the attributes of a field, such as its
name and its modifiers. They also allow access and modification of field values.
The convenience facility Array is provided to allow similar functionality for arrays.

Java reflection also allows the ability to access nonpublic members of a class.
This ability provides a great deal of benefit to developers seeking to centralize
functionality for maintenance purposes. Although encapsulation should normally
be preserved, accessibility can be used in a sufficiently general way that does not
violate object-oriented principles.

The ability to use metadata about fields gives us concrete benefits. It allows
applications like the ones in this chapter to be used on previously developed
classes without modification. This ability increases the cohesion of those imple-
mentations and broadens their applicability to classes not developed in-house. It
also reduces or eliminates the maintenance for applying these implementations
to unforeseen future code.

Dynamic loading
and reflective construction
In this chapter

■ Loading classes at runtime
■ Instantiating objects using reflection
■ Enhancing delegation with reflection
49

50 CHAPTER 3

Dynamic loading and reflective construction
The previous chapters have explained how to use reflection in the context of
objects and classes known at compile time. However, requirements always change
over the lifecycle of an application. In order to satisfy these changing require-
ments, we need to be able to load new code into previously written applications.

Web servers are a good example of such an application. All web servers support
frameworks for extension. One such web server is Apache Tomcat. Written in
Java, Tomcat is the reference implementation for the Java Servlet framework.
Servlets are classes that define behavior extensions for how web servers handle
HTTP requests.

The idea of servlets is simple. Any Java developer with a new requirement for
Tomcat can define the behavior by implementing the requirement in a servlet.
The developer then installs the servlet properly, and Tomcat uses the servlet
code to respond to web requests. This extension happens while the web server
is running.

It is easy to see that loading and executing new code are essential for Tomcat to
do its job. Java applications such as Tomcat make this happen using reflection.
Java reflection includes mechanisms for loading new classes into a running pro-
gram and creating new instances of those classes.

Outside of Java, this kind of flexibility is partially achieved using dynamically
linked libraries. However, because dynamically linked libraries are an operating
system primitive, they force you to work outside your programming language.
This produces applications that are platform dependent. In addition, as the name
implies, a dynamically linked library has the granularity of a library rather than an
individual class.

Reflection allows Java programs to load new classes individually, achieving a
higher degree of flexibility. Because this operation happens fully within Java, it
also preserves portability. This chapter explores the reflective mechanisms for
loading and instantiating new classes. We begin our exploration, as usual, with
our friend and colleague, George, and an example of small scope. Later in the
chapter, we show how these mechanisms contribute to deserializing objects serial-
ized in the previous chapter.

3.1 George’s deployment problem

George, our developer from Wildlife Components, Inc. (WCI), has been tasked
with a new problem. Although WCI specializes in selling animal class libraries, an
important client, Noah’s Pets, Ltd., has asked WCI to build an e-commerce portal
using the WCI libraries. For fear of losing his commission, the WCI sales

George’s deployment problem 51
representative has agreed that WCI will provide the application. This application
has fallen to George to develop.1

For the purposes of this chapter, we need only focus on one important facet of
George’s design problem rather than the whole application. Noah’s Pets has an
existing customer database that the application must query for information. They
have provided a schema, but there is neither budget to replicate the client’s envi-
ronment nor budget to allow George to travel until deployment. In addition,
George’s manager has instructed him to generalize this application for potential
sales to other clients. Consequently, several deployment versions are possible.

3.1.1 Designing with patterns

To ensure that his application can be productized, George must separate cus-
tomer-specific database access code from the rest of the application. He must also
allow different versions of the database access code to be used during implemen-
tation, testing, and deployment.

George uses patterns and delegation to achieve more flexibility. Delegation is
an arrangement where one object depends upon another object for implementa-
tion of a certain behavior. George applies the following patterns which use dele-
gation to his design:

■ The Facade pattern provides “a unified interface to a set of interfaces in a
subsystem” [38]. George sets up an interface that represents all of the ser-
vices provided by the database of Noah’s Pets. His application uses imple-
mentations of this interface for all database queries. The choice of which
database to query can vary independently from the rest of the application
using this design.

■ The Factory Method pattern provides a method for creating objects with-
out specifying their concrete classes. George’s application calls this
method to construct the implementation of his facade. This design allows
George to change which facade gets created without changing the rest of
the application.

Figure 3.1 shows the UML class diagram for this part of George’s design. The
facade interface, CustomerDatabase, is implemented by a stub for programming
the application, a file system database for testing the application, and the final
deployment implementation. If the application is productized, there will be many

1 This scenario is an abstraction of a problem that actually befell one of the authors in 2001.

52 CHAPTER 3

Dynamic loading and reflective construction
such deployment implementations. The factory method, createDBFacade, con-
structs the desired implementations of CustomerDatabase for the rest of the appli-
cation to use.

This design builds a great deal of flexibility into George’s application. How-
ever, due to George’s travel and budget constraints, he cannot develop the entire
application before it is deployed. Therefore, he also needs to use reflection to
build in the ability to bring new code into the application after its deployment.

3.1.2 Programming a reflective solution

The key to building the desired solution is in the implementation of the factory
method. Listing 3.1 shows the factory method in George’s application. The
application has an instance variable, props, referencing an instance of
java.util.Properties, that is used to load configuration strings into the sys-
tem. One of the configuration entries stored in props is the key db.class and
its value. The value of db.class is a fully qualified class name that is used to
identify the class of the correct database facade for the system to use. Anyone
with access to the properties file can change this property to determine what
database facade the application uses.

constructs

MainApplication

+createDBFacade():CustomerDatabase

FileSystemImpl

DeploymentImpl

StubImpl

«interface»
CustomerDatabase

Figure 3.1 UML class diagram for the separating the application from the database. A factory
method, createDBFacade, decides which implementation of CustomerDatabase to construct
at runtime. Implementations of the CustomerDatabase facade interface are shown here for
implementation, testing, and deployment to Noah’s Pets. Several implementations for each WCI
deployment may eventually exist.

George’s deployment problem 53
public class MainApplication {
 //...
 private Properties props;
 private CustomerDatabase custDB;
 //...
 public synchronized CustomerDatabase createDBFacade() {
 if (custDB == null) {
 try {
 String dbClassName
 = props.getProperty("db.class",
 "com.wci.app.StubCustomerDB");
 Class cls = Class.forName(dbClassName);
 custDB = (CustomerDatabase) cls.newInstance();
 }
 catch (ClassNotFoundException ex) {
 // ...
 }
 catch (InstantiationException ex) {
 // ...
 }
 catch (IllegalAccessException ex) {
 // ...
 }
 }
 return custDB;
 }
}

The factory method uses dynamic loading to retrieve a class object for the class
named with the property key db.class. Dynamic loading is the process by which
the Java virtual machine creates classes from bytecodes at runtime. The line

Class cls = Class.forName(dbClassName);

uses forName, a static convenience method introduced by Class, to obtain the
class object for the name referenced by dbClassName. Typically, the class being
sought by forName is retrieved from the class path, but, as you will learn in chapter
6, this is not always the case.

George’s code must create an instance of the newly obtained class for the appli-
cation to put into use. This instantiation is accomplished using reflective construc-
tion in the following line:

custDB = (CustomerDatabase) cls.newInstance();

Listing 3.1 Reading the configuration and loading the façade

54 CHAPTER 3

Dynamic loading and reflective construction
The line uses the newly obtained class object to create a new instance of the class.
The new instance is cast to a CustomerDatabase and assigned to custDB where it
can be accessed by the rest of the application.

3.1.3 Enhancing the factory method with reflection

Dynamic loading and reflective construction in the factory method relieve George
of the problem having to patch or rebuild when he wants to change the applica-
tion’s database facade. Instead, he changes the behavior of the system by putting a
class file in the classpath and changing the text in a property file. Installing a new
facade is this easy even if the system has already been deployed when the facade
implementation is written and compiled.

This factory method still necessitates a shutdown of the application to change
its database facade. However, if all components reference the facade through the
factory method, the application can easily replace the facade. This change is
made simply by changing what the factory method returns. Factory Method is not
the only pattern that benefits from reflection. Let’s examine some others.

3.1.4 Combining benefits of delegation and reflection

Reflection combines with effective object-oriented design to allow programs to be
more flexible. Delegation is useful because it allows an object to change behavior
at runtime. This change in behavior happens when one delegate that provides
one behavior is replaced with another delegate that provides a different behavior.
The number of different delegates available defines the amount that this behavior
can vary.

Without reflective mechanisms, the number of delegates is limited to only the
set of classes that are included in the system at compile time. Reflection increases
this range of variation by allowing the system to use classes that are written later.
There are several noteworthy aspects of this relationship:

■ George dynamically loads new facades into his application to extend its
behavior. New commands, strategies, states, and visitors can similarly be
loaded dynamically into an application to extend its behavior.

■ George uses dynamic loading and reflective construction to generalize a
factory method. Dynamic loading and reflective construction can also be
used to generalize the implementation of several of the other creational
patterns (see Design Patterns [38]) such as Builder and Abstract Factory.)

■ Dynamic loading and reflective construction is not the only technique for
dynamically introducing new behavior. Chapter 4 explains proxy generation

Loading classes dynamically 55
with java.lang.reflect.Proxy. Chapters 7 and 8 explain reflective code
generation for transforming the behavior of existing classes. Both of these
techniques can be used in cooperation with delegation relationships to get
similar results.

George achieves a solution that balances his difficult development conditions with
the goals of working properly with his customer’s database and eventual producti-
zation. Good software design and implementation allow these changes to occur
without significant refactoring. However, it is reflection that specifically facilitates
the integration of new functionality. We now take a closer look at the reflective
elements of George’s solution.

3.2 Loading classes dynamically

The convenience method Class.forName returns a class object given a fully quali-
fied class name. Remember the functionality of this method by thinking of it as get
class for name. We call forName a convenience method because it is a static method
for programming convenience, in this case, streamlining the use of the class loader.

3.2.1 Basics of forName

The big difference between using forName and a class literal is that forName does
not require the name of the class at compile time. This difference leads to the
main benefit of listing 3.1. The line

Class cls = Class.forName(dbClassName);

allows the class used for the customer database facade to be changed without
rewriting or rebuilding the application’s source code.

Class.forName ensures that the class is loaded and returns a reference to the
class object. This is accomplished by using a class loader, typically the one associ-
ated with the class of the object that called forName (chapter 6 explains this in
much greater detail). The class loader may have already loaded the class. If so, the
class loader merely returns the class object that was loaded earlier.

If the class has not already been loaded, the system class loader typically
searches the classpath for the appropriate .class file. If a file is found, the byte-
codes are read and the loader constructs a class object. If the file is not found, the
loader throws a ClassNotFoundException. The behavior described here is the
behavior for the system class loader. Again, more details about class loaders can
be found in chapter 6.

56 CHAPTER 3

Dynamic loading and reflective construction
3.2.2 Getting array classes

Although there are no class files for arrays, forName can still be used to obtain
their class objects. During his experience with the Noah’s Pets application, George
decides to try dynamic loading with array classes. He is surprised when the line

Class cls = Class.forName("java.lang.String[]");

produces a ClassNotFoundException.
However, this result is not that surprising

when you consider the naming of these array
classes. Most class objects respond to getName
with a compilable Java class name. Generated
array classes do not.

The names of array classes look strange. For
example, the name of the class object for a
one-dimensional int array is [I. However,
these names are generated using a straightfor-
ward process. For each dimension of the array,
the name begins with a left bracket. The brack-
ets are succeeded by one of the codes in
table 3.1 for the element type.

When George runs the following line

System.out.println(String[].class.getName());

Java prints [Ljava.lang.String; as a result. The previous ClassCastException
occurs because the name of the desired class does not match the compilable Java
code that identifies it. When George changes the line to

Class cls = Class.forName("[Ljava.lang.String;");

it produces the desired class object for a string array.

3.2.3 Primitives and forName

Class objects for primitives cannot be retrieved using forName. The line

Class.forName(char.class.getName());

produces a ClassNotFoundException. It is unclear why forName was implemented
this way. However, from the many postings on the newsgroups, this seems to be
very frustrating for developers. When you need forName to handle primitive
classes as well, our suggestion is to write a convenience method that calls forName
but checks for primitive types when catching a ClassNotFoundException.

Table 3.1 Codes used to name Java
array classes

Encoding Element type

B byte

C char

D double

F float

I int

J long

L<element-type>; reference type

S short

Z boolean

Constructing objects reflectively 57
3.3 Constructing objects reflectively

Once a class is loaded, its static members can be used. However, most of a class’s
utility comes from its instances. Therefore, constructing instances of a class is
highly important. There are many ways to construct objects reflectively. Let’s take
a closer look.

3.3.1 Reflective construction basics

The newInstance method of Class creates a new instance of the class represented
by the class object. Calling this method is equivalent to calling the class’s construc-
tor with no arguments. That is, X.class.newInstance() is the same as new X().

Again the big difference is that newInstance may be used to instantiate a class
object returned by forName, whose name need not be known at compile time. This
difference also contributes to the effectiveness of listing 3.1. The line

custDB = (CustomerDatabase) cls.newInstance();

constructs a new instance of the database facade class loaded by the previous line.
The cast illustrates why Design Patterns [38] prescribes that you should program

to interface instead of implementation. The CustomerDatabase interface defines a
service required by the application. Any class that provides this service, regardless
of implementation, or in our case, creation date, can do the job.

In our example, any class can be specified in the property file. This means
that the line above can throw a ClassCastException, which should be handled by
the surrounding code. If a failure occurs inside the constructor, newInstance
throws an InstantiationException. If the visibility of the no-argument construc-
tor makes it inaccessible from the calling context, newInstance throws an
IllegalAccessException.

3.3.2 Using constructor objects

The newInstance method is not the only way to instantiate a class reflectively. The
Java Reflection API has a class of metaobjects, java.lang.reflect.Constructor,
for representing constructors. Table 3.2 shows the methods of Class that allow
constructor introspection.

The getConstructor method allows code to query for a public constructor that
takes specific parameter types. For example, the command

cls.getConstructor(new Class[] {String.class, String.class})

introspects for a constructor that takes two String parameters. Note that class
objects returned by forName may be used in the specification of a parameter

58 CHAPTER 3

Dynamic loading and reflective construction
list. The getConstructors method can be used to get all of the public construc-
tors declared by a class. There are corresponding getDeclaredConstructor and
getDeclaredConstructors methods for finding constructors whether or not they
are public.

If there is no constructor declared for the parameter list specified, getCon-
structor and getDeclaredConstructor throw the NoSuchMethodException.
Although you might expect a NoSuchConstructorException, this exception does
not exist in Java. If this kind of introspection has been disabled in the security
manager, both methods throw a SecurityException.

Constructor is the class of metaobjects that represents Java constructors. The
interface to Constructor is very much like the interface to Method, except it sup-
ports a newInstance method instead of invoke. Table 3.3 shows the reflective
methods of Constructor.

Table 3.2 Methods of Class for constructor introspection

Method Description

Constructor getConstructor(
 Class[] parameterTypes)

Returns the public constructor with specified argument
types if one is supported by the target class

Constructor getDeclaredConstructor(
 Class[] parameterTypes)

Returns the constructor with specified argument types
if one is supported by the target class

Constructor[] getConstructors() Returns an array containing all of the public construc-
tors supported by the target class

Constructor[] getDeclaredConstructors() Returns an array containing all of the constructors sup-
ported by the target class

Table 3.3 Reflective methods of Constructor

Method Constructor

Class getDeclaringClass() Returns the class object that declares the constructor repre-
sented by this Constructor

Class[] getExceptionTypes() Returns a Class array representing the types of exceptions
that can be thrown from the body of this Constructor

int getModifiers() Returns a bit vector encoding the modifiers present and
absent for this member

String getName() Returns the name of the constructor

continued on next page

Constructing objects reflectively 59
The newInstance method of Constructor responds the same way as the new-
Instance method of Class. It constructs a new instance of its declaring class,
invoking the represented constructor with the arguments supplied in initargs,
which must conform to the types of the constructor’s parameter list.

Constructor implements the Member interface similarly to both Method and
Field. Constructor is also a subclass of AccessibleObject. Although a call to
newInstance is subject to throwing IllegalAccessException, setAccessible can
be used to disable those checks. At this point, all of the metaobject classes imple-
menting Member have been covered. Figure 3.2 presents a class diagram for the
classes implementing Member.

3.3.3 Constructing arrays reflectively

As mentioned in section 2.7, arrays can also be constructed reflectively. The
convenience facility Array introduces two newInstance methods. These methods
respond similarly to their counterparts in Class and Constructor.

Class[] getParameterTypes() Returns a Class array representing the parameter types
that are accepted by this constructor in order

Object newInstance (Object[] initargs) Invokes the constructor with the specified parameters and
returns the newly constructed instance

Table 3.3 Reflective methods of Constructor (continued)

Method Constructor

Object

«interface»
Member

+getDeclaringClass():Class
+getName():String
+getModifiers():int

AccessibleObject

Method Constructor Field

Figure 3.2 Class diagram for classes implementing java.lang.reflect.Member

60 CHAPTER 3

Dynamic loading and reflective construction
One version of Array.newInstance allows you to specify a component type and
a length in one dimension. The line

Array.newInstance(String.class, 5);

returns a String array of length 5 with all elements initialized to null. If the com-
ponent type is a scalar, as shown here, the call results in a one-dimensional array.
If the component type is an array class, the call results in an array with one more
dimension than the component type. For example,

Array.newInstance(String[].class, 5);

constructs an array of String arrays of length 5.
The other version of Array.newInstance takes an int array parameter that spec-

ifies length in several dimensions. The line

Array.newInstance(String.class, new int[] {2, 3});

constructs a two-dimensional String array. The top-level array is a length-two
array of String arrays with each component initialized to an array of String of
length 3. Each second-level array has its elements initialized to null. As with the
other newInstance, if the component type is an array class, then the new dimen-
sions are added on top. Thus,

Array.newInstance(String[].class, new int[] {2, 3});

creates a three-dimensional array of String with the top two dimensions initialized
and the third set to null.

We now have a full set of tools for constructing objects reflectively, so we can
move on to examine how dynamic loading and reflective construction interact in
a design.

3.4 Designing for dynamic loading

A subtle design issue involving a choice of constructors arises in writing classes to
be dynamically loaded. A good design technique is to implement only the default
constructor and use instance methods for object initialization. This design recom-
mendation, which our experience bears out, is justified as follows.

In the context of a dynamically loaded class, there is an interface that has a
number of implementations. For the sake of concreteness, let’s call the interface
Parrot and its implementations ParrotImpl1, ParrotImpl2, and so on. Note that
not all of these implementations initially exist, nor are they all written by the same

Designing for dynamic loading 61
programmer. Figure 3.3 shows the two basic design alternatives for such a class
with respect to constructors and initialization of instances.

The first alternative, shown in figure 3.3a, has an interface implemented with a
class containing a constructor with parameters. Java solutions typically use this
structure. The advantage of this implementation is that instances are properly ini-
tialized when created. When you load classes dynamically, this design alternative
introduces several disadvantages.

3.4.1 Disadvantages of reflective construction with arguments

The first alternative makes dynamic loading more complicated. Listing 3.2 con-
tains the minimum code necessary to load and use this first alternative. The user
of Parrot must query for the proper constructor and call it.

Using this query, the loading and construction are done with three statements,
and there are five exceptions to handle. The two statements to get the constructor
and create a new object are especially complex to write. In addition, there must be
an implicit agreement among the programmers about which constructor to call.

import java.lang.reflect.*;
public class ParrotUser {
 static public void main(String[] args)
 throws ClassNotFoundException,
 InstantiationException,

a b«interface»
Parrot

«interface»
Parrot

initialize(name:String)

ParrotImpl1

ParrotImpl1(name:String)

ParrotImpl1

initialize(name:String)

Figure 3.3 a) The left side shows implementations of Parrot using constructors with arguments to
initialize themselves. b) The right side shows Parrot implementations using a method introduced by
Parrot to initialize themselves.

Listing 3.2 Minimal user code for the first alternative design for Parrot

62 CHAPTER 3

Dynamic loading and reflective construction
 IllegalAccessException,
 NoSuchMethodException,
 InvocationTargetException {
 Class parrotClass = Class.forName("ParrotImpl1");
 Constructor pc
 = parrotClass.getConstructor(new Class[]{ String.class });
 Parrot polly = (Parrot)pc.newInstance(new String[]{ "Polly" });
 // Parrot object may now be used
 }
}

This first alternative also introduces complexity into Parrot implementations.
The implicit agreement about the constructors is not constrained within the Java
language. This lack of constraint may lead to unnecessary development mistakes.

Also, subclasses of Parrot implementations do not automatically inherit con-
structors. Subclassers must necessarily write the agreed-upon constructor and
make a super call. This leads to bulkier subclasses.

If a required constructor is not present, the subclass does not work properly.
Because the construction is reflective, there is no compile time error to flag the
mistake. Instead, the mistake is not uncovered until the first time the application
attempts to load and construct the subclass. These disadvantages make the second
alternative worth examining.

3.4.2 Initializing through an interface

The second design alternative, shown in figure 3.3b, removes several burdens
from both the implementor and the user of Parrot. First let’s consider the user’s
perspective. Listing 3.3 shows the minimal code needed to load and use the sec-
ond alternative.

public class ParrotUser {
 static public void main(String[] args)
 throws ClassNotFoundException,
 InstantiationException,
 IllegalAccessException{
 Class parrotClass = Class.forName("ParrotImpl1");
 Parrot polly = (Parrot)parrotClass.newInstance();
 polly.initialize("Polly");
 // Parrot object may now be used
 }
}

Listing 3.3 Minimal user code for the second alternative design for Parrot

Implementing deserialization 63
The user can use the newInstance method of Class instead of querying for a
constructor. This convenience eliminates the more complex statements from
listing 3.2 and two of the five original exceptions. The user code becomes dra-
matically simpler.

The second alternative also eliminates complexity for implementors:

■ Defining initialize with the correct signature is enforced by the Java lan-
guage. This enforcement eliminates some programming mistakes about
constructor signatures allowed by the first alternative.

■ Subclasses of Parrot implementations inherit initialize. No override to
initialize is necessary except where additional initialization is needed.

■ Subclasses of Parrot implementations automatically have a default con-
structor. No additional constructor code is necessary.

Using this technique does not come without cost. Constructors with parameters
can ensure that instances are properly initialized. The second alternative allows
construction of objects that are not ready for use. The implementor may need to
write additional code to guard against the use of uninitialized objects. However,
experience shows that in most cases, the second alternative reduces overall com-
plexity for dynamically loaded classes.

You now have a basic understanding of the tools needed to complete the exam-
ple from chapter 2. We continue our discussion of dynamic loading and reflective
construction by implementing a general deserialization facility.

3.5 Implementing deserialization

In the previous chapter, we serialized objects to XML. We have delayed the discus-
sion of restoring the XML to objects because we previously hadn’t explained how
to load a class dynamically and reflectively construct instances. Now that you
understand forName and newInstance, our discussion can proceed.

Deserialization is the inverse process of serialization: the conversion of streams
into object structures. In our case, we restore objects from XML as serialized in
chapter 2. Dynamic loading and reflective construction play essential roles in our
solution because not all of the classes of the deserialized objects were compiled
with the deserialization library.

In chapter 1, we said that every object is an instance of a class. This implies that
before we deserialize a stream into an object, we must establish the object’s class.1

1 In some languages, such as Perl, objects can be constructed and later associated with a class.

64 CHAPTER 3

Dynamic loading and reflective construction
In chapter 2, we prepared for establishing the object’s class by storing a fully
qualified class name with each serialized object. Thus, for the first object in
listing 2.6, the line

<object class="Zoo" id="0"> ...

indicates that the element represents an object of class Zoo in the default package.
Given that information, we can use Class.forName to obtain a reference to the
class of this object.

Next, we must create an instance of the object’s class to serve as the deserialized
object. We can do this by calling newInstance on our newly obtained class object.
However, this gives us an instance without the properly initialized fields, so the
task is not complete.

After constructing our new instance, we must populate its instance variables.
We can populate primitive typed instance variables easily by reading their values
directly from the stream. However, for instance variables that refer to objects, the
previous two steps must first be accomplished for the values that they reference.
Once the values of object typed instance variables have object representations, we
can populate all instance variables using the fields of the class object.

To review, here are the steps of our deserialization solution:

1 For each object stored in the XML file, load its class and construct an
instance. Use Class.forName for dynamic loading and newInstance for
reflective construction.

2 For each instance variable in each deserialized object, populate it with its
value. Examine the class object for a field using getDeclaredField, and
then call one of the set methods, and possibly setAccessible, to popu-
late it.

Now that we have organized the tools and concepts to accomplish the task, let’s
look at the details of a solution.

3.5.1 Initiating deserialization

George’s solution for deserialization starts with the deserializeObject method in
listing 3.4. It first obtains the list of children in the XML document. Remember
that each element of the document represents some object. This list shows which
objects to construct for the first step of our solution.

Next, deserializeObject creates a HashMap that is used to map identifiers to
deserialized objects. During the serialization process in chapter 2, each object is
assigned a unique identifier. This identifier is the key to reassembling the object

Implementing deserialization 65
structure in the second step of our solution because the identifier plays the role of
an object reference. With initialization complete, deserializeObject can execute
the steps of deserialization.

 public static Object deserializeObject(Document source)
 throws Exception
 {
 List objList = source.getRootElement().getChildren();

 Map table = new HashMap();

 createInstances(table, objList);

 assignFieldValues(table, objList);

 return table.get("0");
 }

The deserializeObject method executes the first step of our solution by calling
the createInstances method, which loads classes, constructs instances, and maps
them to their identifiers. Next, deserializeObject calls assignFieldValues to
execute the second step of our solution by assigning values to instance variables.
Finally, after running the entire process, the deserialized object is returned to
the caller.

3.5.2 Constructing the instances

The createInstances method executes our first deserialization step by iterating
over the list of serialized objects in the XML document. During this iteration, it
dynamically loads the class for each object and constructs an instance using reflec-
tive construction. Listing 3.5 shows the source code for createInstances.

 private static void createInstances(Map table, List objList)
 throws Exception
 {
 for (int i = 0; i < objList.size(); i++) {
 Element oElt = (Element) objList.get(i);
 Class cls = Class.forName(oElt.getAttributeValue("class"));
 Object instance = null;
 if (!cls.isArray()) {
 Constructor c = cls.getDeclaredConstructor(null);
 if (!Modifier.isPublic(c.getModifiers())) {
 c.setAccessible(true);

Listing 3.4 The deserializeObject method

Listing 3.5 The createInstances method

66 CHAPTER 3

Dynamic loading and reflective construction
 }
 instance = c.newInstance(null);
 }
 else {
 instance =
 Array.newInstance(
 cls.getComponentType(),
 Integer.parseInt(oElt.getAttributeValue("length")));
 }
 table.put(oElt.getAttributeValue("id"), instance);
 }
 }

The line

Class cls = Class.forName(oElt.getAttributeValue("class"));

queries the document for the name of the class of a serialized object and loads
that class. Next, the method constructs an instance of the loaded class. If the class
is not an array class, the following lines are used:

Constructor c = cls.getDeclaredConstructor(null);
if (!Modifier.isPublic(c.getModifiers())) {
 c.setAccessible(true);
}
instance = c.newInstance(null);

The no-argument constructor is set accessible, if necessary, and then called to
instantiate an object. This assumption, of course, limits what can be deserialized.
This and other limitations of this solution are discussed in section 3.6.

If the class is an array class, the Array convenience facility is used to create a
new array of the correct component type and length as specified in the XML doc-
ument. Finally, the new object is stored in the map, using the object’s identifier as
the key. With instances constructed and the map populated, we can move on to
step 2 in our process.

3.5.3 Restoring the object structure

The assignFieldValues method in listing 3.6 iterates back over the newly con-
structed objects to initialize each instance variable. For each instance variable,
there are two cases to cover, depending on whether or not the contained object
is an array. If the object is an array, assignFieldValues loops over the array com-
ponents in the XML document to fill in the array. Otherwise, assignFieldValues
initializes each instance variable with the value stored in the XML document. In

Implementing deserialization 67
both cases, the deserializeValue method in listing 3.7 is called to accomplish
the setting of the instance variable or the elements of the array.

 private static void assignFieldValues(Map table, List objList)
 throws Exception
 {
 for (int i = 0; i < objList.size(); i++) {
 Element oElt = (Element) objList.get(i);
 Object instance = table.get(oElt.getAttributeValue("id"));
 List fElts = oElt.getChildren();
 if (!instance.getClass().isArray()) {
 for (int j=0; j<fElts.size(); j++) {
 Element fElt = (Element) fElts.get(j);
 String className
 = fElt.getAttributeValue("declaringclass");
 Class fieldDC = Class.forName(className);
 String fieldName = fElt.getAttributeValue("name");
 Field f = fieldDC.getDeclaredField(fieldName);
 if (!Modifier.isPublic(f.getModifiers())) {
 f.setAccessible(true);
 }

 Element vElt = (Element) fElt.getChildren().get(0);
 f.set(instance,
 deserializeValue(vElt, f.getType(), table));
 }
 }
 else {
 Class comptype =
 instance.getClass().getComponentType();
 for (int j = 0; j < fElts.size(); j++) {
 Array.set(instance, j,
 deserializeValue((Element)fElts.get(j),
 comptype, table));
 }
 }
 }
 }

The deserializeValue method in listing 3.7 examines an XML element for an
instance variable or array element and returns an object. There are several cases
to be considered. If the value of the XML element is null, deserializeValue sim-
ply returns null. If the value is an object, deserializeValue finds the object using
the map and returns it. Primitive values are parsed, wrapped, and returned.

Listing 3.6 The assignFieldValues method

68 CHAPTER 3

Dynamic loading and reflective construction
 private static Object deserializeValue(Element vElt,
 Class fieldType,
 Map table)
 throws ClassNotFoundException
 {
 String valtype = vElt.getName();
 if (valtype.equals("null")) {
 return null;
 }
 else if (valtype.equals("reference")) {
 return table.get(vElt.getText());
 }
 else {
 if (fieldType.equals(boolean.class)) {
 if (vElt.getText().equals("true")) {
 return Boolean.TRUE;
 }
 else {
 return Boolean.FALSE;
 }
 }
 else if (fieldType.equals(byte.class)) {
 return Byte.valueOf(vElt.getText());
 }
 else if (fieldType.equals(short.class)) {
 return Short.valueOf(vElt.getText());
 }
 else if (fieldType.equals(int.class)) {
 return Integer.valueOf(vElt.getText());
 }
 else if (fieldType.equals(long.class)) {
 return Long.valueOf(vElt.getText());
 }
 else if (fieldType.equals(float.class)) {
 return Float.valueOf(vElt.getText());
 }
 else if (fieldType.equals(double.class)) {
 return Double.valueOf(vElt.getText());
 }
 else if (fieldType.equals(char.class)) {
 return new Character(vElt.getText().charAt(0));
 }
 else {
 return vElt.getText();
 }
 }
 }

Listing 3.7 The deserializeValue method

George’s serialization: limitations 69
George’s deserialization code mirrors the flexibility of his serialization code.
Because of the use of dynamic loading, reflective construction, and reflective
access to fields, George’s code adapts as applications add new classes or new
instance variables. Although a very general solution, it has limitations. Let’s take a
closer look at these limitations.

3.6 George’s serialization: limitations

The serialization example in the previous two chapters illustrates many features
of Java reflection, but the example is not a complete facility. Including such
details would obscure the explanation of the reflective facilities. Because our goal
is to explore reflection, we have made limiting assumptions to allow us to more
easily illustrate the reflective concepts. In many cases, you can overcome these
limiting assumptions by simply adding code or changing the design. This section
discusses those limiting assumptions to more fully illustrate the demands of pro-
duction serialization.

3.6.1 No interaction with readObject or writeObject

Standard serialization in Java interacts with two methods, readObject and
writeObject, that provide hooks for trapping serialization and deserialization.
These methods can be used for pre- and post-processing transient fields. These
methods are passed the actual streams for serialization and deserialization to
allow control over what is written and read. George’s solution does not interact
with these methods.

The entries in a java.util.HashMap are transient, and their serialization and
deserialization are handled by readObject and writeObject. The writeObject
method writes each key and each value to the stream as objects, one after the
other. The readObject method reverses the process and puts them into the map.
This arrangement means that George’s code, in its current implementation, will
not do an effective job of serializing a HashMap.

To handle classes that override readObject and writeObject, George’s solution
must be augmented to interact with readObject and writeObject. Here is one pos-
sible augmentation. The XML serialization could be made to send the output of
each existing writeObject to a file and include a link to each file in the XML. With
that link, the XML deserialization would open the file, read it into a stream, and
pass that stream to readObject. In an alternative augmentation, the output of
writeObject could be encoded as text and included in the XML.

70 CHAPTER 3

Dynamic loading and reflective construction
3.6.2 No handling of final instance variables

Classes that declare or inherit final instance variables can cause problems for this
solution. The value of a final instance variable is permanently set during object
construction. In the example, this happens in createInstances. However, assign-
FieldValues also makes an attempt to assign the value stored in the XML docu-
ment. This second attempt leads to an exception. Consequently, serialized objects
that have final instance variables cannot be deserialized by our example code,
because the code as written does not check for final instance variables.

Seemingly, you could just change assignFieldValues to not attempt to set
final instance variables, trusting the value to be properly set during object con-
struction. This, however, can lead to incorrect behavior. Consider a program that
sets the original value of a final instance variable based upon the current pro-
gram state. That value is the one written in the XML document when the object is
serialized. Upon deserialization, the program may be in a state where the final
instance variable is initialized differently. Whether or not this new value is appro-
priate is problematic.

3.6.3 Only no-argument constructors

This example requires that constructors with no arguments be available for dese-
rialization. Section 3.4 (on page 60) makes an argument for designing classes for
dynamic loading to have constructors with no arguments. The createInstances
method throws an exception if it encounters an object whose class does not sup-
port a no-argument constructor.

There are several ways to extend the example such that it handles other con-
struction options. One technique is to create mapping files that describe which
instance variables can be fed as arguments into which constructors. A deserializer
can then use the mapping to choose which constructor to use and decide which
arguments to supply it. Several custom serialization libraries such as Castor use
this technique.

Another technique is to apply custom serialization XML schemas to certain
kinds of objects. Notice that arrays are handled differently than other objects in
George’s code. He uses a special schema that better fits the structure of an array.
He also uses special code to introspect on the contents of the array. Similar tech-
niques can be used for primitive wrapper classes, container classes, and so on.

3.6.4 No handling of illegal XML characters

Not all Unicode characters are legal in XML. The XML specification defines
escapes that can be used for these characters. Some XML APIs handle this escap-

Summary 71
ing for you, while others do not. Though the version of JDOM used for developing
these examples did not handle all escapes properly, this issue has been left
untreated for the sake of simplicity. For details on the legal XML character set, see
the XML specification at www.w3c.org.

3.6.5 Performance

There are many ways to improve the performance of George’s deserializer. One
possible optimization sets the value of instance variables inside deserializeValue
instead of having it return the value. This change would allow deserializeValue
to use the primitive set methods for primitive values instead of wrapping them
and returning them. However, for simplicity, we do not present that solution.

3.7 Summary

True flexibility demands that applications be able to incorporate new code. With-
out this capability, requirements eventually diverge from an application’s imple-
mentation, leaving it obsolete. Dynamic loading allows a Java application to find
and use classes not available when the application was written. When combined
with a good object-oriented design, this increases the flexibility of Java applica-
tions, increasing the likelihood of keeping pace with changes in requirements.

Dynamic loading produces class objects. Therefore, instantiating those class
objects becomes essential. Java supplies two options for creating instances from
class objects: one using the class object itself and another using metaobjects repre-
senting the class’s constructors. When an array is desired, the Array convenience
facility can be used to construct an array reflectively.

Dynamic loading and reflective construction work to enhance delegation. Dele-
gation permits different parts of a program to vary independently from each
other. Reflection broadens the range of variation in a delegation relationship by
making more kinds of objects available. The use of reflection also enhances cre-
ational patterns in similar ways.

When designing classes for dynamic loading, consider using the no-argument
constructor. Dynamic loading and reflective construction are much simpler to
implement when querying for a constructor object is not needed. Also, no-argu-
ment constructors and initialization methods can be inherited by subclasses with
no extra programming, whereas constructors with arguments cannot.

Using Java’s
dynamic proxy
In this chapter

■ How to use java.lang.reflect.Proxy
■ Using proxy to implement decorators
■ Chaining proxies
■ Pitfalls of using Proxy
73

74 CHAPTER 4

Using Java’s dynamic proxy
The dictionary [68] tells us that a proxy is an “agency, function, or office of a dep-
uty who acts as a substitute for another.” When this idea is applied to object-ori-
ented programming, the result is an object, a proxy, that supports the interface of
another object, its target, so that the proxy can substitute for the target for all prac-
tical purposes.

The keys to this arrangement are implementation and delegation. The proxy
implements the same interface as the target so that it can be used in exactly the
same way. The proxy delegates some or all of the calls that it receives to its target
and thus acts as either an intermediary or a substitute. In its role as an intermedi-
ary, the proxy may add functionality either before or after the method is for-
warded to the target. This gives the reflective programmer the capability to add
behavior to objects. This chapter discusses this and other uses of proxies.

4.1 Working with proxies

The sequence diagram in figure 4.1 depicts the most common situation where the
proxy instance receives a method call and forwards it to the target. Even this
arrangement has a use; it hides the location of the target from the client. If you
have used remote method invocation, you are familiar with proxies that are local
substitutes for remote objects.

The Java reflection API contains a dynamic proxy-creation facility,
java.lang.reflect.Proxy. This class is part of Java reflection because Proxy is
Java’s only way of approximating method invocation intercession. Let’s dissect the
previous phrase. Intercession is any reflective ability that modifies the behavior of
a program by directly taking control of that behavior. Method invocation interces-
sion is the ability to intercept method calls. The intercepting code can determine
the behavior that results from the method call.

We say approximating because Java does not support reflective facilities for inter-
ceding on method calls. Therefore, we must use proxies as an approximation.
Referring to figure 4.1, we see that proxies also allow the ability to pre- and post-
process method calls. Let’s examine the benefits achieved from doing this.

Programmers commonly discuss properties of classes. For example, a class that
records its method calls is often referred to as a tracing class. A class that ensures
that a failed operation does not leave an object in an intermediate state is often
referred to as an atomic class.

The code that implements such properties is usually spread among the defi-
nitions of each of the methods of the class, almost always at the beginning and
at the return points. The ability to intercede on method invocation permits the

Working with proxies 75
programmer to gather this property-implementing code together in one place.
This property can later combine with classes, yielding the desired effect.

The case for this combination of classes and properties is more real for soft-
ware projects than you would think. A colleague once observed that when an
object-oriented database is first brought into a programming shop, the number of
classes doubles. The shop has added one property, persistence, to their application.
Each class now requires a persistent and a nonpersistent version [18].

Developers get many key benefits from separating property-implementing
code. One benefit of this separation is low maintenance cost for applications.
Each such property can be modified by making a change in only one place in the
code base. Another benefit of separating properties is improved reusability. The
separated property can be used in many places in many applications.

There is also a compelling argument to present to management for such sepa-
ration. Consider George’s employer, Wildlife Components, which sells a class
library of n classes. There are p properties that they wish their classes to have in all
combinations. Both the number of classes and the number of properties grow as
the company evolves to meet the increasing business demands. WCI faces the
possibility of having to support a class library of at least n2p classes if they must
write new classes to implement and combine properties in their original classes.

method call forwarded

call to a target method

client

proxy target

Figure 4.1 Sequence diagram for the typical use of a proxy. The proxy forwards received method
calls to its target. The proxy may or may not do some pre- and post-processing.

76 CHAPTER 4

Using Java’s dynamic proxy
This additional maintenance is a serious enough concern to win management
over. Isolating properties into reusable components and composing them later, as
can be done with Proxy, yields a much smaller library of size n+p. This represents
an enormous savings to WCI or any other company. This effect may not be as pro-
nounced in other organizations, but it does exist.

Now that we have discussed the abstract benefits of Proxy, let’s pay a visit to
George and look at a simple example.

4.2 George’s tracing problem

George has been assigned the task of creating tracing versions of several of the
classes that he maintains. In a tracing class, each method records information
about its entry and, after method execution, records information about its return.
George’s employer, WCI, wants tracing available for their classes because tracing
helps with problem determination in deployed software.

Consider the following scenario. A customer calls WCI technical support with
a defect report. Tech support asks the customer to turn tracing on in their soft-
ware and follow the steps to reproduce the defect. Because tracing is turned on,
the customer can then send WCI a file containing the path through the WCI
source code.

This information solves many problems for the WCI technical team. It tells
them a great deal about the state of the program during the failure. It also may
prevent them from having to replicate their customer’s environment and data.

While tracing is a useful feature, it is also very I/O intensive. Therefore, classes
should be able to turn tracing on and off. However, including tracing code and
guards to turn it on and off in each class bloats the classes and makes them slower
because of the execution of the if statements. Due to these constraints, George
decides to make tracing and nontracing versions of his classes.

One option George considers is subclassing each nontraced class and over-
riding each method with traces and super calls. He can then set up a process
for either instantiating the traced or nontraced version depending upon some
command-line argument. George quickly realizes that this option has the fol-
lowing shortcomings:

■ Tedium—Executing this option is boring and mechanical. In fact, a com-
puter program can be written to do this job.

■ Error-proneness—George can easily misdeclare an override, misspelling the
method name or including the wrong parameter list. He could also forget

Exploring Proxy 77
or overlook a method. At best, he may have a compile error to warn him
that his process broke. Otherwise, the class may not behave as expected.

■ Fragility—If anyone in George’s department adds, deletes, or changes the
signature on a method in the superclass, the traced subclass breaks either
by not building or by not tracing as expected.

Clearly, George is in need of a better solution. George needs to separate the con-
cern of tracing from the rest of the source code and implement it in a separate
module. George reasons that this can be done with a proxy, where the proxy
traces the call before and after delegating the method invocation to the target.
Although there will be one proxy object for every target, with the use of reflec-
tion, all of the proxies can be instances of one proxy class, which addresses the
shortcomings raised previously. Before presenting George’s solution, let’s exam-
ine java.lang.reflect.Proxy.

4.3 Exploring Proxy

As stated previously, the two important tasks for any proxy are interface imple-
mentation and delegation. The Java Proxy class accomplishes implementation of
interfaces by dynamically creating a class that implements a set of given interfaces.
This dynamic class creation is accomplished with the static getProxyClass and
newProxyInstance factory methods, shown in listing 4.1.

public class Proxy implements java.io.Serializable {
 ...
 public static Class getProxyClass(ClassLoader loader,
 Class[] interfaces)
 throws IllegalArgumentException ...

public static Object newProxyInstance(ClassLoader loader,
 Class[] interfaces,
 InvocationHandler h)
 throws IllegalArgumentException ...

public static boolean isProxyClass(Class cl) ...

public static InvocationHandler getInvocationHandler(Object proxy)
 throws IllegalArgumentException ...
}

Listing 4.1 Partial declaration for java.lang.reflect.Proxy

78 CHAPTER 4

Using Java’s dynamic proxy
Each class constructed by these factory methods is a public final subclass of Proxy,
referred to as a proxy class. We refer to an instance of one of these dynamically
constructed proxies as a proxy instance. We call the interfaces that the proxy class
implements in this way proxied interfaces. A proxy instance is assignment-
compatible with all of its proxied interfaces.

The getProxyClass method retrieves the proxy class specified by a class loader
and an array of interfaces. If such a proxy class does not exist, it is dynamically
constructed. Because each Java class object is associated with a class loader, in
order to dynamically create a proxy class, getProxyClass must have a class loader
parameter (the reason for this requirement is explained in chapter 6). The name
of each proxy class begins with $Proxy followed by a number, which is the value of
an index that is increased each time a proxy class is created.

All proxy classes have a constructor that takes an InvocationHandler parame-
ter. InvocationHandler is an interface for objects that handle methods received
by proxy instances through their proxied interfaces. We discuss invocation han-
dlers further after we finish with the methods of Proxy. A combination of getCon-
structor and newInstance may be used to construct proxy instances, as in the
following lines

Proxy cl = getProxyClass(SomeInterface.getClassLoader(),
 Class[]{SomeInterface.class});
Constructor cons = cl.getConstructor(new Class[]{InvocationHandler.class});
Object proxy = cons.newInstance(new Object[] { new SomeIH(obj) });

where SomeIH is a class that implements InvocationHandler. Alternatively, this
sequence can be accomplished with a single call to newProxyInstance:

Object proxy = Proxy.newProxyInstance(SomeInterface.getClassLoader(),
 Class[]{SomeInterface.class},
 new SomeIH(obj));

This call implicitly creates the proxy class, which can be retrieved with getProxy-
Class.

The static method isProxyClass is used to determine if a class object repre-
sents a proxy class. The line

Proxy.isProxyClass(obj.getClass())

may be use to determine if obj refers to a proxy instance. If p refers to a proxy
instance,

Proxy.getInvocationHandler(p)

returns the InvocationHandler that was used to construct p.

Exploring Proxy 79
4.3.1 Understanding invocation handlers

Proxy allows programmers to accomplish the delegation task by providing the
InvocationHandler interface. Instances of InvocationHandler, also referred to as
invocation handlers, are objects that handle each method call for a proxy
instance. Invocation handlers are also responsible for holding any references to
targets of the proxy instance. Listing 4.2 shows the InvocationHandler interface.

public interface InvocationHandler {

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable;

}

A proxy instance forwards method calls to its invocation handler by calling
invoke. The original arguments for the method call are passed to invoke as an
object array. In addition, the proxy instance provides a reference to itself and to a
Method object representing the invoked method.

Notice that the parameters passed to invoke are exactly the objects needed to
forward a method call to another object reflectively. If target refers to the object
being proxied, the lines

public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
{
 return method.invoke(target, args);
}

implement an invoke method that passes every call transparently. More complex
invoke methods may perform pre- and post-processing on the arguments. Note
that invocation handlers may also forward to many targets or none at all.

Figure 4.1 depicts an abstraction of forwarding a method through a proxy. Fig-
ure 4.2 depicts that actual sequence of calls when the invocation handler is imple-
mented as shown previously. For clarity, UML is often used to present the minimal
relevant detail to convey understanding. With this idea in mind, our subsequent
diagrams for proxy present the abstraction rather than the implementation detail.

Listing 4.2 The InvocationHandler interface

80 CHAPTER 4

Using Java’s dynamic proxy
4.3.2 Handling the methods of Object

A proxy instance is an object, and so it responds to the methods declared by
java.lang.Object. This raises the issue of whether or not these methods should
be handled by invoke. The issue is resolved as follows:

■ hashCode, equals, and toString are dispatched to the invoke method in the
same manner as any other proxied method.

■ If a proxied interface extends Cloneable, then the invocation handler does
intercede on the invocations to clone. However, unless the proxied inter-
face makes clone public, it remains a protected method.

■ If any proxied interface declares an override to finalize, then invocation
handlers do intercede on calls to finalize.

■ Method intercession does not take place for the other methods declared by
java.lang.Object. Consequently, these methods behave as expected for any
instance of java.lang.Object. In other words, a call to wait on a proxy
instance waits on the proxy instance’s lock, rather than being forwarded to
an invocation handler.

The information in the last bullet is welcome because it means that an invocation
handler cannot make a proxy instance lie about its class or interfere with multi-

:Proxy :Method

client

I: nvocationHandler target

Figure 4.2 Sequence diagram illustrating the actual objects involved in forwarding a method
when the invocation handler of the proxy uses the invoke method of Method.

Implementing a tracing proxy 81
threaded locking. Now that you understand the basics of Proxy, let’s return to
George’s tracing problem.

4.4 Implementing a tracing proxy

George solves his tracing problem using Proxy. From his exploration of Proxy,
George readily understands that his solution must have an invocation handler in
which the invoke method forwards all method calls to the target. This forwarding
is readily accomplished with the invoke method of Method. The next design deci-
sion involves the creation of the proxy and the invocation handler. George
decides that all of his creation code can be located in the class written for the
invocation handler. This is accomplished with a static method, createProxy. This
static method is passed the target, which is examined introspectively to create an
appropriate proxy and invocation handler. Listing 4.3 shows the invocation han-
dler that George created. With this invocation handler, George can add tracing of
any interface to an individual object. Let’s examine the solution in detail.

import java.lang.reflect.*;
import java.io.PrintWriter;

public class TracingIH implements InvocationHandler {

 public static Object createProxy(Object obj, PrintWriter out) {
 return Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 obj.getClass().getInterfaces(),
 new TracingIH(obj, out));
 }

 private Object target;
 private PrintWriter out;

 private TracingIH(Object obj, PrintWriter out) {
 target = obj;
 this.out = out;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {
 Object result = null;
 try {
 out.println(method.getName() + "(...) called");
 result = method.invoke(target, args);
 } catch (InvocationTargetException e) {
 out.println(method.getName() + " throws " + e.getCause());
 throw e.getCause();

Listing 4.3 An invocation handler for a proxy that traces calls

82 CHAPTER 4

Using Java’s dynamic proxy
 }
 out.println(method.getName() + " returns");
 return result;
 }
}

The implementation part of George’s solution happens in the createProxy
method. The static factory method createProxy wraps its argument in a proxy
that performs tracing. First, createProxy examines its argument object for the
direct interfaces that its class implements. It sends that array of interfaces to
Proxy.newProxyInstance, which constructs a proxy class for those interfaces.1

Next, a TracingIH is constructed with the argument as its target. Finally, create-
Proxy constructs and returns a new proxy that forwards its calls to the TracingIH.
This proxy implements all of the interfaces of the target object and is assignment-
compatible with those types.

The delegation part of George’s solution happens in the invoke method. The
invoke method in listing 4.3 first records the method name to a java.io.Print-
Writer. A more complete facility would also include the arguments, but we omit
them for brevity. Then the invoke method forwards the call to the target and, sub-
sequently, stores the return value. If an exception is thrown, the exception is
recorded with the print writer; otherwise, the return value is recorded. Finally, the
result of the call is returned.

When a proxied method is called on a proxy instance, control first passes to the
invoke method with the following arguments:

■ proxy—The proxy instance on which the method was invoked. TracingIH
happens to make no use of this parameter.

■ method—A Method object for the invoked method.

■ args—An array of objects containing the values of the arguments passed in
the method invocation on the proxy instance. args is null if the method

1 The getInterfaces method returns only the direct interfaces of a class. As George has written the invo-
cation handler, only methods declared by direct interfaces are traced. In chapter 8, we present a
method, Mopex.getAllInterfaces, that finds all of the interfaces implemented by a class. What about
methods that are not implemented in an interface? George might be asked to supply a tool that finds
those methods and puts them in an interface. Reflection can help here, too, but you will have to wait
until chapter 7 to read how.

Implementing a tracing proxy 83
takes no arguments. Arguments of primitive types are wrapped in instances
of the appropriate primitive wrapper class; for example, java.lang.Integer
wraps an int.

The declared return type of invoke is Object. The value returned by invoke is sub-
ject to the following rules:

■ If the called method has declared the return type void, the value returned
by invoke does not matter. Returning null is the simplest option.

■ If the declared return type of the interface method is a primitive type, the
value returned by invoke must be an instance of the corresponding primi-
tive wrapper class. Returning null in this case causes a NullPointer-
Exception to be thrown.

■ If the value returned by invoke is not compatible with the interface
method’s declared return type, a ClassCastException is thrown by the
method invocation on the proxy instance.

The exception UndeclaredThrowableException may be thrown by the execution of
the invoke method. UndeclaredThrowableException wraps non-runtime excep-
tions that are not declared by the interface for the method being called. The
cause of the wrapped exception may be accessed with getCause. This wrapping of
an exception may seem odd, but it is necessary when you consider the difficulty of
programming invocation handlers that are limited to throwing just those excep-
tions known at the origin of the call.

To fully understand the class TracingIH in listing 4.3, it is best to understand
how a using application is changed by the execution of the statement

 Dog proxyForRover = (Dog) TracingIH.createProxy(rover);

where Dog is a Java interface and rover contains an instance of a class DogImpl that
implements that interface. Note that the proxy facility ensures that the proxy
instance returned by createProxy can be cast to Dog. Figure 4.3 presents a dia-
gram that shows all of the objects and classes that are relevant to the previous line
of code. The objects created by that line of code are in the gray area.

This invocation handler in listing 4.3 provides the module that George wants.
Instead of having to change source code, he can wrap objects with proxies and
have the users of the objects reference the proxies. This technique avoids all of
the shortcomings of the process George would have to follow without Proxy.

84 CHAPTER 4

Using Java’s dynamic proxy
4.5 A note on factories

As mentioned earlier, the tracing invocation handler of listing 4.3 is missing a test
to turn tracing on and off dynamically. Instead, the application uses either traced
or nontraced versions of its classes. This is accomplished by applying the Abstract
Factory pattern for construction of the potentially traced objects. That is, a class is
declared that contains a method for creating new instances of Dog. This method
chooses whether to create instances of the Dog class that traces or instances of the
one that does not trace. An example factory for implementations of the Dog inter-
face is shown in listing 4.4.

import java.lang.reflect.*;
import java.io.PrintWriter;

public class DogFactory {

Proxy

i
n
s
t
a
n
c
e
O
f

i
n
s
t
a
n
c
e
O
f

target

i
n
s
t
a
n
c
e
O
f

$Proxy0 TracingIH

proxyForRover invocationHandler

«interface»
Dog

«interface»
InvocationHandler

DogImpl

rover

Figure 4.3 A class diagram illustrating the execution of the createProxy factory method
from listing 4.3.

Listing 4.4 A factory that chooses between traced and untraced versions of a class

A note on factories 85
 private Class dogClass;
 private boolean traceIsOn = false;

 public DogFactory(String className, boolean trace) {
 try {
 dogClass = Class.forName(className);
 } catch (ClassNotFoundException e){
 throw new RuntimeException(e); // or whatever is appropriate
 }
 traceIsOn = trace;
 }

 public Dog newInstance(String name, int size) {
 try {
 Dog d = (Dog)dogClass.newInstance();
 d.initialize(name,size);
 if (traceIsOn) {
 d = (Dog)TracingIH.createProxy(d,
 new PrintWriter(System.out));
 }
 return d;
 } catch(InstantiationException e){
 throw new RuntimeException(e); // or whatever is appropriate
 } catch(IllegalAccessException e){
 throw new RuntimeException(e); // or whatever is appropriate
 }
 }
}

Notice that the factory method newInstance is enhanced reflectively by using the
class object to create a new instance the same way as the factory method in the
previous chapter. The lines

if (traceIsOn) {
 d = (Dog) TracingIH.createProxy(d, new PrintWriter(System.out));
}

assure that each Dog is wrapped in a tracing proxy when required. This puts the
tests for tracing at construction time rather than during execution of the meth-
ods of Dog.

The factory method also conforms to design recommendations presented in
section 3.4.2. The newInstance method constructs instances using the new-
Instance method of Class. After construction, the new Dog is made ready for use
with a call to initialize.

86 CHAPTER 4

Using Java’s dynamic proxy
4.6 Chaining proxies

One of the strengths of using proxies is that they can be arranged in a chain, with
each proxy but the last having another proxy as its target. The last target in the
chain is the real target object. When done properly, this chaining has the effect of
composing the properties implemented by each proxy.

4.6.1 Structuring invocation handlers for chaining

Ensuring that proxies can be chained requires careful design. For example, the
invocation handler for tracing is programmed with the assumption that its target
is the real target and not another proxy. If the target is another proxy, the invoca-
tion handler may not perform the correct operation. To remedy this problem, we
present InvocationHandlerBase, an abstract class for deriving invocation handlers
for chainable proxies. The source code for InvocationHandlerBase is shown in
listing 4.5.

import java.lang.reflect.*;
import mopex.*;

public abstract class InvocationHandlerBase implements InvocationHandler {

 protected Object nextTarget;
 protected Object realTarget = null;

 InvocationHandlerBase(Object target) {
 nextTarget = target;
 if (nextTarget != null) {
 realTarget = findRealTarget(nextTarget);
 if (realTarget == null)
 throw new RuntimeException("findRealTarget failure");
 }
 }

 protected final Object getRealTarget() { return realTarget; }

 protected static final Object findRealTarget(Object t) {
 if (!Proxy.isProxyClass(t.getClass()))
 return t;
 InvocationHandler ih = Proxy.getInvocationHandler(t);
 if (InvocationHandlerBase.class.isInstance(ih)) {
 return ((InvocationHandlerBase)ih).getRealTarget();
 } else {
 try {
 Field f = Mopex.findField(ih.getClass(), "target");
 if (Object.class.isAssignableFrom(f.getType()) &&
 !f.getType().isArray()) {

Listing 4.5 InvocationHandlerBase

Chaining proxies 87
 f.setAccessible(true); // suppress access checks
 Object innerTarget = f.get(ih);
 return findRealTarget(innerTarget);
 }
 return null;
 } catch (NoSuchFieldException e){
 return null;
 } catch (SecurityException e){
 return null;
 } catch (IllegalAccessException e){
 return null;
 } // IllegalArgumentException cannot be raised
 }
 }
}

The service provided by InvocationHandlerBase is the recursive search findReal-
Target that traverses the chain of proxy instances and invocation handlers to
find the real target at the end of the chain. If each invocation handler in the
chain extends InvocationHandlerBase, the traversal is simply accomplished with
calls to getRealTarget, because findRealTarget is used in the constructor to ini-
tially set realTarget.

However, it is rather inflexible to assume that all of the invocation handlers
encountered will extend InvocationHandlerBase. For invocation handlers that do
not extend InvocationHandlerBase, we attempt to find a target using reflection.
The findRealTarget method searches the target proxy instance’s invocation han-
dler for an Object field named target. The search for the target field is accom-
plished using Mopex.findField, defined in listing 4.6. If that field exists and has a
non-array type assignable to Object, it is assumed that the field contains the next
link in the chain of proxies.

 public static Field findField(Class cls, String name)
 throws NoSuchFieldException {
 if (cls != null) {
 try {
 return cls.getDeclaredField(name);
 } catch(NoSuchFieldException e){
 return findField(cls.getSuperclass(), name);
 }
 } else {
 throw new NoSuchFieldException();
 }
 }

Listing 4.6 The findField method in Mopex

88 CHAPTER 4

Using Java’s dynamic proxy
The interface in the Java Reflection API for querying a class object for its members
is not always ideal. For example,

 X.class.getDeclaredField("foo")

throws a NoSuchFieldException if the sought field foo is declared by a superclass
of the target X. Mopex contains findField to make queries for fields more conve-
nient. It recursively searches up the inheritance hierarchy and returns the first
field with the specified name. This search furthers our goal of chaining invoca-
tion handlers that do not extend InvocationHandlerBase with those that do. Let’s
use it.

4.6.2 Implementing a synchronized proxy

To illustrate the concept of proxy chaining, we need another kind of proxy to
chain with the tracing proxy. In this section, we present a proxy for making an
object synchronized. This proxy has the effect of using the synchronized modifier
on a class declaration if Java allowed such a combination. Listing 4.7 presents an
invocation handler for synchronized access to its target object. All method for-
warding occurs inside a synchronized statement.

import java.lang.reflect.*;

public class SynchronizedIH extends InvocationHandlerBase {

 public static Object createProxy(Object obj) {
 return Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 obj.getClass().getInterfaces(),
 new SynchronizedIH(obj));
 }

 private SynchronizedIH(Object obj) { super(obj); }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {
 Object result = null;
 synchronized (this.getRealTarget()) {
 result = method.invoke(nextTarget, args);

 }
 return result;
 }
}

Listing 4.7 An invocation handler for synchronized access

Chaining proxies 89
The lock acquired by the synchronized statement in listing 4.7 is the one belong-
ing to the real target, which is the better design decision. The alternative decision
is acquiring the lock associated with the proxy instance. This alternative is likely
the wrong design decision. For example, if there were multiple proxy instances
for a single target, each proxy instance would be acquiring a different lock. For
this reason, it is vital to discover the real target.

4.6.3 Chaining the two proxies

As mentioned previously, chaining is one of the more elegant properties of
Proxy. That is, by using a synchronizing proxy in front of a tracing proxy, we
achieve the effect of an object that both synchronizes and traces. As we did ear-
lier, suppose Dog is a Java interface and DogImpl is an implementation of that
interface. The statement

Dog rover = (Dog)SynchronizedIH.createProxy(
 TracingIH.createProxy(new DogImpl(),
 new PrintWriter(System.out)));

constructs a synchronized proxy instance for a tracing proxy instance for a Dog
object. For all practical purposes, this is a Dog object that synchronizes and traces.
This is illustrated in figure 4.4, which shows that a call is passed from one proxy to
the next until the call reaches the target.

When you chain proxies, the order usually makes a difference. That is, there is
a difference between a synchronized tracing object and tracing synchronized
object. The difference is whether or not the synchronization applies to the print-
ing of the trace. In any multithreaded application, this is an important nuance
because if the tracing is not conducted inside the synchronization, the trace out-
put of two threads might be mixed so as to appear that the synchronization were
not working. That is, the trace would not reflect the true behavior of the applica-
tion, which would be a poor outcome of the chaining of the proxies.

The chaining of proxies is one way to address the problem of exponential
growth in the size of the class hierarchy when you need to mix properties and
classes. More concretely, the above proxy constructions are much more conve-
nient than maintaining a synchronized version, a tracing version, and a synchro-
nized tracing version of each class that requires these properties. Chapter 7
discusses another way to address this problem.

Irrespective of the approach taken, the importance of the problem and the
fundamental reliance of the various solutions on reflection cannot be stressed

90 CHAPTER 4

Using Java’s dynamic proxy
enough. In order to be the most flexible, both adaptive and reusable, software
must be able to examine itself and its environment (introspection), change itself
(intercession), and combine with that environment.

4.7 Stubbing interfaces for unit testing

In each of the previous proxy examples, the proxy-instance-invocation-handler
combination had a target to which to forward the method call. Having a target is
not necessary; there are some situations where the invocation handler imple-
ments the methods entirely. Let’s focus on one such example.

4.7.1 Examining stubs

A test stub is an implementation of an interface that is used to perform testing
during development prior to full implementation. In topdown development, test
stubs allow the development and testing of the upper levels of the system without
requiring all of the lower-level code to be written. For example, an application
developer may validate the behavior of a GUI while using test stubs for the busi-
ness logic, which is concurrently being designed by a business analyst.

synchronizedProxy target

client

tracingProxy

Figure 4.4 Sequence diagram illustrating the chaining of the synchronized proxy and the
tracing proxy

Stubbing interfaces for unit testing 91
While essential for good testing, stubbing often makes life more difficult for
developers. First of all, stubs are classes, which means more code to write and
maintain. During development, interfaces change more, which means stubs need
to be changed with them, thus increasing the cost of change.

Second, the implementation of stubs is mechanical and tedious work. Each
stub should do two basic things. The stub needs to record incoming method invo-
cations as the test is run so that the behavior can be validated. Also, the stub needs
to script return values and exceptions. This scripted behavior is used by the test to
sensitize paths through the code being tested. These two actions need to be taken
for each method call, regardless of which methods are implemented by the stub.

Stub generation facilitates early forms of testing such as unit testing. Unit test-
ing isolates small units of code, allowing validation of their behavior without inter-
action with other parts of the application. This isolation helps locate defects and
yields higher confidence during integration.

Without unit testing, defects are much more difficult to locate during integra-
tion, and changes that break units may go unnoticed. However, many organiza-
tions do not unit test thoroughly because of the heavy burdens associated with
maintaining the tests and the stubs. Stub generation is of extremely high value
because it removes much of the maintenance burden, allowing developers to test
more easily.

4.7.2 Design for stubbing with Proxy

Here we design and implement a test stub facility based on Proxy. Given a Java
interface or set of interfaces, this facility creates test stub proxy instances. The
facility obviates the need to hand-implement test stubs when doing topdown
development. The use of Proxy-generated stubs in testing also promotes the prac-
tice of programming to interfaces.

Figure 4.5 shows the class diagram for the design of the test stub facility. The
facility has three interfaces and four classes, whose purposes are defined as follows:

■ Stub—This interface adds convenience methods to the proxy, for example,
methods to get information from inside the invocation handler without call-
ing Proxy.getInvocationHandler.

■ History—The test stub facility allows for a history object to be defined that
remembers methods called on the stub during a test case. This history can
be queried to validate the behavior of the unit being tested.

■ DefaultHistory—This class implements a History that does nothing (this is
not shown is the class diagram in figure 4.5).

92 CHAPTER 4

Using Java’s dynamic proxy
■ ReturnValueStrategy—An application of the Strategy pattern that allows
scripting of return values and thrown exceptions. This ability allows stubs to
sensitize many paths through the unit being tested.

■ DefaultReturnValueStrategy—This class implements the ReturnValue-

Strategy that is used if none is specified.

■ WrappedException—A ReturnValueStrategy may wish to throw an excep-
tion. It does so by wrapping that exception in a WrappedException. This
enables the stub facility to tell the difference between a real exception, a
scripted exception, and an exception as a return value.

■ StubIH—This is the invocation handler for the test stub facility. It is respon-
sible for using the return value strategy to determine the return value and
for using the history object to record the method invocation.

invocationHandler

th
ro
ws

«interface»
AnyJavaInterface

«interface»
InvocationHandler

$Proxy0

StubIH

«interface»
History

DefaultReturnValueStrategyWrappedException

«interface»
Stub

«interface»
ReturnValueStrategy

interfaces for which
stub is being created

Figure 4.5 Design for the test stub proxy

Stubbing interfaces for unit testing 93
4.7.3 Implementation of stubbing with Proxy

Listing 4.8 shows the Stub interface. This interface is dynamically added to the
set of interfaces supported by the stub proxy class. The methods of Stub are
implemented by the stub invocation handler, StubIH. This interface is for conve-
nience methods.

In this case, there is just one method, getHistory, that allows the users of a
proxy instance to easily get the history object without having to call Proxy.get-
InvocationHandler first. Note that Stub extends Serializable, which permits the
proxy instances and the invocation handler to be saved.

public interface Stub extends Serializable {
 /**
 * Returns the history object for the stub.
 */
 History getHistory();
}

Listing 4.9 presents the History interface. The methods defined are used only to
add information to the history object. The return value of recordMethodCall is an
identifier that is used in the other methods to match the result with the call. It is
the obligation of the implementor of History to add methods that allow the his-
tory to be examined. We choose not to present such an implementation, because
it does not add value to our study of Java reflection.

public interface History extends java.io.Serializable {

 long recordMethodCall(Proxy p, Method m, Object[] args);
 void recordReturnValue(long callID, Object returnValue);
 void recordException(long callID, Throwable cause);

}

The class displayed in listing 4.10 is the default implementation for History. This
implementation does nothing, and its only purpose is to make the code clearer by
obviating many checks for null (the pattern for this class is called Null Object [77]).

Listing 4.8 Stub interface

Listing 4.9 History interface

94 CHAPTER 4

Using Java’s dynamic proxy
public class DefaultHistory implements History {

 public long recordMethodCall(Proxy p, Method m, Object[] args) {
 return 0;
 }
 public void recordReturnValue(long callID, Object returnValue) {}
 public void recordException(long callID, Throwable cause) {}
}

Listing 4.11 shows the interface ReturnValueStrategy that is used to substitute a
return value in place of executing the real, yet-to-be-implemented method. The
only hard requirement for getReturnValue is that a value of the expected type
must be produced. Here, a matter of quality comes into play: the more real the
return values look, the easier it is to test the units that use the stub. Note that the
history is also passed to getReturnValue. This can be valuable in producing a real-
looking stream of return values.

public interface ReturnValueStrategy {

 /**
 * Note that getReturnValue is expected to produce the return values
 * for calls to Object.equals, Object.toString, and Object.hashCode.
 */
 Object getReturnValue(Proxy p, Method m, Object[] args, History h)
 throws WrappedException;

}

Listing 4.12 contains the default implementation for ReturnValueStrategy.
Unlike DefaultHistory in listing 4.10, DefaultReturnValueStrategy is not a null
object because it really tries to fulfill the role of a ReturnValueStrategy.

public class DefaultReturnValueStrategy implements ReturnValueStrategy {

 public Object getReturnValue(Proxy p,
 Method m,
 Object[] args,
 History h) {
 if (!m.getReturnType().isPrimitive()) {

Listing 4.10 DefaultHistory class

Listing 4.11 ReturnValueStrategy interface

Listing 4.12 DefaultReturnValueStrategy class

Stubbing interfaces for unit testing 95
 try {
 return m.getReturnType().newInstance();
 } catch(InstantiationException e){
 return null;
 } catch(IllegalAccessException e){
 return null;
 }
 } else if (m.getReturnType() == void.class) {
 return null;
 } else if (m.getReturnType() == boolean.class) {
 return new Boolean(false);
 } else if (m.getReturnType() == short.class) {
 return new Short((short)0);
 } else if (m.getReturnType() == int.class) {
 return new Integer(0);
 } else if (m.getReturnType() == long.class) {
 return new Long(0);
 } else if (m.getReturnType() == double.class) {
 return new Double(0);
 } else if (m.getReturnType() == byte.class) {
 return new Byte((byte)0);
 } else if (m.getReturnType() == char.class) {
 return new Character((char)0);
 } else if (m.getReturnType() == float.class) {
 return new Float(0);
 }
 throw new Error("Unknown return type: " + m.getReturnType());
 }
}

This default implementation of ReturnValueStrategy provides several interesting
lessons about the use of reflection:

■ The newInstance statement is used to call the constructor with no parame-
ters, which may not exist or may not be accessible. If such a constructor
exists and is accessible, its result is assumed to be a reasonable return value
for a test stub. If no such constructor exists, null is a reasonable return
value. The lesson in this case is that simply calling m.getReturn-

Type().newInstance() achieves the desired result—no Constructor objects
are necessary.

■ Each value of a primitive type is returned wrapped exactly in an object of its
associated wrapper. Wrapper objects are not coerced. For example, an
Integer object may not be used as a return object when invoke is called for
a method that returns a long.

96 CHAPTER 4

Using Java’s dynamic proxy
■ The sieve of nested if statements ends with the throwing of an error. This
ensures that if some future version of Java adds additional primitive types,
the problem code can be immediately identified.

It is possible that a method is supposed to return an object of type Throwable
rather than throw the object as an exception. In order for the return value strat-
egy to distinguish between these two cases, the exception in listing 4.13 is defined.
If the stub is to merely return a Throwable object, then the return value strategy
returns the Throwable object. However, if the stub is to throw the object, the
return value strategy wraps the Throwable object in a WrappedException and
throws it to the stub.

public class WrappedException extends Exception {

 public WrappedException(Throwable cause) { super(cause); }

}

Finally, we come to the center of the test stub facility, the invocation handler in
listing 4.14. This class implements both Stub and InvocationHandler. The static
createStub factory methods are responsible for constructing proxy instances that
serve as test stubs. These methods are similar to the previous factory methods in
this chapter except in two respects. First, StubIH does not allow the construction
of stubs for the Stub or InvocationHander interfaces. Second, the Stub interface is
added to the array of proxied interfaces. This addition allows stub users to invoke
Stub methods directly on a stub proxy instance instead of having to get the invoca-
tion handler.

The heart of the facility is the implementation of the invoke method. If the
method is declared by the Stub interface, invoke calls its StubIH implementation.
Otherwise, it records the invocation to history and determines the return value using
the return value strategy. As with all other proxy instances, invoke handles toString,
equals, and hashCode, and may handle clone and finalize, while all the other meth-
ods declared by java.lang.Object are called directly on the proxy instance.

public class StubIH implements InvocationHandler, Stub {

 private ReturnValueStrategy retValStrategy
 = new DefaultReturnValueStrategy();

Listing 4.13 WrappedException class

Listing 4.14 StubIH invocation handler

Stubbing interfaces for unit testing 97
 private History history = new DefaultHistory();

 public static Stub createStub(Class[] interfaces,
 ReturnValueStrategy rvs) {
 return createStub(interfaces, rvs, null);
 }

 public static Stub createStub(Class[] interfaces,
 ReturnValueStrategy rvs,
 History h)
 {
 for (int i = 0; i < interfaces.length; i++)
 if (interfaces[i] == Stub.class
 || interfaces[i] == InvocationHandler.class)
 throw new RuntimeException("Cannot stub " + interfaces[i]);

 Class[] newInterfaces = new Class[interfaces.length+1];
 newInterfaces[0] = Stub.class;
 System.arraycopy(interfaces,
 0,
 newInterfaces,
 1,
 interfaces.length);

 return (Stub)Proxy.newProxyInstance(Stub.class.getClassLoader(),
 newInterfaces,
 new StubIH(newInterfaces,
 rvs,
 h));
 }

 private StubIH(Class[] interfaces,
 ReturnValueStrategy rvs,
 History h)
 {
 if (h != null)
 history = h;
 if (rvs != null)
 retValStrategy = rvs;
 }

 public final History getHistory() { return history; }

 public Object invoke(Object p, Method m, Object[] args)
 throws Throwable
 {
 if (m.getDeclaringClass() == Stub.class) {
 // for calls to methods declared in Stub interface
 return m.invoke(this, args);
 }

 long callId = history.recordMethodCall((Proxy)p, m, args);

 try {

98 CHAPTER 4

Using Java’s dynamic proxy
 Object result = retValStrategy.getReturnValue((Proxy)p,
 m,
 args,
 history);
 history.recordReturnValue(callId, result);
 return result;

 } catch(WrappedException e){
 history.recordException(callId, e.getCause());
 throw e.getCause();

 } catch(Exception e){
 history.recordException(callId, e);
 throw e;
 }
 }
}

The proper use for this test stub is as follows:

1 Construct the object being tested and the stubs that it needs. Set the stubs
on the object being tested.

2 In the return value strategies of each of the stubs, script the return values
or exceptions that guide execution along the desired path through the
class being tested.

3 Invoke the method being tested on the object.

4 Test the correctness of the return value of the method.

5 Query the history in each of the stubs for the behavior of the object and
test its correctness.

Given sufficient history and return value strategy implementations, this test facil-
ity can be highly effective. It provides the benefits of test stubbing without the bur-
dens of implementing and maintaining a stub class for each interface.

To better understand the stub proxy, consider George’s deployment problem
from section 3.1. George began with an interface for the customer database that
he wanted to stub. With the stub proxy, he may start by merely writing

CustomerDatabase db
 = (CustomerDatabase)StubIH.createStub(
 new Class[]{CustomerDatabase.class},
 null,
 null);

Generating SOAP remote proxies 99
which creates the database facade object. As he progresses, he can enhance the
stub by providing a return value strategy or a specialized history object.

This completes the presentation of the test stub proxy. It is based on a similar
facility that was implemented and used by one of the authors in the development
of a commercial product. Our presentation used History and ReturnValueStrat-
egy to abstract away many details of that implementation so that the quintessential
idea remains. In all other respects, the code presented is ready for you to use.

4.8 Generating SOAP remote proxies

The classic application of proxies is in the implementation of remote services. A
proxy can make remote objects seem local to the rest of an application. The appli-
cation calls methods on the proxy as if it were the remote object. The proxy for-
wards method calls to the remote object using the appropriate protocol.

The specifics of the remote protocol can become tangled with the application,
cluttering the business logic. This tangling makes the application less flexible. For-
tunately, Proxy can be used to separate this concern into its own class. This design
allows the remote protocol to vary independently from the rest of the application.
Let’s examine how Proxy can help apply this classic pattern to a new technology.

Web services are the most recent trend in remote protocols. The Web Services
Architecture technical report [94] states the following:

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP-messages, typ-
ically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.

An important building block of Web services is SOAP, the Simple Object Access
Protocol. Here we construct an invocation handler that allows you to easily write
code to access remote objects using SOAP. Furthermore, the combination of
Proxy and other reflective capabilities enables the writing of an invocation han-
dler that works for all simple Web services. We demonstrate the effectiveness of
this invocation handler and the Web services standards with a very small test pro-
gram that retrieves the price of The Three Musketeers from the Barnes and Noble
Quote Service on the XMethods web site (www.xmethods.org).

To start, we need to cover a few basic facts about SOAP (more information is
available at www.w3.org/TR/SOAP). SOAP is a lightweight protocol for making

100 CHAPTER 4

Using Java’s dynamic proxy
method invocations on remote objects and receiving return values. For our exam-
ple we use the original Apache implementation as our SOAP API. Although by the
time this book is printed the Apache Axis project will probably have subsumed the
Apache SOAP project, the example is still relevant and illustrative.

In the original Apache implementation of SOAP, there are three classes that
will concern us: Call, Parameter, and Response (see ws.apache.org/soap/docs for
the documentation). Basically, you construct a Call object with the URI of the ser-
vice, the name of the method, and a Vector of Parameter objects. After a call is
constructed, the Call class has an invoke method to start remote access. The
invoke method returns a Response object, which contains the return value.

Listing 4.15 shows the invocation handler for our SOAP proxies.

import org.apache.soap.rpc.Call;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;

import java.lang.reflect.*;
import java.net.URL;
import java.util.Vector;

public class SoapInvocationHandler implements InvocationHandler {

 public static Object createSoapProxy(Class[] interfaces,
 URL serverURL,
 String serviceName,
 String encoding)
 {
 SoapInvocationHandler handler = new SoapInvocationHandler();
 handler.serverURL = serverURL;
 handler.serviceName = serviceName;
 handler.encoding = encoding;

 return Proxy.newProxyInstance(
 SoapInvocationHandler.class.getClassLoader(),
 interfaces,
 handler);
 }

 private URL serverURL;
 private String serviceName;
 private String encoding;

 private SoapInvocationHandler() {}

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {

Listing 4.15 An invocation handler for SOAP remote proxies

B
Creates proxy and its

invocation handler

C Declares networking
parameters required by SOAP

D
Creates, populates, and
invokes a Call object

Generating SOAP remote proxies 101
 Call call = new Call();
 call.setTargetObjectURI(serviceName);
 call.setMethodName(method.getName());

 Vector params = new Vector();
 Class[] types = method.getParameterTypes();
 for (int i = 0; i < args.length; i++) {
 params.add(
 new Parameter("p"+i, types[i], args[i], encoding)
);
 }
 call.setParams(params);

 Response resp = call.invoke(serverURL, "");

 if (resp.generatedFault()) {
 throw new RuntimeException(resp.getFault().toString());
 }
 else {
 return resp.getReturnValue().getValue();
 }
 }
}

Let’s take a tour:

B The static createSoapProxy factory method creates an invocation handler, pop-
ulates its instance variables, and creates and returns a new proxy instance. Using
the Java Proxy implies that if a proper Java interface is declared for any Web ser-
vice, a usable proxy object for the Web service is constructed.

C These are the networking parameters required by SOAP. The first is the URL
for finding the Web service. The second is the name of the Web service. The third
is the kind of encoding for the invocation parameters.

D The invoke method of the invocation handler is used to create, populate, and
invoke a Call object.

E Here the Call object is constructed and the names of the Web service and
remote method are set.

F A Vector of Parameter objects is created. Notice how nicely the arguments to
the invoke method of InvocationHandler support the SOAP implementation. For
example, the Method argument facilitates the marshalling of the parameters for
the remote call.

G The invoke method of Call is used to send a SOAP remote call to the server
specified by the URL stored in serverURL.

E Constructs the
Call object

FCreates a Vector
of Parameter

objects

GInvokes the Call to
send a SOAP remote call

HChecks the
Response object

102 CHAPTER 4

Using Java’s dynamic proxy
H After the invocation, the Response object is checked. If a fault occurred, an
exception is thrown. Otherwise, the return value that is embedded in the
Response object is returned.

Now that you understand the invocation handler for creating a SOAP proxy, let’s
put it to use. Listing 4.16 contains an interface for using the Barnes and Noble
Quote Service. The quote service simply returns the price (in U.S. dollars) of a
book, given its ISBN. We discovered this service by scanning the web site ser-
vices.xmethods.net. Using the Web Services Description Language (WSDL) speci-
fication of the service, an interface was written for the Barnes and Noble Quote
Service. A description of WSDL may be found at www.w3.org/TR/wsdl.

public interface BNQuoteService {

 float getPrice(String isbn);
}

With the interface declared and with our general SOAP invocation handler, the
test program to acquire the price of The Three Musketeers is easy to write.
Listing 4.17 shows such a program. The arguments for the call to createSoap-
Proxy come from the WSDL description of the Quote Service.

import org.apache.soap.rpc.*;
import java.net.URL;
import java.util.Vector;

public class SoapClientTest {

 public static void main(String[] args) {
 String servicesURL
 = "http://services.xmethods.net:80/soap/servlet/rpcrouter";
 try {
 BNQuoteService quoter
 = (BNQuoteService) SoapInvocationHandler.createSoapProxy(
 new Class[] {BNQuoteService.class},
 new URL(servicesURL),
 "urn:xmethods-BNPriceCheck",
 "http://schemas.xmlsoap.org/soap/encoding/");

 System.out.println("Price is: "
 + quoter.getPrice("0192835750"));
 }

Listing 4.16 A Java interface that corresponds to the Barnes and Noble Quote Service

Listing 4.17 Checking a price through the Barnes and Noble Quote Service

Pitfalls of using Proxy 103
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Of course, to write the test program, we got the ISBN from a copy of The Three Mus-
keteers in our bookcase. A shopping program that retrieves that price from several
suppliers given the title of the book would require the use of more Web services.
However, it should be clear that the use of Web services need not be arduous with
the help of reflection.

4.9 Pitfalls of using Proxy

With respect to ease of use of Proxy, this chapter has painted a pretty picture.
However, there are situations for which you must be alert. A tricky situation arises
when proxy instances are passed as arguments into contexts that are expecting a
real object.

Consider the Point interface and its implementation shown in listing 4.18.
Suppose there is a proxy instance for a Point where the invocation handler
merely forwards the method call. That is, invoke for the invocation handler is
written as follows:

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

 return method.invoke(target, args);
 }

When this invoke method forwards the call p.equals(p) where p contains a refer-
ence to a proxy instance with a target of type PointImpl1, the return has the value
false. This happens because the argument is a proxy instance, which is not of
type PointImpl1.

public interface Point {
 float getX();
 float getY();
}

public class PointImpl1 implements Point {

 private float x, y;

 public PointImpl1(float x, float y) { this.x = x; this.y = y; }

Listing 4.18 Point class

104 CHAPTER 4

Using Java’s dynamic proxy
 public float getX() { return x; }
 public float getY() { return y; }

 public boolean equals(Object obj) {
 if (obj instanceof PointImpl1) {
 PointImpl1 p = (PointImpl1)obj;
 return p.x == x && p.y == y;
 }
 else
 return false;
 }
}

Now, consider another Point implementation shown in listing 4.19. Using this
implementation, p.equals(p) returns the expected value, true. The difference
between the two implementations is that while the first accesses values through
the concrete implementation, the second accesses these same values but through
the interface. The second succeeds because the proxy instance understands how
to respond to the interface.

public class PointImpl2 implements Point {

 private float x, y;

 public PointImpl2(float x, float y) { this.x = x; this.y = y; }
 public float getX() { return x; }
 public float getY() { return y; }

 public boolean equals(Object obj) {
 if (obj instanceof Point) {
 Point p = (Point)obj;
 return p.getX() == x && p.getY() == y;
 }
 else
 return false;
 }
}

The general rule is if a class is expected to be proxied, a method parameter that
has that class as its type should be accessed through the interface. This can be
problematic if the interface does not provide the necessary access (as would be
the case if Point interface did not have both accessors).

Listing 4.19 PointImpl2 class

Summary 105
4.10 Summary

In addition to creating a substitute for an individual object, Proxy is an effective
tool for adding properties to objects. Separating wrapping code, such as tracing,
into an invocation handler gives developers one place to write, test, debug, and
modify the code that implements the property. Proxy keeps concerns from
becoming entangled with the business logic. Proxy also allows developers to reuse
code in other applications. Proxy can be profitably used any time code needs to
execute before or after some or all methods of an interface.

Further, Proxy relieves developers from the tedium of repeatedly writing the
same code all over an application. With its programmatic introspection of argu-
ment interfaces, Proxy is not error-prone. Proxy is not fragile to interface updates
because it binds to interfaces at runtime.

Proxy is also the only way to dynamically create classes from inside the Java pro-
gramming language. Dynamic class creation yields several benefits. Without
Proxy, developers are required to maintain hierarchies of proxy implementation
classes. Proxy allows developers to specify, in Java, how to create a proxy imple-
mentation given some interfaces. All of the implementation classes are created at
runtime, leaving only the specification to be maintained by the developers.

This specification also allows the creation of proxy classes for interfaces that
were not available when the application was compiled. This means that Proxy can
work with dynamic loading to enhance application flexibility.

The use of Proxy increases flexibility by creating modules that concentrate
the code needed to give properties to an object and that may be easily reused in
other contexts. Such increases in flexibility can be translated into increased
profits. There is a performance impact for the extra level of indirection, which
can be measured with the techniques presented in chapter 9. In addition, chap-
ter 7 presents additional techniques for attaining flexibility when interfaces are
not available.

Call stack introspection
In this chapter

■ Examining the call stack
■ Using call stack introspection
■ Avoiding infinite recursion during

method intercession
■ Checking class invariants
107

108 CHAPTER 5

Call stack introspection
Introspection includes more than the structure of an application. Information
about the execution state of the running application is also useful for increasing
flexibility. Java has metaobjects that represent the execution state of the running
program, including metaobjects that represent the call stack.

Each thread of execution has a call stack consisting of stack frames. Each frame
in the call stack represents a method call. Stack frames contain information such
as an identification of the method, the location of the statement that is currently
executing, the arguments to the method, local variables and their values, and so
on. Each stack frame represents the method last called by the method in the
frame below it. In Java, the frame at the bottom of a call stack represents the main
method of an application or the run method of a thread.

Call stack introspection allows a thread to examine its context. This context
includes the name of the method that it is currently executing and the series of
method calls that led to that method. This information is useful in several ways:

■ Logging—An application can log more precise messages given this informa-
tion.

■ Security—An API can decide whether or not to proceed based upon its
caller’s package or class.

■ Control flow—A reflective facility can avoid situations such as infinite recursion.

These and other applications make call stack introspection a useful tool for
programmers.

Java supports call stack introspection though an indirect facility. There is no
facility to directly modify a call stack or any of its constituent frames. You can con-
sider methods for thread management to be indirect ways to modify the call stack.
The rest of this chapter further motivates the use of call stack introspection and
details its mechanics in Java.

5.1 George’s logging problem

When George first came to WCI, he was given the project of designing and imple-
menting their approach to logging.1 Logging, as an individual feature, was seen as

1 In JDK 1.4, Java added the logging facility, java.util.logging. This facility is useful and flexible. We
exclude it here to concentrate on illustrating the details of call stack introspection. In general, the Java
logging facility is fairly advanced, providing class name and method name information about the caller.
However, it does not provide line numbers or a full stack trace. The scenario in this chapter comes from
a real situation faced by a development organization using JDK 1.3, before the release of JDK 1.4.

George’s logging problem 109
an opportunity for George to work independently. Because logging is a concern
that cuts across all modules, this task was also an opportunity for him to become
familiar with the whole code base.

Logging is an important tool for both diagnosing problems and rollback and
recovery in an operational application. We concentrate on the mechanics and
information flow for a logging API. There are many good resources on the uses for
logging, for example, see the ACM Computing Surveys article by Elnozahy et al [26].

Tracing, as we presented it in section 4.4, records the entry and exit to a
method. As such, tracing is a special kind of logging. Logging is more general
because it can record the passing of other control points than method entry and
exit, and it records special kinds of events.

Good applications can do quite a bit of logging. For example, figure 5.1 (from
[45]) depicts the logging code in Tomcat, which is the servlet container that is the
official reference implementation for Java Servlet and Java Server Pages technolo-
gies (see jakarta.apache.org/tomcat). The figure is a bar graph where each bar
represents the size of a module in the Tomcat implementation. The stripes in
each bar represent logging code.

George knows that to be effective, a logging facility must provide metadata in
the records that are logged. He decides to log the name of the calling class, the
name of the calling method, and the line number where the call was made. The
resulting interface to his logging facility is shown in listing 5.1.

Figure 5.1 The amount of logging in Apache Tomcat. Each vertical bar represents a module. The
stripes represent logging code.

110 CHAPTER 5

Call stack introspection
public interface Logger {
 // Types for log records
 public static final int ERROR = 0;
 public static final int WARNING = 100;
 public static final int STATUS = 200;
 public static final int DEBUG = 300;
 public static final int TRACE = 400;

 void logRecord(String className,
 String methodName,
 int lineNum,
 String message,
 int logRecordType);

 void logProblem(String className,
 String methodName,
 int lineNum,
 Throwable problem);
}

In listing 5.1 the five constants are for classifying the log records. The method
logRecord writes a log record to whatever medium is used to store such records.
The method logProblem does the same for a Throwable. The line number argu-
ment for each method is a nice bit of metadata to have when examining the pro-
gram with an interactive development environment.

Here is an example of how George’s coworkers would use this facility:

public class Dog {
 private Logger log = new LoggerImpl();

 public void bark() {
 ...
 this.log.logRecord("Dog",
 "bark",
 23,
 "Execution point A passed",
 Logger.STATUS);
 ...
 }
}

George’s facility fulfills the requirements for storing the desired metadata. How-
ever, usage of this facility becomes tedious, at best, and nearly impossible to main-
tain, at worst. Typing all of that metadata is fragile. Changes to the surrounding
code can cause changes in the logging calls. The class name and method name

Listing 5.1 Interface to an overly simple logging facility

Performing call stack introspection 111
can easily be incorrect if code is copied and pasted or if a class or method is
renamed. In addition, if a subclass inherits code that does logging, the logging
call still records the name of the superclass. The line number argument is so
unstable that this particular interface is not really practical.

Clearly, this metadata should be available without needing to pass it as parame-
ters. Before JDK 1.4, this information was virtually unavailable programmatically.
However, JDK 1.4 provides a set of introspective features to make this metadata
available. Next we explore call stack introspection and demonstrate how to sim-
plify George’s interface.

5.2 Performing call stack introspection

To achieve call stack introspection, we are going to need a little programming
trick, because there is no accessible call stack metaobject in Java. Instead, when an
instance of Throwable is created, the call stack is saved as an array of StackTrace-
Element. By writing

new Throwable().getStackTrace()

we have access to a representation of the call stack when the Throwable was cre-
ated. Table 5.1 shows the part of the public interface to the Java Throwable class
relevant to call stack introspection. Throwable has always supported the printing of
stack traces. In the past, some ingenious developers would turn this into call stack
introspection by capturing the output of printStackTrace, parsing it, and making
it available programmatically. JDK 1.4 alleviates the need for such solutions by
including StackTraceElement objects that can be obtained from a Throwable.

Throwable supports a method named getStackTrace that returns an array of
StackTraceElement. These objects provide access to the same information printed
by printStackTrace. The array returned by getStackTrace represents the call

Table 5.1 Relevant interface to Throwable

Method Description

void printStackTrace() Prints this throwable and the call stack to the standard error
stream

void printStackTrace(PrintStream s) Prints this throwable and the call stack to the specified print
stream

void printStackTrace(PrintWriter s) Prints this throwable and the call stack to the specified print
writer

StackTraceElement[] getStackTrace () Returns the call stack as an array of stack trace elements

112 CHAPTER 5

Call stack introspection
stack, with each element representing one stack frame and the first representing
the most recent method invocation.

Table 5.2 shows the primary interface to a StackTraceElement. Each StackTrace-
Element provides information on the class name, method name, and line number
for the execution point that it represents, the name of the file that contains the
source code, and an indication as to whether or not the method is native.

By creating a new Throwable, you can perform call stack introspection. Here is a
simple example. In Java, instance methods can easily obtain the name of their
class with the following line:

 this.getClass().getName();

However, trying to use this code in a static method or initializer yields a compiler
error. This error occurs because this cannot be used in a static context. It is nec-
essary to use call stack introspection to obtain the class name from a static con-
text. The following line of code accomplishes that task:

 (new Throwable()).getStackTrace()[0].getClassName();

This is just one problem solved by call stack introspection.

5.3 Logging with call stack introspection

Now let’s improve George’s logging facility by using call stack introspection. First,
we present a better interface in listing 5.2. This interface eliminates those parame-
ters that can be determined reflectively.

Table 5.2 The methods defined by StackTraceElement

Method Description

String getFileName() The name of the source file containing the execution point represented by
this stack trace element is returned.

int getLineNumber() The line number of the source line containing the execution point repre-
sented by this stack trace element is returned.

String getClassName() The fully qualified name of the class containing the execution point repre-
sented by this stack trace element is returned.

String getMethodName() The name of the method containing the execution point represented by
this stack trace element is returned.

boolean isNativeMethod() If the method containing the execution point represented by this stack
trace element is a native method, true is returned.

Logging with call stack introspection 113
public interface Logger {
 // Types for log records
 public static final int ERROR = 0;
 public static final int WARNING = 100;
 public static final int STATUS = 200;
 public static final int DEBUG = 300;
 public static final int TRACE = 400;

 void logRecord(String message, int logRecordType);

 void logProblem(Throwable problem);
}

Listing 5.3 contains an implementation of the Logger interface. The second line
of logRecord constructs a new Throwable, making its stack trace information avail-
able. Subsequent lines query the stack frame of the caller of logRecord to get the
necessary metadata.

public class LoggerImpl implements Logger {

 public void logRecord(String message, int logRecordType) {
 Throwable ex = new Throwable();
 StackTraceElement ste = ex.getStackTrace()[1];

 String callerClassName = ste.getClassName();
 String callerMethodName = ste.getMethodName();
 int callerLineNum = ste.getLineNumber();

 // write of log record goes here
 }

 public void logProblem(Throwable t) {
 // write of log record goes here
 }
}

The implementation is straightforward except for the index into the StackTrace-
Element array. Remember that the top of the stack contains the call to logRecord.
Consequently, logRecord uses the second element in the array. The change to the
logger implementation is only a few lines of code. However, the addition of intro-
spection changes its usability dramatically.

Listing 5.2 A better Logger

Listing 5.3 Partial implementation of reflective Logger

114 CHAPTER 5

Call stack introspection
5.4 Pitfalls

When an application uses call stack introspection, which stack frame to use
becomes an issue. Recall that in the previous example, the logRecord method uses
the second stack frame. This works correctly. However, imagine if the other
method in the interface is implemented as follows:

public void logProblem (Throwable problem) {
 this.logRecord(problem.toString(), ERROR);
}

Although this looks like an effective implementation, it is defective because log-
Problem adds a stack frame that is unanticipated by logRecord. Therefore, the log
entry looks like it was entered by the logProblem method in the Logger class.

This problem may be addressed in several ways according to the circumstances.
Enabling the log methods to search the entire call stack for the appropriate frame
would be the most general solution. You might think this is simple; however, it
presents several difficulties. You could search for the first frame that does not
occur in the LoggerImpl class. This search might yield another logger that is dele-
gating to the LoggerImpl. You could search for the first class that does not exist in
the logging package. This search prevents the application from providing logging
functionality in another package’s facade.

A simpler approach is to ensure that the correct stack element is captured
when a call enters the facility. This may be done as follows:

 public void logRecord(String message, int logRecordType) {
 logMessage(message,
 logRecordType,
 (new Throwable()).getStackTrace()[1]);
 }
 public void logProblem(Throwable t) {
 logMessage(t.toString(),
 ERROR,
 (new Throwable()).getStackTrace()[1]);
 }
 public void logMessage(String message,
 int logRecordType,
 StackTraceElement ste)
 {
 String callerClassName = ste.getClassName();
 String callerMethodName = ste.getMethodName();
 int callerLineNum = ste.getLineNumber();

 // write of log record goes here
 }

Class invariant checking 115
The implementations of logRecord and logProblem each pass the correct stack
trace element to logMessage, which does the actual recording of the log entry.
The logMessage method is public to allow explicit specification of the stack frame
in problematic situations. This arrangement ensures that the correct information
is entered into the log.

5.5 Class invariant checking

George has been presented with another problem. A major wildlife service wants
to track the lifecycles of animals. Life spans, diseases, and pregnancies are just
some of the conditions that the service wants to track. George is responsible for
implementing the class of time intervals used to track the start and end of these
conditions. Listing 5.4 presents George’s interface, TimeInterval, and his first
draft of an implementation.

import java.util.Date;

/**
 * Class invariant: start() <= end()
 */
interface TimeInterval {
 Date getStart();
 Date getEnd();
}

import java.util.Date;

public class TimeIntervalImpl1 implements TimeInterval {

 private final Date start;
 private final Date end;

 public TimeIntervalImpl1(Date s, Date e) {
 start = s;
 end = e;
 assert invariant() : "start>end";
 }

 public Date getStart() { return start; }

 public Date getEnd() { return end; }

 public boolean invariant() { return start.compareTo(end) <= 0; }
}

Listing 5.4 The draft implementation of TimeInterval

116 CHAPTER 5

Call stack introspection
George recognizes that to operate properly, implementations of TimeInterval are
required to have their start date on or before their end date. He dutifully records
this in the comment describing the class. This requirement for implementations
of TimeInterval is called a class invariant. An invariant is a logical condition of the
state of a program that is always true, or always true except if control is in some
particular piece of code. A class invariant is a logical condition that is true for
each instance of the class after the instance is constructed and whenever no
method of the class is executing. Note that a method is considered to be execut-
ing if it is on the call stack, even if that method has passed control by calling
another method in the application.

The class invariant for TimeInterval is established by the constructor of
TimeIntervalImpl1 and seems to be inviolate. After all, there are only accessor
methods and no methods to change the private fields. However, examining the
implementation, shows that this invariant can be violated easily from outside the
class by any caller that maintains a reference to one of the internal date objects or
any caller to one of the accessors.

The problem is that TimeIntervalImpl1 does not fully encapsulate its compo-
nents. In this respect, there are two distinct defects. First, in the constructor,
TimeIntervalImpl1 merely assigns the arguments to its private fields rather than
making defensive copies. The caller of the constructor may retain access to what
becomes the internal parts of a time interval object. Second, the accessors return
object references to the internal parts of a time interval. Again, defensive copies
should be made.

George quickly fixes the problem with TimeIntervalImpl2 shown in listing 5.5.2

TimeIntervalImpl2 makes defensive copies in both the constructor and the acces-
sors, which means that no outside object holds a reference to the parts of the time
interval. Note that in the constructor, a copy constructor is used rather than
clone, because the incoming arguments may belong to a subclass of Date that
overrides clone in an undesirable manner. TimeIntervalImpl2 ensures that its
instances are fully encapsulated and that the class invariant is inviolate.

import java.util.Date;

public class TimeIntervalImpl2 implements TimeInterval {

 private final Date start;

2 This implementation is based on one we saw in Effective Java [7], a book containing many worthwhile
lessons for Java programmers.

Listing 5.5 A fully encapsulated implementation of TimeInterval

Class invariant checking 117
 private final Date end;

 public TimeIntervalImpl2(Date s, Date e) {
 start = new Date(s.getTime());
 end = new Date(e.getTime());
 assert invariant() : "start>end";
 }

 public Date getStart() { return (Date)start.clone(); }

 public Date getEnd() { return (Date)end.clone(); }

 public boolean invariant() { return start.compareTo(end) <= 0; }
}

Writing down the invariants is an important aspect of documenting a class. Main-
tenance programmers must be informed of the quintessential properties of a
class. Classes that are not fully encapsulated need class invariant checking to pro-
tect themselves from external code that violates the invariant. A fully encapsulated
class can ensure that its class invariants hold based solely on its own code. None-
theless, checking invariants is useful for fully encapsulated classes to prevent
maintenance from inserting code that invalidate invariants.

On recognizing the importance of checking invariants, George decides to pro-
vide a facility for his team. First, he specifies an interface, shown in listing 5.6, that
all classes using his facility must implement.

public interface InvariantSupporter {
 boolean invariant();
}

George envisions writing a class InvariantChecker with a static method checkIn-
variant that calls the invariant and provides other services (for example, bypass-
ing invariant checks for customers that require higher performance). With these
services in mind, George’s facility is a better alternative than establishing a coding
standard in which the invariant method is called directly. His teammates would
write calls to InvariantChecker.checkInvariant at the beginning and end of every
method (remember all return statements count as being the end of a method).

George prototypes the facility with a checkInvariant that merely calls the
invariant method and throws IllegalStateException if the class invariant does
not hold. His first case is shown in listing 5.7. It contains a problem that demon-
strates the wisdom of the decision to write an invariant-checking facility.

Listing 5.6 The InvariantSupporter interface

118 CHAPTER 5

Call stack introspection
public class Monkey implements InvariantSupporter {

 public void hang() {
 InvariantChecker.checkInvariant(this);
 // ...
 // implementation of hang
 // ...
 InvariantChecker.checkInvariant(this);
 }

 public boolean invariant(){
 screech();
 return true;
 }

 public void screech() {
 InvariantChecker.checkInvariant(this);
 // ...
 // implementation of screech
 // ...
 InvariantChecker.checkInvariant(this);
 }
}

Monkey is an invariant supporter that exhibits one of the potential pitfalls involved
in invariant checking. Its invariant method uses another instance method of
Monkey. This causes an infinite recursion, because the invocation of screech
immediately calls InvariantChecker.checkInvariant, which calls screech, and so
on. Clearly, this is unacceptable.

We could adopt a programming convention that invariants may not call meth-
ods on the target object. But such programming conventions are easily forgotten
or misunderstood. It is better to avoid programming conventions in favor of more
flexible programs. This is accomplished by using call stack introspection to check
for the infinite recursion and break it.

Listing 5.8 show the actual implementation of checkInvariant. This implemen-
tation looks back in the call stack to see if InvariantChecker.checkInvariant is
present. If so, there is an infinite recursion that must be broken by immediately
returning. If not, invariant may be called safely.

Listing 5.7 The Monkey class

Class invariant checking 119
public class InvariantChecker {

 public static void checkInvariant(InvariantSupporter obj) {
 StackTraceElement[] ste = (new Throwable()).getStackTrace();
 for (int i = 1; i < ste.length; i++)
 if (ste[i].getClassName().equals("InvariantChecker")
 && ste[i].getMethodName().equals("checkInvariant"))
 return;
 if (!obj.invariant())
 throw new IllegalStateException("invariant failure");
 }
}

The expense of call stack introspection can be avoided with a simpler check. List-
ing 5.9 shows a different invariant checker that avoids the call stack introspection
with a test of a static boolean field. This is accomplished at the expense of funnel-
ing all of the class invariant checking in the application into one synchronized
static method.

public class SynchronizedInvariantChecker {

 private static boolean invariantCheckInProgress = false;

 synchronized public static void checkInvariant(InvariantSupporter obj)
 {
 if (invariantCheckInProgress)
 return;
 invariantCheckInProgress = true;
 if (!obj.invariant())
 throw new IllegalStateException("invariant failure");
 invariantCheckInProgress = false;
 }
}

If the application is not multithreaded, the synchronized modifier may be
removed to get a better performing solution. For multithreaded applications, it is
not clear which choice for invariant checking (listing 5.8 or listing 5.9) is better.
To make the design choice even more complex, the near future will bring us per-
sonal computers with multiple processors. Consequently, a faster test at the
expense of greater synchronization may not be a good trade-off.

Listing 5.8 The InvariantChecker class

Listing 5.9 The SynchronizedInvariantChecker class

120 CHAPTER 5

Call stack introspection
For Java reflective programming, the complexity of multithreading usually has
no impact because of the design of the Java Reflection API. This is not true for
reflection in general. In languages that have the capability to make dynamic
changes to the running program, multithreading can be more problematic. Java
reflective programs may only introspect (in particular, a class object may not be
changed dynamically and an object may not change the class to which it belongs).
Certainly, call stack introspection is one area where the multithreading issues
must be addressed. We will see another area in the next chapter (section 6.4).

5.6 Summary

Call stack introspection allows a program to obtain information about its static
context including class name, method name, and program line number. It also
makes dynamic context available such as the sequence of method calls leading to
the current one. This information is accessed by examining metaobjects that rep-
resent the program’s call stack.

Java’s call stack introspection facility is somewhat improvised in JDK 1.4.
Throwable objects are populated with programmatic representation of the call
stack when constructed. This representation can be introspected over, but it can-
not be changed.

Though improvised, this facility is still useful. Logging components and similar
applications can use call stack introspection to obtain context information for
recording. Without this ability, context information must be provided by hand,
which becomes difficult to maintain.

Using the class loader
In this chapter

■ What the class loader does
■ How to override the class loader and why
■ Examples of specialized class loaders
121

122 CHAPTER 6

Using the class loader
Chapter 3 introduced dynamic loading, the mechanism that allows you to bring
new code into a running system. The examples in chapter 3 use Class.forName
to load new classes. Each class in a Java application is loaded by a class loader, an
object that constructs a class object from Java bytecodes. The class
java.lang.ClassLoader is an abstract base class for all Java class loaders. There is
a default system class loader, which loads class files from the local file system
only. However, you can create subclasses of ClassLoader that can be very useful.

In this chapter, you will learn that Java provides the capability to define your
own class loader and thus intercede in the class-loading process. During that
intercession, some metadata is available that is not available from any of the Java
metaobjects. With your own specialized class loader, you can record that metadata
and use it later. Class loaders also define namespaces, which provides an addi-
tional degree of access control. A class loader can vary the location and format of
the class files it loads. These considerations make the Java class loader a powerful
tool, but also a complicated one. This chapter concentrates on explaining the Java
class loader and exposing its practical uses.

Although you may be a bit surprised to find a chapter on class loading in a
book about reflection, subclassing the class loader is a form of reflection. The
ability to intercede in the loading process unequivocally implies that the class
loader is a reflective facility. As this chapter unfolds, the value of specialized
classes to the programmer of reflective applications will become clear.

6.1 George’s test problem

All software development teams, including George’s, must plan for and imple-
ment regression testing. According to The Hacker’s Dictionary [83], software rot is:

A hypothetical disease the existence of which has been deduced from the obser-
vation that unused programs and features will stop working after sufficient time
even if nothing has changed.

Regression testing is intended to stop software rot by exercising parts of an appli-
cation and validating the results against expected behavior.

Good test practice mandates that you should be able to automatically run the
full suite of regression tests (for a unit, component, or product). Rather than cre-
ating a shell script for the suite that runs test case after test case, there are consid-
erable advantages to writing a Java program to run the entire suite. For example,
you can more easily test whether the correct exceptions are raised when the test
program is written in Java. Although this solution is attractive, there is a subtle

Essentials of ClassLoader 123
problem that accompanies using a Java program run the test suite: after running
the first test case, all the static fields in the loaded classes must be reinitialized
before running the next test case.

One day, the test manager for George’s test team comes to him with a request.
For each class that has static fields, he wants George to write a static method that
reinitializes their values. The test manager has assumed that this is the best way to
be certain that his team’s test cases begin execution with the static fields having
the correct values.

Upon considering the test manager’s request, George realizes that the task will
be tedious and involve a great deal of upkeep. He also realizes that although a
static method has been requested, the true goal is to reinitialize the static fields.
George decides to employ his knowledge of reflection to create a better solution.

George knows that static fields are initialized each time a class is loaded.
Reloading the classes solves the problem without writing and maintaining addi-
tional static initializer methods. He therefore pursues a solution that involves spe-
cializing ClassLoader. Let’s examine ClassLoader to see how George can solve
his problem.

6.2 Essentials of ClassLoader

At startup, the Java virtual machine loads programs using the system class loader.
The system class loader obtains classes in a platform-dependent manner from the
local file system. Typically, the CLASSPATH environment variable directs the system
class loader’s search for .class files.

Our eventual goal in this chapter is to create specialized class loaders that
accomplish useful tasks. However, before specializing class loaders, it is important
to understand certain fundamentals. Let’s examine how specialized class loaders
fit in with the rest of the system.

6.2.1 Understanding the delegation model

Specialized class loaders usually work cooperatively with existing class loaders.
Before attempting to load a class, a specialized class loader usually delegates to
another loader called its parent class loader. The ultimate parent in this loading
chain of responsibility is almost always the system class loader.

Figure 6.1 depicts the structure of the delegation model. The class of the sys-
tem class loader is represented by an unnamed box because the Java documenta-
tion does not specify a name for this class. Despite the drawing, it need not be a
direct subclass of ClassLoader.

124 CHAPTER 6

Using the class loader
ClassLoader is the abstract base class for all class loader objects. It offers two
constructors:

protected ClassLoader()
protected ClassLoader(ClassLoader parent)

Both constructors support the delegation model. The first constructor sets the
parent class loader to the system class loader. The second constructor directly sup-
ports the delegation model with an extra parameter. The parameter to the second
constructor can be null, in which case the constructed loader uses the system class
loader as its parent.

ClassLoader introduces methods for supporting class loading and the delega-
tion model. For example, getParent returns the parent loader for a class loader.
The system class loader may be retrieved using the static method getSystemClass-
Loader. Table 6.1 summarizes the important methods of ClassLoader.

 The public method loadClass is where the loading process starts. The JVM
loads all classes by making a call to loadClass. The default implementation of
loadClass performs the following actions:

AnotherClassLoaderAClassLoader

i
n
s
t
a
n
c
e
O
f

i
n
s
t
a
n
c
e
O
f

i
n
s
t
a
n
c
e
O
f

parent parent system class loader:AnotherClassLoader:AClassLoader

ClassLoader

Figure 6.1 UML diagram illustrating the ClassLoader delegation model. An instance of a specialized
class loader is created with a constructor that allows the specification of a parent class loader. The name
of the class of the system class loader is platform-dependent and, consequently, that box is left blank.

Essentials of ClassLoader 125
1 Calls findLoadedClass to check if the class has been loaded already.
ClassLoader tracks classes that it has already loaded. Subclasses inherit
this behavior.

2 If step 1 does not find a loaded class, calls loadClass on the parent class
loader. In this way, the default implementation of loadClass supports the
delegation model.

3 If the previous two steps do not produce a class, calls findClass to find the
class, read its bytecodes, and create the class object using defineClass.

4 If the above steps fail to produce a class, throws a ClassNotFoundException.

Most class objects are created by executing defineClass on a bytecode array. Even
Proxy classes are created this way. Figure 6.2 illustrates the arrangement of calls in
the class loader delegation model.

The class loader that produces a class using defineClass is called the class’s
defining loader. A reference to the defining class loader can be obtained with the
getClassLoader method defined by Class. Any class loader that participates in the
loadClass process for a class is an initiating loader for that class. Because of the
delegation model, there can be one or more initiating loaders.

Class objects for array classes are created automatically as required by the Java
virtual machine (that is, array class objects are not created by class loaders). The

Table 6.1 Methods of ClassLoader essential for writing your own class loader

Method Description

ClassLoader getParent() Final method that returns the parent class loader for the target
class loader.

ClassLoader getSystemClassLoader() Static method for accessing the system class loader.

Class findClass(String name) Protected method that obtains the class object for the speci-
fied class.

Class loadClass(String name) The public method for loading a class with a specified name—
all class loading starts with a call to this method.

Class defineClass (String name,
 byte[] b,
 int off,
 int len)

Protected final method that converts an array of bytecodes
(having the format of a valid class file as defined by the Java
Virtual Machine Specification [60]) into an instance of Class.
Note that a SecurityException is thrown if the name
begins with "java."

Class findLoadedClass(String name) Protected final method that finds the class with the given name
if it had been previously loaded through this class loader.

126 CHAPTER 6

Using the class loader
class loader for an array class, as returned by getClassLoader, is the same as the
defining class loader for its element type. If the element type is a primitive type,
then the array class object has no class loader and getClassLoader returns null.

Java programmers are strongly encouraged to override findClass rather than
loadClass, because the implementation of loadClass defined by ClassLoader
supports the delegation model. It is possible to override loadClass, but this is
bad form.

childClassLoader parentClassLoaderparent parent

loadClass

loadClass

loadClass

findLoadedClass

findLoadedClass

ClassNotFoundException

findClass

ClassNotFoundException

findClass

loaded
class object

Figure 6.2 Sequence diagram that illustrates the ClassLoader delegation model. All loading begins
with a call to loadClass. If the class has not been loaded, the loadClass call is delegated to the par-
ent. If the parent does not load the class (as shown in the diagram), findClass is called to load the
class. Note that loadClass implements this sequence diagram.

Essentials of ClassLoader 127
6.2.2 Programming a simple class loader

Now that you understand the basics of the delegation model, let’s examine a sim-
ple example of a specialized class loader. If its parent loader cannot find the class,
our simple loader searches an auxiliary path to find the class file. In this way, it
enables runtime extension of the class path.

This class loader, SimpleClassLoader, is implemented in listing 6.1. The auxil-
iary path is provided to the constructor and is stored in the string array dirs.
Notice that findClass is overridden rather than loadClass. This override reads
the .class file with the protected method getClassData, which simply appends to
the directory the name of the class being sought.

package simpleclassloader;
import java.io.*;

public class SimpleClassLoader extends ClassLoader {

 String[] dirs;

 public SimpleClassLoader(String path) {
 dirs = path.split(System.getProperty("path.separator"));
 }

 public SimpleClassLoader(String path, ClassLoader parent) {
 super(parent);
 dirs = path.split(System.getProperty("path.separator"));
 }

 public void extendClasspath(String path) {
 String[] exDirs = path.split(System.getProperty("path.separator"));
 String[] newDirs = new String[dirs.length + exDirs.length];
 System.arraycopy(dirs, 0, newDirs, 0, dirs.length);
 System.arraycopy(exDirs, 0, newDirs, dirs.length, exDirs.length);
 dirs = newDirs;
 }

 public synchronized Class findClass(String name)
 throws ClassNotFoundException
 {
 for (int i = 0; i < dirs.length; i++) {
 byte[] buf = getClassData(dirs[i], name);
 if (buf != null)
 return defineClass(name, buf, 0, buf.length);
 }
 throw new ClassNotFoundException();
 }

 protected byte[] getClassData(String directory, String name){
 String classFile = directory + "/" + name.replace('.','/') + ".class";

Listing 6.1 SimpleClassLoader

B

Constructors
correspond to those

of ClassLoader

CMethod allows dynamic
addition of new paths

DdefineClass is called
to create the class object

128 CHAPTER 6

Using the class loader
 int classSize
 = (new Long((new File(classFile)).length())).intValue();
 byte[] buf = new byte[classSize];
 try {
 FileInputStream filein = new FileInputStream(classFile);
 classSize = filein.read (buf);
 filein.close();
 } catch(FileNotFoundException e){
 return null;
 } catch(IOException e){
 return null;
 }
 return buf;
 }
}

Here are some points to note about SimpleClassLoader:

B The two constructors correspond to those of ClassLoader.

C The extendClasspath method allows the dynamic addition of new paths.

D When findClass has the desired bytecode array, defineClass is called to create
the class object.

SimpleClassLoader is actually quite a useful alternative to the use of Class.for-
Name. The system class loader caches the class path at startup, so you cannot
change the behavior of the system class loader by performing a System.setProp-
erty in java.class.path at runtime (see [13]). This means that runtime changes
to the class path have no effect on the system class loader. Consequently, Simple-
ClassLoader is handy for loading from directories known only after the program
is loaded.

6.2.3 Reinitializing static fields: a solution

George now has the tools to solve his problem: the use of distinct class loaders and
of reflective method invocation. He writes the very simple program in listing 6.2
to present to his project’s test team. This program loads each test case in a test
suite using its own SimpleClassLoader.

import java.lang.reflect.*;
import simpleclassloader.*;
public class SimpleSuiteTestProgram {

Listing 6.2 SimpleSuiteTestProgram

Essentials of ClassLoader 129
 static Class[] formals = { String[].class };
 static Object[] actuals = { new String[]{ "" } };

 public static void main(String[] args) {
 try {
 for (int i = 0;; i++) {
 ClassLoader aClassLoader
 = new SimpleClassLoader("testcases");
 Class c = aClassLoader.loadClass("TestCase" + i);
 Method m = null;
 try {
 m = c.getMethod("main", formals);
 } catch(NoSuchMethodException e){
 System.out.println("TestCase" + i
 + ": no main in test case");
 break;
 }
 try {
 m.invoke(null, actuals);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 } catch(ClassNotFoundException e){ } // testing completed
 }
}

The program SimpleSuiteTestProgram expects the test cases to be programs in
the testcases directory. The program also expects test cases named TestCase0,
TestCase1, and so on. No gaps are allowed in the numbering.

Each test case is loaded by a new SimpleClassLoader from listing 6.1. After
loading a test case with its own loader, the program executes it by finding its
static main method. This is all that is necessary to install the new loader for the
test case, which subsequently loads all of the classes that the test case references.
Therefore, the loader for the test case has its own copy of each class, and the stat-
ics all get reinitialized.

The simple program to run a test suite in listing 6.2 is far from a production-
quality tool, but it does illustrate how such a tool should work. There are publicly
available tools, such as JUnit [6], that are much more capable than this simple
program. To be sure, the ability to specify the class loader is a consideration in
choosing such a tool because of the issue of reinitializing static fields. Let’s take a
closer look at why George’s solution works.

130 CHAPTER 6

Using the class loader
6.3 Multiple namespaces

Although a class in the Java language is identified by its fully qualified name, a
class object in the virtual machine is actually identified by both its fully qualified
name and defining loader. This means that a class loader defines a runtime
namespace, which implies the following:

■ Your application may use multiple class loaders to load multiple classes that
have the same name.

■ Two class objects that have different defining loaders are different types
even if they are generated from the same class file.

In addition, when a class is loaded by executing defineClass, all classes that it ref-
erences are also loaded by its defining loader. That is, the JVM loads each refer-
enced class using loadClass on the referencer’s defining loader. Note that a call to
Class.forName uses the defining loader for the calling object to perform the load.

Let’s demonstrate this concretely with the example in listing 6.3. Two class
loaders each load the same class, resulting in two distinct class objects. The class,
ConstructOnce, is written so that only the first call to its constructor succeeds. Sub-
sequent calls to the constructor result in an IllegalStateException. Successful
execution of the newInstance call on the class loaded by second class loader con-
firms that the two class objects are distinct.

import simpleclassloader.*;
public class SimpleClassLoaderTest {

 public static void main(String[] args)
 throws ClassNotFoundException,
 InstantiationException,
 IllegalAccessException
 {
 SimpleClassLoader firstClassLoader
 = new SimpleClassLoader("testclasses");
 Class c1 = firstClassLoader.loadClass("ConstructOnce");

 SimpleClassLoader secondClassLoader
 = new SimpleClassLoader("testclasses");
 Class c2 = secondClassLoader.loadClass("ConstructOnce");

 Object x = c1.newInstance();

 try {
 Object y = c1.newInstance();
 throw new RuntimeException("Test fails");

Listing 6.3 SimpleClassLoaderTest

Multiple namespaces 131
 } catch(IllegalStateException e) { }

 Object z = c2.newInstance();
 }
}

The test program in listing 6.3 loads the class ConstructOnce in listing 6.4 twice.
The test program uses the SimpleClassLoader (listing 6.1) to load ConstructOnce
from the directory testclasses. The constructor of ConstructOnce is invoked by
the call to newInstance. The constructor fails if it is run more than once, as is illus-
trated by the try statement in the middle of the main method. The test program
successfully completes the try block, because the second newInstance for the class
object loaded by c1 throws an IllegalStateException.

Now for the main point of this example. When another class loader (c2) is used
to load ConstructOnce, a second class object for ConstructOnce is created that may
construct one instance. This shows that the class loaders created distinct class
objects and, consequently, separate namespaces.

public class ConstructOnce {
 static private boolean runOnce = false;
 public ConstructOnce() {
 if (runOnce)
 throw new IllegalStateException("run twice");
 runOnce = true;
 }
}

Note that for the test program in listing 6.3 to work, there must be no references
to ConstructOnce. The constructors are called using newInstance rather than writ-
ing new ConstructOnce(). A reference to ConstructOnce would cause the Con-
structOnce class file to be loaded by the system class loader, the defining loader of
the test program. Such a reference in SimpleClassLoaderTest causes subsequent
references to be successfully handled by findLoadedClass, which implies that the
specialized class loader never executes defineClass.

Similarly, ConstructOnce should not be in the class path of the program when
run. If it appears in the class path as well as the SimpleClassLoader path, it is visi-
ble to the system class loader. This visibility causes the system class loader to load
it during the parent call to loadClass, and the SimpleClassLoader never gets to
call defineClass.

Listing 6.4 ConstructOnce

132 CHAPTER 6

Using the class loader
6.4 Dynamic class replacement

Some applications are intended for continuous operation. Taking the application
down to change an algorithm may have serious consequences that you need to
avoid. Let’s stress our understanding of ClassLoader by attacking this challenging
problem. A class has three states that may be termed as follows:

■ Unloaded—An unloaded class exists only as a class file.

■ Loaded—A loaded class is one for which a class object has been created, but
the class object does not yet have either instances, loaded subclasses, or run-
ning methods.

■ Active—An active class has either instances or loaded subclasses or running
methods.

Replacing the implementation of an active class is a very challenging problem.
This is an on-going area of Java research where complete solutions involve modifi-
cation to either the compiler, the virtual machine, or both (for example, see
[64]). Despite the difficulty of this problem, a Java program can be crafted so that
the implementation of an active class may be replaced under reasonable circum-
stances. The following example demonstrates how to write a program so that you
can replace the implementation of a loaded class that, for the sake of simplicity,
may have instances but no loaded subclasses.

6.4.1 Designing for replacement

Replacement of active classes has two subrequirements. First, you must maintain
references to all of its instances. Second, you must have a method for migrating
instances from one implementation to another. During replacement, each
instance is migrated and replaced. Figure 6.3 presents a design that enables us to
replace the implementation of an active class. The design has the following nota-
ble features:

■ AbstractProduct contains the code that is responsible for keeping track of
the instances of the class.

■ The replacement class resides in a different package than the original; this
eliminates the need to change the name of the class. Each package is
loaded with a different class loader.

■ Each old instance needs to be mapped into an instance of the replace-
ment class. This design specifies that the replacement class has a static
method named evolve that produces a replacement object from an

Dynamic class replacement 133
original object. This isolates the details of evolution in the replacement
class where they should be and serves as another example of the applica-
tion of the Strategy pattern.

■ The client code must not hold direct references to instances of the active
class. Instead, indirect references are created using Proxy, as you learned to
do in chapter 4. For this reason, Product is introduced as an interface.

The design in figure 6.3 uses the newInstance method in AbstractProduct to cre-
ate instances of the implementation of Product, but the caller receives a proxy to

$Proxy0

«interface»
Product

AbstractProduct

-implClass:Class
-cl:ClassLoader
-instances: ArrayList
-directory: String

+reload(dir:String)
+newInstance():Product

Original Replacement

ProductImpl ProductImpl

evolve(Object):Product

target

creates

«interface»
InvocationHandler

ProductIH

Client

Figure 6.3 Design for dynamically replacing a class. The product is separated from its clients by a Java
proxy. The client interface is implemented by the proxy class and an abstract class, which hides the
class of the current implementation. Distinct implementations of the product can be loaded by different
class loaders.

134 CHAPTER 6

Using the class loader
that instance. In addition, the proxy is stored in a static list of AbstractProduct
named instances, which is used to locate each instance of the implementation of
Product. The method reload is used initially to load the implementation and sub-
sequently to change the implementation.

This design is another application of the Abstract Factory pattern. However, it
is different from the ones described earlier in this book. In those earlier exam-
ples, the product implementation classes have distinct names. Here, because of
the use of different class loaders, the product implementation classes have the
same names. In some contexts, this can be an important advantage.

6.4.2 Implementing replacement

Listings 6.5 and 6.6 show the code for AbstractProduct and ProductIH. First, let’s
examine AbstractProduct in listing 6.5, which defines two static methods, new-
Instance and reload.

1 The newInstance method uses the class object of the current implementa-
tion (stored in implClass) to construct a new instance of the product,
which is hidden behind a newly created proxy. Reloading the class involves
evolving the instances. Consequently, all of the extant instances must be
tracked, which is done by adding a weak reference to the proxy to a list
named instances.

2 The reload method loads the new implementation and evolves each exist-
ing instance of the old implementation.

abstract public class AbstractProduct implements Product {

 static private ClassLoader cl = null;
 static private String directory = null;
 static private Class implClass;
 static private List instances = new ArrayList();

 public static Product newInstance()
 throws InstantiationException, IllegalAccessException
 {
 AbstractProduct obj = (AbstractProduct)implClass.newInstance();
 Product anAProxy = (Product)ProductIH.newInstance(obj);
 instances.add(new WeakReference(anAProxy));
 return anAProxy;
 }

 public static void reload(String dir)
 throws ClassNotFoundException,

Listing 6.5 AbstractProduct for dynamic class replacement

Dynamic class replacement 135
 InstantiationException,
 IllegalAccessException,
 NoSuchMethodException,
 InvocationTargetException
 {
 cl = new SimpleClassLoader(dir);
 implClass = cl.loadClass("ProductImpl");

 if (directory == null) {
 directory = dir;
 return;
 }

 directory = dir;
 List newInstances = new ArrayList();

 Method evolve
 = implClass.getDeclaredMethod("evolve",
 new Class[]{Object.class});

 for (int i = 0; i < instances.size(); i++) {
 Proxy x =(Proxy)((WeakReference)instances.get(i)).get();
 if (x != null) {
 ProductIH aih = (ProductIH)Proxy.getInvocationHandler(x);
 Product oldObject = aih.getTarget();
 Product replacement
 = (Product)evolve.invoke(null,
 new Object[]{oldObject});
 aih.setTarget(replacement);
 newInstances.add(new WeakReference(x));
 }
 }
 instances = newInstances;
 }
}

Let’s look at the reload method in detail:

B Constructs a new class loader and loads the new implementation.

C If the directory instance variable is null, loads the first implementation. That
is, reload is also used for the first load.

D For reload calls after the first, evolves each instance of the product. This is
done by iterating through the instances list and invoking evolve. The evolve
method returns a new object that is suitable for the new implementation. The new
object is stored as the target of the proxy instance, which is known to the clients.

E The list of instances is replaced (this is further explained later).

B Constructs new class
loader and loads
implementation

C If first
implementation,
return

DEvolves each
instance of

the product

E Replaces list of
instances

136 CHAPTER 6

Using the class loader
AbstractProduct has an additional nuance to it. Its instances list does not con-
tain direct references to the proxies. If it did, the garbage collector would never
free an instance of Product when the client finishes with it.

Instead, weak references are stored in the instances list. WeakReference is part
of java.lang.ref. Weak references are constructed with a reference to another
object, its referent. The referent may be retrieved with a get method. Weak refer-
ences do not prevent their referents from being garbage collected. After garbage
collection of the referent, the get method on a weak reference returns null.
When a class is reloaded, a new instances list is created with only weak references
with non-null referents.1

This design also contains an application of the Proxy pattern (that is, two dis-
tinct objects are required). If java.lang.reflect.Proxy were being used to imple-
ment some other pattern, AbstractProduct might also implement the
InvocationHandler interface. However, in this example, the invocation handler
must be retargeted to different implementations of Product, which implies that
the invocation handler must be distinct from the target.

Listing 6.6 presents the code for the invocation handler, ProductIH. This invo-
cation handler is straightforward in that its invoke method merely delegates the
call to the target. It has a setTarget method, which permits the product object to
evolve after its class is replaced. The invocation handler adds value because it
hides the real product, making the replacement transparent to clients that use
the product.

import java.lang.reflect.*;

class ProductIH implements InvocationHandler {

 private Product target = null;
 static private Class[] productAInterfaces = { Product.class };

 public static Product newInstance(AbstractProduct obj) {
 return (Product)
 Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 productAInterfaces,
 new ProductIH(obj));
 }

 private ProductIH(AbstractProduct obj) { target = obj; }

1 This simple scheme for handling weak references with null referents may not be the best for all
applications, because the data structure holding the weak references may grow large before being
compacted.

Listing 6.6 ProductIH, the invocation handler for proxies for Product

Dynamic class replacement 137
 public void setTarget(Product x){ target = x; }
 public Product getTarget(){ return target; }

 public Object invoke(Object t, Method m, Object[] args)
 throws Throwable
 {
 Object result = null;
 try {
 result = m.invoke(target, args);
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
 return result;
 }
}

There are two questions that need to be addressed:

1 The replacement of one implementation of Product with another could be
accomplished with implementation classes that have different class names;
why go to the bother of having packages to allow the names of the imple-
mentation classes to be the same?

2 The packages provide a compile-time namespace; why is it necessary to
have distinct class loaders for each package?

Typically, we would like to replace a component rather than a single class. In this
case, changing all the names of the classes in the component and the internal ref-
erences to those classes is a tedious and error-prone process. It is best not to make
all of those changes.

Now that we’ve answered the first questioned, the answer to the second ques-
tion is apparent. If both the component and its replacement have a large number
of common names, the use of distinct class loaders ensures that no reference to
the original component can leak into the replacement.

6.4.3 Simplifying assumptions

Dynamic class replacement is a good example with which to end this chapter
because of the number of concepts that are covered. These concepts include
Proxy, the Proxy pattern, extent management (tracking the instances of a class),
and the simple class loader. However, we’ve made a number of simplifying
assumptions. Let us discuss them:

138 CHAPTER 6

Using the class loader
■ The original class (the one being replaced) is assumed to have no loaded
subclasses. Requiring it to be final is the easiest way to deal with this assump-
tion. Barring this, subclasses of the original would have to be replaced, too.
This leads to the problem of finding those subclasses, which is extrinsic to
the Java reflection API. This subproblem may be solved with a specialized
class loader that tracks the inheritance hierarchy of the classes it loads, an
exercise we leave to you.

■ The use of the proxy is not transparent to reflective code. In our example,
three classes, Product, AbstractProduct, and ProductImpl, are used to
implement the concept of a dynamically replaceable Product. Reflective
code may not react as intended to the proxy-target combination. In addi-
tion, if an application does manage to obtain a reference to a nonproxied
product, after class replacement, that reference becomes stale.

■ The example assumes a single-threaded client. Consequently, when the cli-
ent is reloading the active class, no method of the active class is running. A
multithreaded client is much more problematic, depending on the nature
of the invariants. If there are only class invariants involving Product, then
by using a synchronized proxy (like the one programmed in section 4.6.2),
you can have the reload method acquire the lock for each proxy before
evolving the target object. Stronger invariants require more complex lock-
ing schemes.

■ Additional capability comes with a cost. The use of the proxy to break the
tight coupling between the client and the instances of Product has two per-
formance impacts. First, the construction costs are higher because instances
of Proxy must be constructed as well as instances of ProductImpl. Second,
each method call to Product is implemented as two method calls, one to the
proxy and one from the proxy to forward the call. Chapter 9 provides a
quantitative discussion of these performance issues.

Despite these limitations, the ability to replace an active class can be great boon to
software distribution and management.

6.5 Additional considerations

When pondering whether or not to write a specialized class loader, in addition to
the issues already discussed in this chapter, there are a number of other
considerations:

Additional considerations 139
6.5.1 Security

Security in Java has four pillars:

■ The Java language and the Java Virtual Machine

■ The bytecode verifier

■ The security manager

■ The class loader architecture

The Java security model (see Inside Java 2 Platform Security [40] for a detailed
description) is designed to control the execution of untrusted code. The effective-
ness of Java security is evident from the innumerable times applets are down-
loaded with a web browser. This security is all for nought if you load classes from
an untrustworthy source. SimpleClassLoader is a good base example for this chap-
ter because of the separation of class loading from security.

If you are designing a specialized class loader that might load untrusted code,
that design must use the Java security model to control the permissions of
untrusted code. In particular, consider subclassing java.security.SecureClass-
Loader, which is a concrete subclass of ClassLoader with protected constructors.
SecureClassLoader supports the security model by ensuring that any call to its
constructors is permitted by the supervising security manager.

Before leaving the topic of security, there is an important heuristic to convey. If
your reflective code does not appear to be working according to the Reflection
API specification, especially by throwing a SecurityException, check for a special-
ized security manager using System.getSecurityManager. Specialized security
managers can bar your reflective program from performing its task, for example,
when attempting to use setAccessible to provide access to private members of a
class. This heuristic will help you avoid some vexing problems when debugging
reflective code.

6.5.2 Don’t reinvent the wheel

Although this chapter is a tutorial on how to write a specialized class loader, you
should avoid doing this if you can. The JDK contains a usable concrete class
loader, java.net.URLClassLoader, which is a subclass of SecureClassLoader. As its
name implies, URLClassLoader permits you to specify a URL from which a class can
be loaded.

Because a URL can specify a directory in the local file system, URLClassLoader
subsumes the functionality of SimpleClassLoader. Also, URLClassLoader permits
the use of a URLStreamHandler to control the protocol for obtaining class files.

140 CHAPTER 6

Using the class loader
This capability allows the loading of class files by means other than local file
access, such as FTP, HTTP, or gopher. Before designing a specialized class
loader, you should consider whether one of these two can do the job or serve as
a base class.

6.5.3 Modifying bytecode in a class loader

Between the reading of the bytecodes and the call to defineClass, the bytecodes
may be changed. You might wish to change the bytecodes of a class to superim-
pose a property on the class, similar to what was done with proxies in chapter 4.
(Three good papers on this topic are [16], [48], and [52].)

To assist in modifying bytecodes, there is the Jikes toolkit available from IBM
[47]. Doing this, of course, requires that you master the Java Virtual Machine
specification [60]. A higher-level approach is taken by Javassist (from the Tokyo
Institute of Technology [85]) where the bytecode array is converted into a set of
Java objects that can be manipulated and then converted back to a bytecode array
for defineClass. The next two chapters will show how to accomplish similar feats
through the use of Java reflection and code generation.

6.5.4 When not to invent a specialized class loader

In addition to not duplicating existing class loaders, you should not invent a class
loader for reasons that have been overtaken by the evolution of Java technology.
The literature about Java is full of such examples of specialized class loaders. Here
are a few examples:

■ Compression—When secondary storage is an issue, class files can be com-
pressed for shipment and decompressed by the class loader.

Competition: Java has been extended to allow compressed JAR files. A
decompressing class loader may offer a finer grained solution, but it may
not be worth the development overhead to obtain. In addition, in the
case of bulk loading, it may be less efficient than the JAR solution.

■ Security—When security is an issue, a class loader may examine class files to
ensure that they contain a proper digital signature.

Competition: Signed applets and other prepackaged methods of perform-
ing this task have become more common.

■ Self-extracting programs—If you store the class files of an application as an
array of byte arrays, then you can run the application with a special class
loader without installing it first.

Additional considerations 141
Competition: A JAR file can be considered an entire application or library
in one file. This file has the same portability benefits as the one men-
tioned previously.

■ Encryption—If you ship encrypted class files so that they cannot be read by a
decompiler, the secure place for the decryption is in the class loader.

Problem: The decrypting class loader must be shipped unencrypted.
Therefore, it can be decompiled and used to defeat the encryption.
Another way to circumvent this scheme is claimed in Cracking Java Byte-
Code Encryption [78].

6.5.5 Additional examples

Despite these examples, there are still many reasons to create a specialized class
loader. For example, one of this book’s authors worked on a team that developed
a virtual file system inside a database for rapid deployment of data files to all sys-
tem components connected to that database. It was a natural extension to put
class files into that virtual file system and allow dynamic patching and extension to
all connected system components. To do so, the team implemented a class loader
that read from the database file system with SQL and JDBC.

Often, it is useful to know which classes have been loaded into the system and
when they were loaded. However, this is beyond the metadata available from the
Java Reflection API. This class object loading and timing information is available
during the class-loading process, so it can be stored by a specialized class loader,
thereby making it available. Java class loading is lazy, that is, a class is loaded when
it is needed to resolve a link.

Knowing when a class is loaded may be the key to solving some performance
problems. Consider the situation where a user of a graphical user interface (GUI)
waits for a while and then starts a process. The classes for the process’s objects may
not have been loaded at the time when the user issued the command. If this is the
case, the JVM must load the classes during the time when the user starts the pro-
cess, slowing down the responsiveness of the command the first time it is issued.

Such a problem may be solved by preloading particular classes into an applica-
tion. If those classes are known individually, they can be loaded when the pro-
gram starts using forName. However, this set may change frequently or not all
classes may be known at compile time. Writing a specialized class loader for pre-
loading allows preloading of entire JAR files or directories, as well as other custom
preloading tasks.

142 CHAPTER 6

Using the class loader
6.5.6 Endorsed Standards Override

An endorsed standard is an API defined through some standards process other
than the Java Community Process. For example, org.omg.CORBA is such a package.
An endorsed standard may be revised between releases of the Java 2 Platform.
Revisions to endorsed standards are placed in JAR files in the lib\endorsed direc-
tory under the home directory for the Java installation. Depending on your appli-
cation, your specialized loader may need to be cognizant of this convention in
determining the proper class file to load. More information on this topic can be
found at java.sun.com/j2se/1.4.2/docs/guide/standards/index.html.

6.6 Summary

A specialized class loader gives an application dynamic control over its classes. In
particular,

■ Which class file gets loaded and used

■ Where to search for a class file

■ What protocols to use when finding a class file

■ When a class file gets loaded (if it is before the first use)

We have concentrated on the first two bullets in this chapter. In addition, a class
loader establishes a namespace for the classes that it loads. George used the
namespaces defined by class loaders to isolate each test case and force the initial-
ization of static fields. Using a new class loader for each test case turned a difficult
problem into an easy one.

ClassLoader is considered a reflective facility, because the ability to create a
class loader is a form of intercession. When a class is loaded by a specialized
class loader, it also loads (and intercedes) in the loading of all referenced
classes. This kind of intercession permits a large increase in application flexibil-
ity, which ranges from deciding what code is used to implement a class to
replacing that code even when the class is active. This degree of flexibility is not
achieved with ClassLoader alone; it must be achieved in concert with the basic
reflective features of Java. For example, when replacing an active class
(section 6.4), no reference to the implementation class can be present in the cli-
ent code. Successfully achieving this requires the dynamic proxy and dynamic
invocation provided by Method.

Reflective code generation
Reflective code generation

In this chapter

■ Why generating code with reflection
is useful and easy to do

■ A framework that makes code
generation easy

■ Examples of useful code generators
143

144 CHAPTER 7

Reflective code generation
This chapter and the following chapter deal with the topic of reflective code gen-
eration. There are two reasons for taking up this topic:

■ Code generation is the all-purpose workaround for the limitations of Java
reflection.

■ Code generation provides many good examples of the use of the reflection
API.

The early chapters show that reflection in Java is basically limited to introspection
and does not reach the full vision of reflective capabilities despite the usefulness
of Proxy. This full vision requires the ability to change the behavior of a program.
We can transcend these limitations by generating code. If an introspective pro-
gram can generate code, compile that code, load that code, and then execute it,
then behavior changing capabilities can be simulated.

Our presentation of code generation is accomplished with a framework for
writing class-to-class transformations.1 A class-to-class transformation takes a class
as an input and generates another class as an output. This requires considerable
use of introspective capabilities to examine the class object. This kind of code gen-
eration is different from some others you may have seen in that it is easier (for
example, introspection obviates the need for a Java parser) and dynamic (gener-
ated classes can be loaded into a running program with forName or a specialized
class loader).

To better understand why class-to-class transformations are valuable, consider
the following linguistic interpretation of the evolution of computer program-
ming. In the 1950s and 1960s, programming was about commanding the com-
puter—verbs. In the 1970s, this approach proved deficient. A new paradigm arose
in which the specification of abstract data types and then classes—nouns—
became foremost for the programmer. This paradigm, object-oriented program-
ming, evolved throughout the 1980s and 1990s.

Although powerful and useful, object-oriented programming has proved defi-
cient in isolating properties of objects in a reusable way—adjectives, which are
noun transformers. In other words, the industry has pushed object-oriented pro-
gramming with only objects, classes, and inheritance to its limit, and out of its
breakdown the need arises for a new kind of module. Such a module must play
the role of an adjective, that is, the module may be composed with a class (noun)

1 Code generation is a topic with greater breadth than what is discussed in this chapter. There are many
books on the broader topic of code generation including [19] and [44].

Generating HelloWorld.java 145
to get a new class (compound noun) whose instances have the property denoted
by the adjective.

Class-to-class transformations are a good way to introduce this new kind of
module and teach Java reflection. Aspect-Oriented Programming also addresses
this issue. We will come back to the relationship with Aspect-Oriented Program-
ming in section 7.7. Meanwhile, let’s check in on George.

A negotiation between Wildlife Components (WCI), George’s employer, and a
potential major customer is at an impasse. The business of the potential customer
is animal population studies. Although each class in the WCI library is superb for
modeling the behavior of individual animals, there is no capability to compute
the set of all of the individual instances of each class—this set is called the extent
of the class. Although the customer may program this capability into its applica-
tion, the customer is demanding that Wildlife Components program this capabil-
ity into the class library. The customer’s goal is to transfer this cost (and the
collateral maintenance costs) to Wildlife Components without increasing the con-
tract price. Yielding to this demand is no small matter for Wildlife Components.
On one hand, adding the capability to all classes in the library impacts the perfor-
mance for all other customers. On the other hand, adding a extent-managed ver-
sion of each library class doubles the size of the library—making it more complex
and more costly to maintain.

The sale to this customer is large and important. The Wildlife Components’
Vice President of Engineering gathers the development team to discuss the situa-
tion. After studying the issue, George proposes to end the impasse with the follow-
ing compromise: Wildlife Components will create and maintain a code-generation
tool that will create an extent-managed subclass of any of its library classes on
demand. The customer can then use this tool to generate the classes it needs.

Once again, George is at the center of the action—he must now deliver a solu-
tion whereby Wildlife Components neither impacts the performance of its library
for other customers nor doubles the size of its library. As George foresees, if prop-
erly implemented as a framework, the code-generation tool can provide the basis
for many other code-generation tools.

7.1 Generating HelloWorld.java

To illustrate the process of generating and executing Java code, let’s consider
how to write a program that writes and executes a “Hello world!” program. The
program in listing 7.1 writes a character stream to the HelloWorld.java file. It

146 CHAPTER 7

Reflective code generation
then uses Runtime.exec to compile2 the file and loads the compiled class using
Class.forName. Finally, the program runs the generated class using invoke to
execute the main method of the generated class, which prints the “Hello
world!” message.

public class HelloWorldGenerator {

 public static void main(String[] args) {

 try {
 FileOutputStream fstream
 = new FileOutputStream("HelloWorld.java");
 PrintWriter out = new PrintWriter(fstream);
 out.println(
 "class HelloWorld { \n"
 + " public static void main(String[] args) { \n"
 + " System.out.println(\"Hello world!\");\n"
 + " } \n"
 + "} "
);
 out.flush();
 Process p
 = Runtime.getRuntime().exec("javac HelloWorld.java");

 p.waitFor();

 if (p.exitValue() == 0) {
 Class outputClassObject = Class.forName("HelloWorld");

 Class[] fpl = { String[].class };
 Method m = outputClassObject.getMethod("main", fpl);

 m.invoke(null, new Object[]{ new String[] {} });

 } else {
 InputStream errStream = p.getErrorStream();
 for (int j = errStream.available(); j > 0; j--)
 System.out.write(errStream.read());
 }
 } catch(Exception e){
 throw new RuntimeException(e);
 }
 }
}

2 The package com.sun.tools.javac in the tools.jar of the JDK is a direct interface to the Java com-
piler. There is a class named Main whose main method is invoked with the string argument array that
you would give to javac. This book does not use that interface because it is not standard and not doc-
umented. In addition, note that prior to Java 1.4, the JDK license forbade redistribution of tools.jar.

Listing 7.1 A convoluted way to write a “Hello world!” program

Class-to-class transformation framework 147
The program in listing 7.1 is simple, but on some platforms, it may perma-
nently block at the waitFor if there is a compilation error in the generated pro-
gram. See the Java documentation on Process for more details. Appendix B
presents another, longer version of this program that uses polling to avoid this
blocking problem.

Listing 7.1 can only generate a single program. Instead, we might have a code
generator that loads a class specified by a command-line parameter and, subse-
quently, generates a new class from information acquired by introspecting on the
loaded class. Properly combining code generation with introspection leads to the
notion of a class-to-class transformation.

7.2 Class-to-class transformation framework

We might produce a separate code-generation program that looks much like list-
ing 7.1 for each class-to-class transformation. However, this would involve a large
amount of repetition of the basic elements of the specialized code generators for
class-to-class transformation. These basic elements include parameter processing
as well as the management of the generated .java file, its compilation, and the
loading of the corresponding .class file. A better idea is produce a framework
that allows for succinct coding of transformations, because these basic elements of
class generation are shared.

Figure 7.1 contains a class diagram for such a framework. The three abstract
classes, C2C (for class-to-class), C2CConstructor, and C2CTransformation, are used
to create transformations. C2CException is used to indicate that some exception
has been encountered during the code-generation process (the framework is ped-
agogical, not production code; consequently, error handling is minimal). The
other two auxiliary classes, Args and UQueue, are explained as we go along.

A class-to-class transformation is an object, specifically, an instance of a con-
crete subclass of C2C. Most transformations are created by subclassing
C2CTransformation, which is given an input class from which it produces an out-
put class. In some cases, you need to produce a particular output class without
an input class. In such situations, you subclass C2CConstructor. There are also
other command-line arguments that can be used to control a transformation.
Some are general and defined by the framework, while others are specific to par-
ticular transformations.

148 CHAPTER 7

Reflective code generation
7.2.1 C2C

Listing 7.2 shows the C2C abstract class. It begins with a set of fields that are used
to control the generation process. The principal part of the class is the method
createClass, which is an application of the Template Method pattern [38]. The
best way to explain the workings of the framework is to step through the code,
especially the execution sequence of createClass describing the abstract meth-
ods, as we go along. Note that one of our framework conventions is that all
abstract methods that begin with the prefixes check or generate are cooperative
methods, that is, they must make a super call.

package c2c;
import java.io.*;
import mopex.UQueue;

public abstract class C2C {
 protected String classNamePrefix;
 protected Class inputClassObject;
 protected String inputClassName = null;
 protected String outputClassName;
 protected Class outputClassObject;
 protected String packageName;
 protected String qualifiedInputClassName = null;
 protected String qualifiedOutputClassName;

Args

UQueue

C2CException

Uses

Uses

Uses

C2C

C2CConstructor

C2CTransformation

Figure 7.1 Class diagram for the class-to-class transformation framework

Listing 7.2 The C2C abstract class

B Instance variables
that store the
values of the
command-line
arguments

Class-to-class transformation framework 149
 boolean isAbstract;
 protected final void setAbstract() { isAbstract = true; }
 protected final boolean isAbstract() { return isAbstract; }

 boolean isFinal;
 protected final void setFinal() { isFinal = true; }
 protected final boolean isFinal() { return isFinal; }

 boolean isInterface;
 protected final void setInterface() { isInterface = true; }
 protected final boolean isInterface() { return isInterface; }

 boolean isNotPublic;
 protected final void setNotPublic() { isNotPublic = true; }
 protected final boolean isNotPublic() { return isNotPublic; }

 public final Class createClass(String[] args) {

 classNamePrefix = generateClassNamePrefix();

 Args myArgs = new Args(args);
 checkAndProcessArgs(myArgs);

 if (!myArgs.complete())
 throw new C2CException("Usage: unprocessed flags: "
 + myArgs.toString());

 UQueue itQ = generateInterfaces();
 UQueue importQ = generateImports();

 String aClassString =
 (packageName==null ? "" : "package " + packageName + ";\n")
 + (importQ.isEmpty() ? "" : "import "
 + importQ.toString(";\nimport ")
 + ";\n")
 + getClassLevelJavadoc()
 + (isNotPublic?"":"public ")
 + (isFinal?"final ":"")
 + (isAbstract?"abstract ":"")
 + (isInterface?" interface ":" class ") + outputClassName + "\n"
 + (getSuperclass().equals("") ? "" : " extends "
 + getSuperclass()
 + "\n")
 + (itQ.isEmpty() ? "" : " implements " + itQ.toString(", "))
 + "{\n//============= F I E L D S ======================\n"
 + generateFields()
 + "\n//============= C O N S T R U C T O R S ==========\n"
 + generateConstructors()
 + "\n//============= M E T H O D S ====================\n"
 + generateMethods()
 + "\n//============= N E S T E D C L A S S E S ======\n"
 + generateNestedClasses()
 + "}\n";

 try {

CBoolean
instance

variables that
deal with class

modifiers

D
Computes prefix for
output class name

EHandles arguments to
the transformation

F Accumulates information
about imports and
implemented interfaces

GThe heart of
createClass is the

string assignment

150 CHAPTER 7

Reflective code generation
 FileWriter outputFile
 = new FileWriter(outputClassName + ".java");
 outputFile.write(aClassString);
 outputFile.close();

 String cp = System.getProperty("java.class.path");
 Process p =
 Runtime.getRuntime().exec("javac -source 1.4 -classpath \""
 + cp
 + "\" "
 + outputClassName
 + ".java");

 p.waitFor();

 if (p.exitValue() == 0) {

 outputClassObject =
 Class.forName(qualifiedOutputClassName);

 } else {
 InputStream errStream = p.getErrorStream();
 for (int j = errStream.available(); j > 0; j--)
 System.out.write(errStream.read());
 throw new C2CException("compile fails " + p.exitValue());
 }
 } catch(Exception e){ throw new C2CException(e); }

 checkPostconditions();

 System.out.println(outputClassName + " compiled and loaded");

 return outputClassObject;
 }

 abstract protected String generateFlags();
 abstract protected String generateClassNamePrefix();
 abstract protected void checkAndProcessArgs(Args args);
 abstract protected UQueue generateImports();
 abstract protected String getClassLevelJavadoc();
 abstract protected String getSuperclass();
 abstract protected UQueue generateInterfaces();
 abstract protected String generateFields();
 abstract protected String generateConstructors();
 abstract protected String generateMethods();
 abstract protected String generateNestedClasses();
 abstract protected void checkPostconditions();
}

Let’s examine the C2C abstract class in detail:

B These are instance variables that store the values of the general command-line
arguments defined by the framework. Concrete transformations may read these

HWrites output class to an
appropriate file and compiles it

I Loads
output
class

J Checks for conflicts with other transformations

1)Declaration
of the methods

that concrete
subclasses

override

Class-to-class transformation framework 151
instance variables but must not change them. (A production version would make
these variables private with protected accessors, but we have not done so here in
order to make the framework more readable.)

C There are four boolean instance variables that deal with class modifiers. These
may be set on the command line. In addition, they may be set by subclasses but
not reset.

D generateClassNamePrefix is called in order to compute the default name of
the output class, which is the prefix followed by the name of the input class. For
example, if the input class is named Dog and the computed prefix is Synchronized,
the default name of the output class is SynchronizedDog. There is a command-line
argument (-output) for explicitly naming the output class.

E checkAndProcessArgs is called to handle the arguments to the transformation
from a command line. The checkAndProcessArgs method is a cooperative
method; that is, every subclass is given a chance to process elements of the argu-
ment array. See section 7.2.2 for the definition of the Args class and details of
cooperative argument processing. checkAndProcessArgs is responsible for setting
the instance variables declared in C2C. In particular, checkAndProcessArgs sets the
input class name (inputClassName) and input class object (inputClassObject).

F The generateImports and generateInterfaces methods are called to generate
data structures with the names of the packages to import and the interfaces that
the output class is to extend. UQueue is a queue container class whose add opera-
tion does nothing if the element to be added is already in the queue. The UQueue
class is not presented until section 7.5. Until then, the workings of its operations
should be evident from their names except for toString(String). This operation
returns a string of the entries in the queue where the separator is determined by
the specified argument.

G The heart of createClass is the string assignment that mimics the Java syntax
rules for creating a top-level class in a single file. The calls to generateFields, gen-
erateConstructors, generateMethods, and generateNestedClasses perform most
of the work. For the sake of more readable code, we chose to use strings through-
out the presentation of the class-to-class transformation framework. A production
version would use StringBuffer to obtain better performance.

H The string for the output class is written to an appropriate file and that file is
compiled. Note that the compilation uses the "-source 1.4" flag, which permits
the use of assert statements. In addition, we have found that when there are

152 CHAPTER 7

Reflective code generation
compilation errors, the waitFor command does not terminate on all platforms.
For this reason, we present an alternative that polls the compilation process for
completion using exitValue in appendix B.

I The output class is loaded using Class.forName, and the object class object is
stored in outputClassObject for use in the return statement. The use of
Class.forName assumes that the qualified class name and the classpath combine
to allow the loading of the class that was compiled a few statements earlier. For
simplicity, this check has been omitted.

J checkPostconditions is called to execute checks on the output class object
using the introspective operations of Java reflection. The purpose of checkPost-
conditions is to allow a transformation writer to ensure than no other transforma-
tion (for example, implemented by a subclass) has generated code that is in
conflict with the desired transformation. At times, such a check may be extrinsic
to the Java reflection API.

1) These are the methods that concrete subclasses of C2C override to fill out the
template provided by createClass.

When programming a transformation (a subclass of one of the descendents of
C2C), you usually create a static main to invoke createClass so that the transforma-
tion may be used from the command line. In addition, there are situations where
invoking createClass directly is a very handy capability.

7.2.2 Args

The Args class contains a set of static methods for the cooperative processing of a
command-line argument array. The fundamental idea is that a subclass of C2C scans
the array for either a known flag or a flag followed by a parameter. Each known flag
or flag-parameter pair is processed, and the flag is marked as processed. The meth-
ods of Args are used in implementing overrides of checkAndProcessArgs. An over-
ride of checkAndProcessArgs is required to perform a super call before looking for
its own flags. The methods implemented in Args are defined as follows:

String getFlagValue(String flag)—The args array is searched for flag. If
found, the entry following the flag is returned and both the flag and the
following entry are marked as processed. If the flag is not found in the args
array, null is returned.

UQueue getFlagValues(String flag)—At times, a flag-value pair may be
repeated in the arguments (for example, -imports). The getFlagValues
method returns a queue of all the values associated with flag. This is

Class-to-class transformation framework 153
accomplished with multiple calls to getFlagValue; consequently, the match-
ing flag entries and the associated values are marked as processed. If no
flags are found, an empty queue is returned.

boolean hasFlagValue(String flag)—The args array is searched for flag.
If found, true is returned and the flag is marked as processed. If the flag is
not found among the command-line arguments, false is returned.

String getLast()—The last argument of the args array is returned. When
getLast is used, the last argument is expected to be the name of the input
class.

boolean complete()—Returns true if all of the command-line arguments
have been processed and false otherwise.

String toString()—Returns a string that represents the command-line
arguments.

For completeness, listing 7.3 contains the implementation of these methods.

package c2c;
import java.util.Vector;
import mopex.UQueue;

public class Args {

 private String[] args;
 private boolean[] argProcessed;

 Args(String[] cmdArgs) {
 args = cmdArgs;
 argProcessed = new boolean[args.length];
 }

 public String getLast() {
 if (args[args.length-1].charAt(0) == ’-’)
 return null;
 String returnValue = args[args.length-1];
 argProcessed[args.length-1] = true;
 return returnValue;
 }

 public String getFlagValue(String flag) {
 for (int i = 0; i < args.length-1; i++)
 if (!argProcessed[i] && !argProcessed[i+1]
 && args[i].equals(flag)
 && args[i].charAt(0) == ’-’
 && args[i+1].charAt(0) != ’-’) {

Listing 7.3 The Args class

154 CHAPTER 7

Reflective code generation
 String returnValue = args[i+1];
 argProcessed[i] = true;
 argProcessed[i+1] = true;
 return returnValue;
 }
 return null;
 }

 public UQueue getFlagValues(String flag){
 UQueue values = new UQueue(String.class);
 String value = getFlagValue(flag);
 while (value != null) {
 values.add(value);
 value = getFlagValue(flag);
 }
 return values;
 }

 public boolean hasFlag(String flag) {
 for (int i = 0; i < args.length; i++)
 if (args[i] != null && args[i].equals(flag)
 && args[i].charAt(0) == ’-’) {
 argProcessed[i] = true;
 return true;
 }
 return false;
 }

 public boolean complete(){
 for (int i = 0; i < argProcessed.length; i++)
 if (!argProcessed[i])
 return false;
 return true;
 }

 public String toString(){
 String result = "";
 for (int i = 0; i < args.length; i++)
 if (!argProcessed[i])
 result += args[i] + " ";
 return result;
 }
}

7.2.3 C2CConstructor

Some transformations require no input class, because the output class is gener-
ated from other parameters. The base class for such transformations is
C2CConstructor, whose implementation is contained in listing 7.4. C2CConstructor
also provides the default implementations for the abstract methods declared in

Class-to-class transformation framework 155
C2C. The most significant of these default implementations is checkAndProcess-
Args, which defines the standard command-line flags for all transformations.
These standard flags are defined as follows:

-abstract—This flag indicates that the output class is to be abstract.

-final—This flag indicates that the output class is to be final.

-import xxxxx—This flag-value pair specifies that an import statement is to
be generated for xxxxx. This flag-value may be used multiple times in the
argument array.

-interface—This flag indicates that the output code is an interface instead
of a class.

-notpublic—This flag indicates that the output class is to have package visi-
bility. The default is for the output class to be public.

-output zzzzz—This flag-value pair specifies that the name of the output
class is to be zzzzz. This name may be qualified. The name of the generated
Java file is this name with .java appended. A C2CConstructor that is not a
C2CTransformation must have this flag specified. (In the next section, we
see that there is a default name for a C2CTransformation).

-package yyyyy—This flag-value pair specifies that the output class is to be
in the package yyyyy.

Some of these flags conflict with one another because of the specification of Java.
For example, -abstract and -final cannot be used together. Consistent with our
pedagogical goals, there are no checks for these conflicts; instead, such checks
manifest themselves as compilation errors.

package c2c;
import mopex.UQueue;

public abstract class C2CConstructor extends C2C {

 private UQueue cmdLineImports;

 protected String generateFlags() {
 return "[-notpublic] [-final] [-abstract] "
 + "[[-import name]...] [-package name] [-output name]";
 }

 protected String generateClassNamePrefix() { return ""; }

 protected void checkAndProcessArgs(Args args) {

Listing 7.4 The C2CConstructor class

B
Produces a string for

usage and help messages

156 CHAPTER 7

Reflective code generation
 outputClassName = args.getFlagValue("-output");
 if (outputClassName == null)
 if (inputClassName == null) {
 throw new C2CException("no output class name");
 } else {
 outputClassName = classNamePrefix + inputClassName;
 }

 packageName = args.getFlagValue("-package");
 if (packageName == null)
 qualifiedOutputClassName = outputClassName;
 else
 qualifiedOutputClassName
 = packageName + "." + outputClassName;

 isNotPublic = args.hasFlag("-notpublic");
 isFinal = args.hasFlag("-final");
 isInterface = args.hasFlag("-interface");
 isAbstract = args.hasFlag("-abstract");

 cmdLineImports = args.getFlagValues("-import");

 if (outputClassName.equals(inputClassName))
 throw new C2CException("outputClassName = inputClassName");
 }

 protected UQueue generateImports() {return cmdLineImports;}
 protected String getClassLevelJavadoc() {return "";}
 protected String getSuperclass() {return "";}
 protected UQueue generateInterfaces() {
 return new UQueue(String.class);
 }
 protected String generateFields() {return "";}
 protected String generateConstructors() {return "";}
 protected String generateMethods() {return "";}
 protected String generateNestedClasses() {return "";}
 protected void checkPostconditions() {}
}

Let’s examine C2CConstructor in more detail:

b The generateFlags method produces a string for usage and help messages. A
subclass of C2CConstructor is obligated to add to this string if it has additional
command-line arguments.

c If the -output flag is not present in the command line, this line uses the prefix
and the input class name to generate the default output class name. Note that
inputClassName is set in C2CTransformation.

C
Sets
output
class
name

D Sets the
qualified
output class
name

E Sets modifiers for
the output class

F Enqueues import
package name

Class-to-class transformation framework 157
d If -package appears in the command line, the qualified output class name is set
differently from the output class name.

e The modifiers for the output class are set. Note that once set, these instance
variables cannot be unset.

f Imports from the command line are used to initialized the queue from which
import directives are generated. A subclass of C2CConstructor may add to this
queue.

Now that we have programmed C2CConstructor, enough framework exists to
present a different implementation of a “Hello world!” program. Listing 7.5 pre-
sents a subclass of C2CConstructor that generates a “Hello world!” program simi-
lar to what is presented in listing 7.1. The command line

 java HelloWorldConstructor -output HelloWorld

produces a program equivalent to the one produced by the generator in
listing 7.1.

public class HelloWorldConstructor extends C2CConstructor {

 static public void main(String[] args) {
 new HelloWorldConstructor().createClass(args);
 }

 protected String generateMethods() {
 return super.generateMethods()
 + " public static void main(String[] args) { \n"
 + " System.out.println(\"Hello world!\");\n"
 + " } \n";
 }
}

C2CConstructor provides a good base for generating classes when introspection
on another class is not needed. When introspection is needed, we use
C2CTransformation.

7.2.4 C2CTransformation

C2CTransformation is used to program a transformation that maps an input class
to an output class. C2CTransformation extends C2CConstructor so that an input
class can be specified as the last entry in the argument array. To do so, checkAnd-
ProcessArgs is overridden, as shown in listing 7.6. This override extracts the

Listing 7.5 The C2CConstructor for a "Hello world!" program

158 CHAPTER 7

Reflective code generation
qualified input class name from the arguments array before making the super
call to process the other arguments. Afterward, the input class is loaded with
Class.forName, which also sets the field inputClassObject. Once the input class
object is loaded, the transformation has its most important object upon which to
apply Java reflection.

package c2c;

public abstract class C2CTransformation extends C2CConstructor {

 protected String generateFlags() {
 return super.generateFlags() + " inputClassName";
 }

 protected void checkAndProcessArgs(Args args){
 qualifiedInputClassName = args.getLast();
 int i = qualifiedInputClassName.lastIndexOf(".");
 if (i == -1)
 inputClassName = qualifiedInputClassName;
 else
 inputClassName = qualifiedInputClassName.substring(i+1);

 super.checkAndProcessArgs(args);

 try {
 inputClassObject = Class.forName(qualifiedInputClassName);

 if (inputClassObject.isArray()
 || inputClassObject.getDeclaringClass() != null
 || inputClassObject.isPrimitive())
 throw new C2CException("illegal class");
 } catch (ClassNotFoundException e) {
 throw new C2CException(e);
 }
 }
}

Let’s examine C2CTransformation in more detail:

b The generateFlags method is overridden to add the input class to the descrip-
tion of the command line.

c The input class name on the command line is expected to be fully qualified.
The qualifier is stripped away to get the class name. This is done in case a default
output class name needs to be generated. Note that this must be done prior to the
super call to checkAndProcessArgs in C2CConstructor.

Listing 7.6 The C2CTransformation class

B
Appends class
name parameter

C
Strips away

qualifier to set the
input class name

DLoads the input class

EEliminates primitive
classes, array classes, and

nested classes as inputs

Example: extent management 159
d The input class is loaded. Note that if the input class is not present in the com-
mand line, this load fails (unless the last command-line argument happens to be a
loadable class not intended to be the input class).

e This test eliminates primitive classes, array classes, and nested classes from
being inputs. Experience has shown that the definition of transformations for
nested classes is a complex topic and appears to have little benefit. (Note that
forName in Java 1.4 fails when given the name of a primitive class, and the isPrim-
itive test is not necessary. However, this quirk of forName has generated enough
complaints that it may be changed in some future release of Java.)

We have now defined enough of the C2C framework to present an interesting and
useful transformation.

7.3 Example: extent management

Now that he has prepared the way with the C2C framework, George can easily cre-
ate the code-generation tool that was promised in the negotiation with Wildlife
Components’ customer. The tool enables a class to compute its extent, which is
the set of instances of that class or any of its subclasses. Computing the extent of a
class is another extrinsic property of the Java reflection API. That is, there is no
direct way to use the reflection API to find the extent of a class. However, a trans-
formation can be written that generates a subclass that manages its extent.

Listing 7.7 contains C2ExtentManagedC, a subclass of C2CTransformation that
has three essential parts:

■ There is a private field named myExtent that is inserted into the class with a
generateFields override. Note that a WeakReference is used to store each
element of the extent so as to allow garbage collection of these elements.

■ Each constructor of the input class is paralleled in the output class. In each
of these new constructors, a weak reference to each new instance is stored
in myExtent. These parallel constructors are generated in the override to
generateConstructors. Note that if the input class has no declared con-
structors, a constructor with no parameters is generated in the output class.

■ A new static method named getExtent is generated that allows the extent to
be retrieved. This method is generated in the override to generateMethods.

In addition to the above, the output class is made a subclass of the input class.

160 CHAPTER 7

Reflective code generation
package c2c;
import java.lang.reflect.*;
import java.io.Serializable;
import mopex.*;

public class C2ExtentManagedC extends C2CTransformation {

 private int numberOfConstructors = 0;

 static public void main(String[] args) {
 new C2ExtentManagedC().createClass(args);
 }

 protected UQueue generateImports() {
 return super.generateImports()
 .add("java.util.Vector")
 .add("java.lang.ref.*");
 }

 protected String generateClassNamePrefix() {
 return "ExtentManaged" + super.generateClassNamePrefix();
 }

 protected String getSuperclass() {return inputClassName;}

 protected void checkAndProcessArgs(Args args) {
 super.checkAndProcessArgs(args);
 if (Serializable.class.isAssignableFrom(inputClassObject))
 throw new C2CException("refuse Serializable input classes");
 if (Cloneable.class.isAssignableFrom(inputClassObject))
 throw new C2CException("Cloneable and Singleton conflict");
 }

 protected String generateFields() {
 return super.generateFields()

 + " static private Vector myExtent = new Vector();\n";
 }

 protected String generateConstructors() {
 String managementCode =
 " myExtent.add(new WeakReference(this));\n";
 String overriddenConstructors = "";
 Constructor[] cArray = inputClassObject.getDeclaredConstructors();
 if (cArray.length != 0) {
 for (int i = 0; i < cArray.length; i++)
 overriddenConstructors
 += Modifier.toString(cArray[i].getModifiers())
 + " "
 + Mopex.createRenamedConstructor(cArray[i],
 outputClassName,
 managementCode);

Listing 7.7 The C2ExtentManagedC transformation

B

Creates a transformation
object and calls
createClass

C Adds required
packages to queue

D
Prepends the

property name

E

F Rejects Cloneable or
Serializable input classes

GAdds static field
to track the extent

H Generates constructors
that add to the extent

Example: extent management 161
 numberOfConstructors = cArray.length;
 } else {
 overriddenConstructors = outputClassName
 + "()\n {\n"
 + managementCode
 + " }\n";
 numberOfConstructors = 1;
 }
 return super.generateConstructors() + overriddenConstructors;
 }

 protected String generateMethods() {
 return super.generateMethods()
 + " static public " + outputClassName + "[] getExtent() {\n"
 + " Vector extent = new Vector();\n"
 + " for (int i = myExtent.size()-1, j = 0; i >= 0; i--) {\n"
 + " " + outputClassName + " anObj = \n"
 + " (" + outputClassName + ")\n"
 + " ((WeakReference)myExtent.elementAt(i)).get();\n"
 + " if (anObj != null)\n"
 + " extent.add(anObj);\n"
 + " else\n"
 + " myExtent.remove(i);\n"
 + " }\n"
 + " return (" + outputClassName + "[])\n"
 + " extent.toArray(new " + outputClassName + "[1]);\n"
 + " }\n";
 }

 protected void checkPostconditions() {
 super.checkPostconditions();
 if (outputClassObject.getDeclaredConstructors().length
 != numberOfConstructors)
 throw new C2CException("non-ExtentManaged constructors added"

);
 }
}

Now let’s look inside of C2ExtentManagedC, which is shown in listing 7.7. This in-
depth look is followed by an example of its use in listing 7.8.

b The main method creates a transformation object and calls createClass with
the command-line arguments.

c Import directives need to be generated for java.util.Vector and
java.lang.ref.*. The add operation on UQueue returns the queue object, which
allows the succinct coding of the override of generateImports. The implementa-
tion of UQueue is presented in section 7.5.

I
Generates method to
retrieve the extent

J
Ensures no other transformation
has added constructors

162 CHAPTER 7

Reflective code generation
d The override of generateClassNamePrefix establishes that the adjective
ExtentManaged must appear in the default name of output classes. The default
name may be changed with the -output flag in the arguments array.

e This ensures that the generated class is a subclass of the input class.

f For the sake of simplicity, we disallow the input class to be serializable or clone-
able. Each of these interfaces permits instances of a class to be created without
calling a constructor. This limitation can be eliminated by adding an override to
clone (if the input class implements Cloneable) or an override to readObject (if
the input class implements Serializable).

g A static field is added to track the extent.

h For each constructor of the input class, a similar constructor is generated that
adds the newly constructed object to the extent. This is accomplished with the
method createRenamedConstructor, which is defined in listing 7.9.

i The method to retrieve the extent is generated. This method is complicated
by the fact that some entries may have been garbage collected, which results in
weak references that are null. These are removed from the extent when get-
Extent is called.

j This transformation has an override of checkPostconditions. If a subclass of
the C2ExtentManagedC transformation were to generate additional constructors,
these new constructors would not place instances in the extent vector, which
would render the C2ExtentManagedC transformation ineffective. Note that
because our transformations generate code, a transformation could sneak a con-
structor into an override of generateFields or generateMethods. For this rea-
son, the override of checkPostconditions ensures that the number of
constructors in the output has not increased. This is accomplished with the
introspective call Class.getDeclaredConstructors on the output class object,
which is loaded by the framework.

Let’s look at an example of the use of C2ExtentManagedC. Figure 7.2 presents a
class diagram that depicts the result of using C2ExtentManagedC on an input class
named Squirrel. The code for Squirrel is not shown, but the two constructors
declared by Squirrel are a copy constructor and a constructor with no parame-
ters. The output class is named ExtentManagedSquirrel and is a subclass of Squir-
rel. The output class has corresponding constructors, a static private field to track
the instances, and a static method for accessing the set of instances. Listing 7.8
shows the code generated by the execution of C2ExtentManagedC.

Example: extent management 163
import java.util.Vector;
import java.lang.ref.*;
public class ExtentManagedSquirrel
 extends Squirrel
{
//============= F I E L D S ======================
 static private Vector myExtent = new Vector();

//============= C O N S T R U C T O R S ==========
public ExtentManagedSquirrel()
{
 super();
 myExtent.add(new WeakReference(this));
}
public ExtentManagedSquirrel(Squirrel p0)
{
 super(p0);
 myExtent.add(new WeakReference(this));
}

//============= M E T H O D S ====================
 static public ExtentManagedSquirrel[] getExtent() {
 Vector extent = new Vector();
 for (int i = myExtent.size()-1, j = 0; i >= 0; i--) {
 ExtentManagedSquirrel anObj =
 (ExtentManagedSquirrel)
 ((WeakReference)myExtent.elementAt(i)).get();
 if (anObj != null)

Listing 7.8 Output class for command: java C2ExtentManagedC Squirrel

Squirrel

Squirrel()
Squirrel(Squirrel)

ExtentManagedSquirrel

ExtentManagedSquirrel()
ExtentManagedSquirrel(Squirrel)

-myExtent : Vector

getExtent():ExtentManagedSquirrel[]

Figure 7.2
Class diagram illustrating the relationship between
the input class Squirrel for the
C2ExtentManagedC transformation and its output
class ExtentManagedSquirrel

164 CHAPTER 7

Reflective code generation
 extent.add(anObj);
 else
 myExtent.remove(i);
 }
 return (ExtentManagedSquirrel[])
 extent.toArray(new ExtentManagedSquirrel[1]);
 }

//============= N E S T E D C L A S S E S ======
}

A client must instantiate ExtentManagedSquirrel rather than Squirrel. So it is
important to hide the Squirrel constructors if possible. Instance creation is best
done by presenting an Abstract Factory pattern to the client, which is discussed
in chapter 3.

The extent-managed property does extend to subclasses of ExtentManagedS-
quirrel. That is, all instances of a subclass are included in the extent of ExtentMan-
agedSquirrel. This occurs because the only way for a subclass to create an instance
is by going through a constructor defined in the extent-managed class. For exam-
ple, in figure 7.3, instances of UglySquirrel are included in the extent of Extent-
ManagedSquirrel.

A second issue involving inheritance and the
design of the C2ExtentManagedC transformation
arises when both a class and its subclass are trans-
formed. This leads to the problem depicted in fig-
ure 7.4, where Squirrel has a subclass, Ugly-
Squirrel. If the hierarchy can be arranged as is
done on the left side, then instances of Extent-
ManagedUglySquirrel are included in the extent
of ExtentManagedSquirrel as they should be.

If the class hierarchy must be arranged as is
done on the right side of figure 7.4, the situation
is problematic. When using the transformation
presented in listing 7.7, instances of ExtentMan-
agedUglySquirrel are not included in the extent
of ExtentManagedSquirrel. This issue is usually a
problem, because an ugly squirrel is a squirrel
(subclasses should be subtypes). The problem can
be solved with a more complex transformation

Squirrel

ExtentManagedSquirrel

UglySquirrel

Figure 7.3 The instances of Ugly-
Squirrel are included in the extent
of ExtentManagedSquirrel
because constructors of Extent-
ManagedSquirrel must partici-
pate in creating instances of
UglySquirrel.

Example: extent management 165
that analyzes the superclasses of the input class and what transformations have
been applied to them. If a class has superclasses that have been transformed with
C2ExtentManagedC, new instances are added to the extents of the transformed sub-
classes of those superclasses. George’s problem falls into this latter category if the
customer wishes to transform both a class and one of its subclasses that come from
Wildlife Components’ library. If the customer does wish this, George will have to
produce the more complex transformation. However, we will not do so in this
book.

Now let’s look at the Mopex methods that support C2ExtentManagedC.
The implementation of the generateConstructors override employs an addi-

tional method of Mopex, the convenience facility that was first introduced in
chapter 1. This method, createRenamedConstructor, is shown in listing 7.9. Note
that createRenamedConstructor is defined in terms of the Mopex methods formal-
ParametersToString (listing 7.10), actualParametersToString (listing 7.11), and
classArrayToString (listing 7.12). Each of these uses getTypeName (listing 7.13) to
get a Java-compilable name for a type from its corresponding class object.

The createRenamedConstructor method generates a constructor with the same
parameters and exceptions as the specified constructor. In addition, the generated

Squirrel Squirrel

ExtentManagedSquirrel UglySquirrel

ExtentManagedSquirrel

UglySquirrel

ExtentManagedUglySquirrel

ExtentManagedUglySquirrel

Figure 7.4 Two ways of subclassing with C2ExtentManagedC. The one on the left works well when it
can be done. The one on the right is problematic because instances of ExtentManagedUglySquirrel
are not included in the extent of ExtentManagedSquirrel when the classes are generated by the
transformation presented in this chapter.

166 CHAPTER 7

Reflective code generation
constructor is renamed, an explicit super call is generated, and a string (the
parameter code) is inserted to add functionality to the generated constructor. In
the context of our transformation framework, createRenamedConstructor is a
handy method that gets reused often. In the case of C2ExtentManagedC, the code
parameter is the command that appends to the extent of the class the weak refer-
ence to a new instance.

 public static String createRenamedConstructor(Constructor c,
 String name,
 String code)
 {
 Class[] pta = c.getParameterTypes();
 String fpl = formalParametersToString(pta);
 String apl = actualParametersToString(pta);
 Class[] eTypes = c.getExceptionTypes();
 String result = name + "(" + fpl + ")\n";
 if (eTypes.length != 0)
 result += " throws "
 + classArrayToString(eTypes)
 + "\n";
 result += "{\n super(" + apl + ");\n" + code + "}\n";
 return result;
 }

The formalParametersToString method takes a class array and returns a comma-
separated string of type names, each followed by a constructed formal parameter.

 public static String formalParametersToString(Class[] pts){
 String result = "";
 for (int i = 0; i < pts.length; i++) {
 result += getTypeName(pts[i]) + " p" + i ;
 if (i < pts.length-1)
 result += ",";
 }
 return result;
 }

The actualParametersToString method works with formalParametersToString in
that a comma-separated string of formal parameters is returned, one for each of
the formal parameters generated by formalParametersToString.

Listing 7.9 createRenamedConstructor, a static method of Mopex

Listing 7.10 Implementation of Mopex.formalParametersToString

Example: extent management 167
 public static String actualParametersToString(Class[] pts){
 String result = "";
 for (int i = 0; i < pts.length; i++) {
 result += "p" + i ;
 if (i < pts.length-1)
 result += ",";
 }
 return result;
 }

The classArrayToString method generates a comma-separated string of type
names, one for each class object in the specified array.

 public static String classArrayToString(Class[] pts){
 String result = "";
 for (int i = 0; i < pts.length; i++) {
 result += getTypeName(pts[i]);
 if (i < pts.length-1)
 result += ",";
 }
 return result;
 }

The three preceding methods use getTypeName to generated individual type
names for the specified class object. The getTypeName method adds brackets to
the end of the type name of an array and traverses to its component type. It
returns the name of any non-array class. Therefore, a two-dimensional int array
class would be rendered as int[][] (which is compilable Java code). For this
reason, getTypeName proves useful during code-generation tasks where getName
alone is insufficient.

 public static String getTypeName(Class cls){
 if (!cls.isArray()) {
 return cls.getName();
 } else {
 return getTypeName(cls.getComponentType()) + "[]";
 }
 }

Listing 7.11 Implementation of Mopex.actualParametersToString

Listing 7.12 Implementation of Mopex.classArrayToString

Listing 7.13 Implementation of Mopex.getTypeName

168 CHAPTER 7

Reflective code generation
Note that we encountered the problem of extent management in section 6.4,
where AbstractProduct is required to account for Product instances. A transfor-
mation similar to the one presented in this section can be crafted to add extent
management to AbstractProduct.

7.4 C2IdentitySubclassOfC and its subclasses

A common situation is the desire to create a subclass of a class that adds a prop-
erty with some additional fields and methods. To do this, a programmer would
start by subclassing the class to be augmented and then reintroducing all of the
same constructors with super calls. From there, the additional functionality can be
put into this subclass. C2IdentitySubclassOfC is a transformation that provides
the starting point of the subclass with the constructors. It is named with the word
identity because without any additional work, the class it produces has exactly
the same functionality as the input class. Many of the later transformations sub-
class C2IdentitySubclassOfC and then add functionality. Listing 7.14 presents the
implementation of the transformation C2IdentitySubclassOfC.

package c2c;
import java.lang.reflect.*;
import mopex.*;

public class C2IdentitySubclassOfC extends C2CTransformation {

 static public void main(String[] args) {
 new C2IdentitySubclassOfC().createClass(args);
 }

 protected String generateClassNamePrefix() {
 return "SubclassOf" + super.generateClassNamePrefix();
 }

 protected String getSuperclass() {return inputClassName;}

 protected void checkAndProcessArgs(Args args){
 super.checkAndProcessArgs(args);
 if (inputClassObject.isInterface())
 throw new C2CException("input class is an interface");
 }

 protected final String generateConstructors() {
 String result = "";
 Constructor[] cArray = inputClassObject.getDeclaredConstructors();
 for (int i = 0; i < cArray.length; i++)
 result += "public "

Listing 7.14 The C2IdentitySubclassOfC transformation

BAllows the transformation to be
 used from the command line

C

Prepends
description
of transformation

D

Sets superclass
to be the
input class

E Rejects interfaces as
input classes

F

Mirrors each input-class
constructor with a
constructor having the
same parameters

C2IdentitySubclassOfC and its subclasses 169
 + Mopex.createRenamedConstructor(cArray[i],
 outputClassName,
 "");
 return super.generateConstructors() + result;
 }
}

Let’s examine the methods defined by C2IdentitySubclassOfC:

b There is a main so that the transformation may be used from the command
line. We use this feature later to generate the C2CException class.

c The adjectival phrase that describes the transformation is added to the prefix.

d The superclass is set to the input class.

e If the input class object represents an interface, the transformation fails with a
C2CException.

f Each constructor of the input class is mirrored in the generated class by a con-
structor with the same parameters. The super call in the constructor body emu-
lates constructor inheritance.

Despite its simplicity, C2IdentitySubclassOfC is an ideal base class from which to
derive many transformations, because it is the place to start when you want the
same class but with the addition of some particular property.

One class that is generated using C2IdentitySubclassOfC is C2CException. If a
problem occurs during the execution of a transformation, a C2CException is
thrown. This class is generated as a subclass of RuntimeException with the com-
mand line

 java c2c.C2IdentitySubclassOfC -package c2c \
 -output C2CException java.lang.RuntimeException

when the class path is appropriately set. The importance of the -output and
-package flags is also illustrated here. Listing 7.15 presents the code generated by
this command line. Note that because C2IdentitySubclassOfC and its super-
classes use C2CException, the first version of the framework was written with
RuntimeException.

package c2c;
public class C2CException
 extends RuntimeException

Listing 7.15 The C2CException class

170 CHAPTER 7

Reflective code generation
{
//============= F I E L D S ======================

//============= C O N S T R U C T O R S ==========
public C2CException(java.lang.String p0)
{
 super(p0);
}
public C2CException(java.lang.Throwable p0)
{
 super(p0);
}
public C2CException(java.lang.String p0,java.lang.Throwable p1)
{
 super(p0,p1);
}
public C2CException()
{
 super();
}

//============= M E T H O D S ====================

//============= N E S T E D C L A S S E S ======
}

C2IdentitySubclassOfC can be the basis of many transformations that add a prop-
erty to a class by creating a subclass. Chapter 4 showed how proxies can be created
for tracing and synchronizing properties. An alternative approach is to write a
transformation (as a subclass of C2IdentitySubclassOfC) for each of these proper-
ties. Chapter 8 presents a transformation for another property, invariant check-
ing, when discussing the Decorator pattern.

7.5 UQueue

Let’s complete our presentation of the C2C framework by presenting the imple-
mentation of UQueue, which is a container class that implements a queue whose
add operation does nothing if the object to be added is already in the queue. Con-
tainers such as UQueue are much easier to use when they are specialized for the
type of objects to be contained. This way, if an attempt is made to add an object of
the wrong type, the error can be detected, preferably at compile time, but if not,
then at runtime.

The requirements for UQueue are as follows:

UQueue 171
■ Each constructor for UQueue has a parameter specifying the type of the con-
tainer elements.

■ The add operation is called, and the type of the object to be added is
checked at runtime.

■ If an object to be added to the queue is already there, the queue is not
changed.

■ At least one constructor must allow the specification of an equivalence
operation for testing whether an object is in the queue. The default equiva-
lence operation is the equals operation introduced by Object.

■ UQueue must have a toArray operation that produces arrays of the proper
type (rather than the Object arrays that are produced by the Java container
classes).

These requirements are satisfied by the UQueue class as implemented in
listing 7.16.

package mopex;
import java.util.*;
import java.lang.reflect.*;

public class UQueue {

//============= F I E L D S ======================
 private List myList = new ArrayList();
 private Object eltArray;
 private Class eltType;
 private Method equalsMethod = null;

//============= C O N S T R U C T O R S ==========
 public UQueue(Class eltType) {
 this.eltType = eltType;
 eltArray = Array.newInstance(eltType, 0);
 }

 public UQueue(Class eltType, Method m) {
 Class[] fpl = m.getParameterTypes();
 if (!(Modifier.isStatic(m.getModifiers())
 && m.getReturnType() == boolean.class
 && fpl[0] == eltType
 && fpl[1] == eltType
 && fpl.length == 2))
 throw new RuntimeException("illegal signature");
 equalsMethod = m;
 this.eltType = eltType;
 eltArray = Array.newInstance(eltType, 0);

Listing 7.16 UQueue, a class in the mopex package

B Parameter specifies
the type of the
queue elements

CMethod
parameter is

used to
determine

equivalence in
the add method

172 CHAPTER 7

Reflective code generation
 }

//============= M E T H O D S ====================
 public boolean isEmpty() { return myList.size()==0 ; }
 public int size() { return myList.size(); }
 public Object remove() { return myList.remove(0); }
 public Object elementAt(int i) { return myList.get(i); }

 public UQueue add(Object element) {
 if (!eltType.isInstance(element))
 throw new RuntimeException("illegal arg type");
 if (!contains(element))
 myList.add(element);
 return this;
 }

 public boolean contains(Object obj) {
 if (equalsMethod == null) {
 return myList.contains(obj);
 } else {
 for (int i = 0; i < myList.size(); i++) {
 try {
 Object[] apl = {obj,myList.get(i)};
 Boolean rv = (Boolean)equalsMethod.invoke(obj,apl);
 if (rv.booleanValue())
 return true;
 } catch (Exception e){
 throw new RuntimeException(e);
 }
 }
 return false;
 }
 }

 public Object[] toArray() {
 return myList.toArray((Object[])eltArray);
 }

 public String toString(String separator) {
 String result = "";
 for (int i = 0; i < myList.size(); i++) {
 result += myList.get(i);
 if (i < myList.size()-1)
 result += separator;
 }
 return result;
 }
}

D

Ensures that the element to be
added is of the correct type and

not already in queue

E

Determines if
the object

is in the queue

F Ensures that the
returned array can
be cast to the proper
array type

G

Converts queue
to string with

specified separator

Using the framework 173
Let’s look at the implementation in detail:

b The first constructor has a parameter for specifying the type of the queue ele-
ments. The type is stored in the instance variable eltType. In addition, the con-
structor creates an empty array of that type, which is used in the toArray operation.

c The second constructor has an additional parameter that is a Method, which
must be static, taking two parameters of the specified type and returning a bool-
ean. This method is used to test equivalence in the add method.

d The add method ensures that the element to be added is of the correct type
and adds the element if it not already in the queue (a condition that is deter-
mined by the contains method).

e If the first constructor created the queue object, the contains method of
ArrayList is called to determine if the object is in the queue. That contains
method uses equals. If the second constructor created the queue object, the
queue is sequentially searched for an equivalent object using the static method
specified at construction time.

f The toArray method ensures that the returned array can be cast by the caller
to the proper array type.

g The parameter to the toString method specifies a separator to be inserted
between the string representations of the queue elements.

UQueue is an example of a dynamically-typed container class. Alternatively, the C2C
framework could have been used to create a transformation for a statically-typed
container class. We do not present this alternative, because transformations that
generate such container classes correspond to the generics that are added to
Java 1.5 (a topic further discussed in chapter 10). This new Java feature should
obviate most of the need to generate code for specialized container classes. How-
ever, you may not be able to use Java 1.5 or you may have a requirement that is
beyond the limitations of Java 1.5 generics, in which case you may wish either to
write a dynamically parameterized container class (as we present in this section)
or to use the C2C framework to generate the container classes that you need.

7.6 Using the framework

This concludes the introduction to the class-to-class transformation framework.
Figure 7.5 shows the framework presented in this chapter. This figure includes the
example transformations that are presented in this chapter.3

174 CHAPTER 7

Reflective code generation
We envision that the transformations built with the C2C framework can be used in
three ways:

■ A transformation may be used at runtime, when a class is dynamically con-
structed and loaded by a call to the static method createClass. This paral-
lels what is done when getProxyClass is called. The difference is that the
transformations are more flexible but slower in constructing classes.

■ An application build process may use the main in the transformation to cre-
ate class files, which become part of the application. This use treats the
transformations as code-generator tools. The generated source files are not
changed but are needed for debugging.

3 The circularity in the figure implies that in order to begin the programming of the framework, the first
version of C2CException had to be written manually (actually RuntimeException was used).

Ge
ne
ra
te
dB
y

Uses

Uses

Uses

C2C

C2CConstructor

HelloWorldConstructor

C2CTransformation

C2ExtentManagedC C2IdentitySubclassOfC

C2CException

UQueue

Args

Figure 7.5 Class diagram showing the relationships among the classes of the C2C framework for
writing class-to-class transformations3

Relation to Aspect-Oriented Programming 175
■ A transformation is used once to generate a source file that is subsequently
edited. This eliminates much of the drudgery of many tasks. However, once
the file is edited, the link between the generator and the source file is bro-
ken and the source file must be maintained manually. For this reason, this
way of using a transformation is the least desirable of the three.

Whichever way transformations are used, they do contribute to improved flexibil-
ity and increased productivity.

7.7 Relation to Aspect-Oriented Programming

Aspects, features, facets, or properties have always been part of object-oriented
programming. Their presence becomes most apparent when the addition of one
word to a requirement causes small snippets of code to be added in scattered
places all over an application. The kind of word that can have so great an impact
is an adjective. For example, consider the adjective thread-safe. Requiring a class,
library, or application to be thread-safe results in semaphore lock and unlock
commands popping up all over the place. Just as dandelions disturb the beauty of
a lawn, the semaphore commands disturb the readability of the code. Unlike dan-
delions, these scattered code snippets are so tangled in the application that they
cannot be removed without destroying the application (in the sense that the
requirement from which the snippets arise is no longer satisfied). Further, the
available constructs of object-oriented programming cannot bring the snippets
together in one place. Something seems to be missing.

The area of study for this problem (that identifies and finds ways to untangle
the snippets, to separately express them, and then to reuse them) is called Aspect-
Oriented Programming [50], which is the name invented by Gregor Kiczales and
his team at Xerox PARC. The Aspect-Oriented Programming community
rightfully uses the word tangle to emphasize that there is a problem here to be
solved. When the aspect is successfully expressed as a separate entity, the verb tan-
gle is better replaced with weave or compose (both of which have a positive connota-
tion) when expressing the mixing of the aspect code with the application code.

Class-to-class transformations satisfy the most basic requirement of Aspect-Ori-
ented Programming. Each transformation captures a class property indepen-
dently of any class having that property. In addition, as we have defined them,
class-to-class transformations may be applied at runtime. However, transforma-
tions of the C2C framework are a weak form of Aspect-Oriented Programming,
because two features are missing:

176 CHAPTER 7

Reflective code generation
■ The result of a class-to-class transformation is a class with a new name rather
than a modified class with the same name.

■ Our class-to-class transformations must be explicitly applied rather than
there being some general specification of when to automatically apply a
transformation.

The transformations of the C2C framework create new classes rather than modify-
ing the existing class by inserting code, because of the lack of intercessional power
in the Java reflection API. Performing code insertion eliminates the problem
depicted in figure 7.4 where the ExtentManagedUglySquirrel is not a subclass of
ExtentManagedSquirrel even though we would like it to be so. This inconvenience
can be mitigated with the use of interfaces and factory methods. However, a more
powerful reflection API that permits class modification (even if only at load time)
removes this weakness. The bottom line is that despite its power, Java reflection
does not quite move us across the boundary into Aspect-Oriented Programming.
Crossing that boundary requires a more powerful reflection API.4

The C2ExtentManagedC transformation is our first example of adding an aspect
to a class in the sense of Aspect-Oriented Programming. The next chapter intro-
duces other useful transformations in the context of design patterns. In addition,
section 10.3 contains a brief introduction to some of the tools for Aspect-Oriented
Programming.

7.8 Summary

Before we become too enamored with the potential of class-to-class transforma-
tions, let’s remind ourselves that goal of this book is to teach Java reflection. The
transformation framework is foremost a vehicle for demonstrating the use and
effectiveness of Java reflection. This chapter demonstrated a number of features
of Java reflection:

■ Both the input class and the output class are loaded using forName, which is
one of the five ways in Java to obtain a class object. The others are the get-

4 This lack of intercessional reflective capability in Java has been mentioned several times in this book,
which raises the question: is more reflective capability in Java really needed? The answer is yes. As evi-
dence, we offer the fact that the builders of powerful tools (for example, Hibernate) are using cglib
(cglib.sourceforge.net), Javassist, and the various toolkits for manipulating bytecodes such as Jikes or
BCEL (jakarta.apache.org/bcel) to provide functionality that may also be achieved with a more capable
reflection API.

Summary 177
Class method, the .class literal, various methods of Class, and the use of
methods in the ClassLoader, which is covered in chapter 6.

■ The class objects are examined with introspective methods such as get-
DeclaredConstructors to obtain significant information for further use.

■ Some simple methods (for example, createRenamedConstructor) in our
Mopex class used additional introspective methods to generate code frag-
ments that are easily combined to form complete classes.

The result of these uses of reflection is a small and understandable framework
for writing class-to-class transformations. A class-to-class transformation adds code
to a class that pertains to all instances of the class. Java reflection has limitations
with respect to intercession. These limitations may be circumvented by generat-
ing code. Class-to-class transformations are the way we recommend that such
code be organized.

A separate issue from the pedagogical value of the class-to-class transformation
framework for teaching reflection is whether the framework is in itself a useful
tool for programmers. The existence of the framework is scant support for the
proposition that the framework is a useful tool. The next chapter presents addi-
tional transformations. We believe that at the end of these chapters you will agree
that the framework is valuable for more than just illustrating reflection.

Design patterns
In this chapter

■ The relationship between design patterns
and reflection

■ How to support the use of design patterns
with reflection

■ Examples of useful code generators
179

180 CHAPTER 8

Design patterns
In the early 1990s, it became clear that object-oriented programming was not the
panacea that all hoped it would be. There were many reasons for this disappoint-
ment. Among the most prominent was that the declining cost and increased
capacity of computers led to the demand for larger and more capable software sys-
tems than the object-oriented programming of the early 1990s could easily pro-
duce. There were many responses to this situation. One successful response was
the study of reflection. Another successful response was the revival of the study of
the work on the design theories of the architect Christopher Alexander and their
applicability to software design. This revival culminated in the book Design Patterns
[38] by Gamma, Helm, Johnson, and Vlissides, which has become the primary ref-
erence for studying software design patterns.

A design pattern is intended to capture the experience of a successful designer.
“Each design pattern systematically names, explains, and evaluates an important
and recurring design in object-oriented systems” [38 p. 2]. A design pattern is
applied, not implemented, because the pattern must be fit to the problem context
before implementation. This is a subtle point; there is not just one way to apply a
design pattern.

This chapter explores reflective implementation support for the some of the
software design patterns described by Gamma, Helm, Johnson, and Vlissides. Pat-
terns are part of the vocabulary of the software engineer expert in object-oriented
software programming. If you are not familiar with these patterns, we suggest
coming back to this chapter after reading Design Patterns.

As John Vlissides explains in Pattern Hatching [88], a pattern is more than a
solution to a problem in context. A pattern is named, recurring, and teachable. In
many cases, code generation can perform almost everything that a programmer
does when applying the pattern. Despite the fact that there are many ways to apply
a pattern, individual programmers working in a particular programming lan-
guage develop a style of applying a pattern. It is this style of pattern application in
addition to the pattern that is captured by the code generator. Once this style of
application is fixed, code generation can relieve much of the drudgery of apply-
ing a pattern.

This chapter combines reflection with code generation using the class-to-class
transformation framework from chapter 7 to address the issue of pattern applica-
tion. Because these are specifically class-to-class transformations, this approach
has a spectrum of effectiveness. At one end are patterns (and your authors’ style
of applying them) that are nearly completely described by a class-to-class transfor-
mation. At the other end are patterns that are not characterized by class-to-class
transformations at all. In the middle are patterns that are partially described by a

Singleton 181
class-to-class transformation. For some patterns, the transformation is a useful
tool, and for others, the parameterization of the transformation is so complex
that you may as well write the Java code. This chapter presents several examples of
transformations that can easily be programmed to aid the application of patterns.

8.1 Singleton

The Singleton pattern is applied to get a class that may have only one instance.
This implies

if x instanceof S and y instanceof S, then x and y are the same object

for all classes S created by applying the Singleton pattern. The Singleton pattern
is at the end of the spectrum of patterns most amenable to capture with a class-to-
class transformation. That is, a transformation can be programmed to apply the
Singleton pattern to an input class such that the result is a class that may have at
most one instance in its extent.

The context for applying the Singleton pattern is an individual class. The key to
applying the Singleton pattern with a class-to-class transformation is controlling
how instances are constructed. Given a class C, our design (as depicted in
figure 8.1) is to subclass C and replicate each constructor with a private construc-
tor that just calls its super constructor. Corresponding to each constructor is a
getInstance method that invokes the constructor if necessary (because no
instance exists) and returns the instance. In other words, getInstance is a factory
method for the singleton class. This is the essence of the transformation
C2SingletonC, which is presented in listing 8.1.

Although the C2SingletonC transformation is simple in concept, there are a
number of special issues that must be addressed:

■ Interfaces may not be input classes—Interfaces do not have constructors and,
therefore, cannot be transformed into Singleton classes. The override of
checkAndProcessArgs excludes interfaces.

■ Cloneable input classes may not be transformed—The clone method in
java.lang.Object creates an object without calling a constructor. In addi-
tion, the clone method has following output specification:

 x == x.clone() is never true
This implies that calling clone creates an instance distinct from the target of
the call. This is in conflict with the specification of Singleton. Consequently,
the transformation throws an exception in the override of check-

AndProcessArgs for Cloneable input classes.

182 CHAPTER 8

Design patterns
■ Serializable input classes may not be transformed—In a Serializable class,
objects may be created by readResolve without calling constructors.
readResolve is a hook method that allows you to intercede during read-
Object to override the returned object. To keep our C2SingletonC transfor-
mation simple, Serializable input classes are not part of its input domain.

■ Our C2SingletonC transformation allows the garbage collector to destroy the Single-
ton object—This is accomplished by using a WeakReference to store the Sin-
gleton object. This design choice has the advantage of space conservation,
but it implies that the Singleton object may not always exist, which can lead
to other complications, as discussed later in this chapter.

Note that these issues are not just related to creating a transformation. These
issues are inherent in applying the Singleton pattern in general.

super(...)

If a singleton exists,
return it, otherwise
construct one and
return it

C

C(...)

SingletonC

-singleton : SingletonC

+getInstance(...) : SingletonC

-SingletonC(...)

Figure 8.1 Design for the outcome of applying the Singleton pattern on the class C with the use of the
C2SingletonC transformation. The resulting class SingletonC makes the constructor private while
providing a factory method and a new private instance variable to hold the location of the singleton.

Singleton 183
Listing 8.1 presents the implementation of the C2SingletonC transformation.
For each constructor of the input class, C2SingletonC generates a constructor and
a static getInstance method. The constructors are generated using the Mopex
method createRenamedConstructor, which is defined in listing 7.9 on page 166.
The complementary static method for each constructor calls the constructor to
create a singleton, if none exists, and then returns the singleton.

package c2c;
import java.lang.reflect.*;
import mopex.*;
import java.io.Serializable;

public class C2SingletonC extends C2CTransformation {

 private int numberOfConstructors = 0;

 static public void main(String[] args) {
 new C2SingletonC().createClass(args);
 }

 protected void checkAndProcessArgs(Args args) {
 super.checkAndProcessArgs(args);
 setFinal();
 if (inputClassObject.isInterface())
 throw new C2CException("cannot generate Singleton for interface");
 if (Serializable.class.isAssignableFrom(inputClassObject))
 throw new C2CException("cannot handle Serializable input classes");
 if (Cloneable.class.isAssignableFrom(inputClassObject))
 throw new C2CException("Cloneable and Singleton are conflicting");
 }

 protected UQueue generateImports() {
 return super.generateImports().add("java.lang.ref.*");
 }

 protected String generateClassNamePrefix() {
 return "Singleton" + super.generateClassNamePrefix();
 }

 protected String getSuperclass() {return inputClassName;}

 protected String generateFields() {
 return super.generateFields()
 + "static private WeakReference singleton = null;\n";
 }

Listing 8.1 The C2SingletonC transformation

B
C2SingletonC may be
called from command line

C Ensures output class
is final and eliminates
bad input classes

D
Ensures WeakReference
is imported

E Prepends prefix
with Singleton

FSets superclass to
be the input class

GDeclares a
static field

184 CHAPTER 8

Design patterns
 protected final String generateConstructors() {
 String result = "";
 Constructor[] cArray = inputClassObject.getDeclaredConstructors();
 String code = " if (singleton!=null && singleton.get()!=null)\n" +
 " throw new RuntimeException("
 + "\"Singleton constructor failure\");\n" +
 " singleton = new WeakReference(this);\n";
 if (cArray.length != 0) {
 for (int i = 0; i < cArray.length; i++) {
 result += "private "
 + Mopex.createRenamedConstructor(cArray[i],
 outputClassName,
 code);
 }
 numberOfConstructors = cArray.length;
 } else {
 result = "private " + outputClassName + "() {" + code + "}\n";
 numberOfConstructors = 1;
 }
 return super.generateConstructors() + result;
 }

 protected String generateMethods()
{

 String result = "";
 Constructor[] cArray = inputClassObject.getDeclaredConstructors();
 if (cArray.length != 0) {
 for (int i = 0; i < cArray.length; i++) {
 Class[] pta = cArray[i].getParameterTypes();
 String fpl = Mopex.formalParametersToString(pta);
 String apl = Mopex.actualParametersToString(pta);
 Class[] eTypes = cArray[i].getExceptionTypes();
 int modifiers = cArray[i].getModifiers();
 result += "static " + Modifier.toString(modifiers) + " "
 + outputClassName + " getInstance(" + fpl + ")\n";
 if (eTypes.length != 0) {
 result
 += " throws " + Mopex.classArrayToString(eTypes)
 + "\n";
 }
 result += "{\n"
 + " if (singleton==null || singleton.get()==null)\n"
 + " new " + outputClassName + "(" + apl + ");\n"
 + " return (" +outputClassName+ ")singleton.get();\n"
 + "}\n";
 }
 } else {
 result = " static " + outputClassName + " getInstance() {\n"
 + " if (singleton==null || singleton.get()==null)\n"
 + " singleton = new " + outputClassName + "();\n"
 + " return (" + outputClassName + ")singleton.get();\n"
 + " }\n";

H Mirrors the constructors
of the input class

I
Generates a getInstance
method for each constructor

Singleton 185
 }
 return super.generateMethods() + result;
 }

 protected void checkPostconditions() {

 super.checkPostconditions();
 if (outputClassObject.getDeclaredConstructors().length
 != numberOfConstructors)
 throw new C2CException("non-Singleton constructors added");
 }
}

Let’s examine each of the methods defined by C2SingletonC:

b The presence of the typical main method indicates C2SingletonC may be called
from the command line.

c The checkAndProcessArgs override ensures that the input class is not an inter-
face, serializable, or cloneable for reasons given previously.

d The generated code uses WeakReference, which is imported from java.lang.ref.

e The default prefix is prepended with Singleton.

f The generated code is declared to be a subclass of the input class.

g A static field is declared that contains a weak reference to the singleton.

h Each constructor of the input class is replicated in the generated code with a pri-
vate constructor that creates the singleton if it does not exist. If the constructor is
called and a singleton exists, something has gone wrong (most likely, another
transformation has added code that called a constructor rather than getInstance).

i Corresponding to each constructor, a getInstance method is added that
returns the singleton if it exists and returns a newly created one if it does not exist.

j The number of constructors is counted both during the transformation pro-
cess and after the generated class is loaded. If the counts are different, some other
transformation has added a constructor that C2SingletonC has not seen. This is an
incompatibility for which an exception is raised.

Suppose we have a Dog class defined as follows:

public class Dog {
 public Dog(Object obj) {}
}

J
Ensures no other transformation
has added a constructor

186 CHAPTER 8

Design patterns
Listing 8.2 shows a class SingletonDog generated by C2SingletonC.

import java.lang.ref.*;
public final class SingletonDog
 extends Dog
{
//============= F I E L D S ======================
static private WeakReference singleton = null;

//============= C O N S T R U C T O R S ==========
private SingletonDog(java.lang.Object p0)
{
 super(p0);
 if (singleton!=null && singleton.get()!=null)
 throw new RuntimeException("Singleton constructor failure");
 singleton = new WeakReference(this);
}

//============= M E T H O D S ====================
static public SingletonDog getInstance(java.lang.Object p0)
{
 if (singleton==null || singleton.get()==null)
 new SingletonDog(p0);
 return (SingletonDog)singleton.get();
}

//============= N E S T E D C L A S S E S ======
}

C2SingletonC is not the only way to apply the Singleton pattern. Here are two
variations:

■ You can create a Singleton class that can be extended—This could be done by
changing C2SingletonC to create protected constructors and to not make
the generated class final. Some complications arise in doing so, because the
Singleton property is inherited. This implies that if Y is a direct subclass of
SingletonX and an instance of Y is created, that instance counts as the single
instance of SingletonX and no other instance of Y is created. Further, if Z is
another direct subclass of SingletonX, no instances of Z can be created
while the instance of Y exists. This is because the instance of Y is the single-
ton for SingletonX, and if simultaneously an instance of Z exists, there
would exist two instances of SingletonX. Note that enforcement is handled
by having all constructors throw an exception in the case where they are

Listing 8.2 Example of the use of C2SingletonC on the class Dog

Decorator class-to-class transformations 187
called when an instance exists. That is, a call to a constructor when an
instance exists could not come from a getInstance method.

■ In the version presented here, you can call a getInstance method with one set of
parameters and receive an object constructed with another set of parameters or by a
different constructor—This arrangement may not always be reasonable.
Rather than have a number of getInstance methods that call constructors,
you could generate a Singleton class that creates the singleton in the initial-
izer of the static field by calling a particular constructor (which would be
specified in a command-line parameter). There would be only one get-
Instance with no parameters that returns this statically constructed
instance. Note that while this resolves construction discrepancies, it
removes the ability to have the instance garbage collected.

The point of presenting these two variations is that pattern application is not stan-
dard. If there were only one universal way to apply a pattern, the underlying con-
cept would likely be incorporated into your programming language. On the other
hand, if you or your group agrees about a standard way to apply a pattern, a trans-
formation can be written to make applying the pattern easy.

8.2 Decorator class-to-class transformations

The Decorator pattern adds additional functionality to objects by having its code
executed before or after method calls on the objects. Chapter 4 presented a num-
ber of examples of one style of applying the Decorator pattern in which the code
for the additional functionality is part of the invocation handler of a proxy
instance. Alternatively, the Decorator pattern may be applied with a subclass that
cooperatively overrides methods with the appropriate decoration code. Class
invariant checking qualifies as a good example, because the boolean method that
encodes the class invariant is executed before and after every method execution.
Section 5.5 explained the importance of class invariant checking and also showed
how to properly code invariant checking to avoid infinite recursion. This section
demonstrates how to write a class-to-class transformation for applying the Decora-
tor pattern. In particular, the problem of class invariant checking is used again to
permit you to contrast this technique with the earlier one.

Figure 8.2 depicts the basic notions implemented in the transformation
C2InvariantCheckingC. Basically, an input class X is subclassed. Each instance
method of X is overridden so that the invariant is checked before and after the
super call to the instance method. In addition, a method is added to perform the
check of the invariant while avoiding infinite recursion.

188 CHAPTER 8

Design patterns
Listing 8.3 contains the code for the transformation C2InvariantCheckingC. It is a
subclass of C2IdentitySubclassOfC, which was introduced in chapter 7. As such,
the output class generated by C2InvariantCheckingC has all of the constructors of
the input class. Note that the transformation does not establish that the invariant
is true after contruction is complete; doing so requires a small code change that is
left to the reader.

package c2c;
import java.lang.reflect.*;
import mopex.*;

public class C2InvariantCheckingC extends C2IdentitySubclassOfC {

 protected Method invMethod;

 static public void main(String[] args) {
 new C2InvariantCheckingC().createClass(args);
 }

 protected String generateClassNamePrefix() {
 return "InvariantChecking" + super.generateClassNamePrefix();
 }

Listing 8.3 The C2InvariantCheckingC transformation

if (checkInvariant is already

 on the call stack)

 return true;

return invariant()

assert(checkInvariant())

result = super.method(...)

assert(checkInvariant())

return resultInvariantCheckingX

method(...) : ...

- checkInvariant () : boolean

X

method(...) : ...

Figure 8.2 Design for the outcome of the use of the C2InvariantCheckingC transformation

Decorator class-to-class transformations 189
 protected void checkAndProcessArgs(Args args) {
 super.checkAndProcessArgs(args);

 try {
 invMethod = inputClassObject.getMethod("invariant", null);
 } catch(NoSuchMethodException e){
 throw new C2CException(e);
 }
 if (invMethod.getReturnType() != boolean.class)
 throw new C2CException("invariant return not boolean");

 if (inputClassObject.getPackage() != null) {
 if (!inputClassObject.getPackage().getName().equals(packageName))
 throw new C2CException("input class in different package");
 } else if (packageName != null) {
 throw new C2CException("Input class in different package");
 }

 if (Mopex.getMethodsLackingImplementation(inputClassObject).length!=0)
 setAbstract();
 }

 protected String generateMethods() {

 int mods = Modifier.STATIC | Modifier.ABSTRACT
 | Modifier.FINAL | Modifier.PRIVATE;

 Method[] nsMethods = Mopex.selectMethods(inputClassObject,
 0,
 mods,
 Object.class);

 String result = generateCheckInvariant();

 String wrapperCode
 = " assert checkInvariant() : \"invariant failure\";\n";
 for (int i = 0; i < nsMethods.length; i++) {
 if (!invMethod.equals(nsMethods[i])) {
 int mods2 = Mopex.getModifiersWithout(nsMethods[i],
 Modifier.NATIVE);
 result += Modifier.toString(mods2) + " "
 + Mopex.createCooperativeWrapper(nsMethods[i],
 wrapperCode,
 wrapperCode);
 }
 }
 return super.generateMethods() + result;
 }

 private String generateCheckInvariant() {
 return "private boolean checkInvariant() {\n"
 + " StackTraceElement[] ste\n"
 + " = (new Throwable()).getStackTrace();\n"
 + " String className = this.getClass().getName();\n"

B Performs checks
on input class

C
Overrides all methods
that can be overridden

D Uses call stack
introspection to
avoid infinite
recursion

190 CHAPTER 8

Design patterns
 + " String mName = \"checkInvariant\";\n"
 + " for (int i = 1; i < ste.length; i++) {\n"
 + " if (ste[i].getClassName().equals(className)\n"
 + " && ste[i].getMethodName().equals(mName))\n"
 + " return true;\n"
 + " }\n"
 + " return this.invariant();\n"
 + "}\n";
 }
}

The transformation in listing 8.3 has the following notable features:

b Three checks are performed in the override of checkAndProcessArgs.

■ The transformation must check for the method named invariant that has
no parameters and returns a boolean. Note that the use of getMethod
implies that the invariant method must be public.

■ The transformation assumes that the generated output class is in the same
package as the input class. This reasonable assumption simplifies the code
generation in several ways. For example, an import statement does not have
to be generated.

■ If any of the methods lack an implementation, the output class is declared
abstract. The check is performed using getMethodsLackingImplementation,
which is another method added to the Mopex class in listing 8.5.

c In generateMethods, selectMethods (listing 8.6) is used to identify all methods
that can be overridden. That is, selectMethods finds all the methods that are nei-
ther static nor final nor abstract nor private. This criterion is adequate because
the output class is in the same package as the input class (otherwise, methods
with package visibility cannot be overridden). The overrides are generated by
createCooperativeWrapper, which is defined in listing 8.10 as part of Mopex. This
method, createCooperativeWrapper, creates an override for the method that is
specified by the first argument. The second and third arguments specify code
fragments that are placed before and after the super call. The variable wrapper-
Code is initialized with the statement that checks the invariant using the private
method checkInvariant. This code uses an assert statement to check the value
returned by checkInvariant. Note that the -enableassertions (or -ea) switch
must be set on the java command line to actually have the invariant checked.
The methods introduced by Object are not overridden by the transformation

Decorator class-to-class transformations 191
because they are not expected to have side effects (that is, these methods should
not invalidate class invariants). For efficiency purposes, the transformation does
not override invariant with an invariant check. This is accomplished with a sim-
ple test in generateMethods.

d The generated checkInvariant method uses call stack introspection to avoid
an infinite recursion if the invariant method calls another method defined by the
input class. This pitfall is explained in chapter 5.

Note that C2InvariantCheckingC provides a best effort for checking invariants.
For example, static methods cannot be overridden and, therefore, the transfor-
mation does not attempt to provide an invariant check when static methods are
called. Invariants can involve static fields. Consequently, this transformation does
not provide a complete solution to checking invariants.

There are several differences between this subclassing style of applying a pat-
tern and the proxing style presented in chapter 4. The first and obvious differ-
ence is that the subclassing style adds the property to all instances of the class,
while the proxing style adds the property to selective instances. A subtler differ-
ence involves the control over instance creation that is needed. With the proxing
style, a programmer need not control the code that instantiates the target object.
The programmer needs only the ability to intercede in the passing of the target
reference to the client code (at which time a reference to the proxy instance may
be substituted for the target reference). With the subclassing style, the program-
mer must be in control of the code for instance creation, because it is the subclass
that must be used for instantiation. Without this level of control, the subclassing
style loses much of its value (an interesting way to mitigate this situation is dis-
cussed in section 8.4).

The following listings define the new methods of Mopex that are used in the
implementation of C2InvariantCheckingC. In total, the code for C2Invar-

iantCheckingC plus the supporting Mopex method may seem large. Indeed, some
of these methods are used only once in this book. However, our experience shows
that the methods have broader applicability in other transformations or other
tasks requiring reflection. This is why these methods are placed in Mopex rather
than being a private method in the class that uses them.

In addition, several of the methods that follow use the unique queue class
(UQueue) that was presented in section 7.5. Listing 8.4 presents a handy method
that removes unwanted modifiers from a set of modifiers. When you generate an
implementation for an abstract method, getModifersWithout is used to remove
the abstract modifier, which would cause a compilation error if it were to remain.

192 CHAPTER 8

Design patterns
 public static int getModifiersWithout(Method m, int unwantedModifiers)
{

 int mods = m.getModifiers();
 return (mods ^ unwantedModifiers) & mods;
 }

Listing 8.5 contains the implementation of getMethodsLackingImplementation. In
order for a method to lack an implementation, the method must be declared
abstract (in a class or interface) and must not be subsequently defined (in a class).
Basically, getMethodsLackingImplementation compiles two queues. The first is a
queue of methods that are declared abstract. The second is a queue of methods
that are not declared abstract (that is, have implementations). Then, if any method
in the first queue does not appear in the second, that method lacks an implemen-
tation. Both queues are created by calls to selectMethods0, which is a private
method of Mopex that is defined in listing 8.6. The identifier equalSignatures-
Method refers to a static Method field that is defined and initialized in listing 8.7.

 public static Method[] getMethodsLackingImplementation(Class cls) {
 UQueue imq = selectMethods0(cls,
 0,
 Modifier.ABSTRACT,
 null);
 UQueue amq = selectMethods0(cls,
 Modifier.ABSTRACT,
 0,
 null);
 UQueue rmq = new UQueue(Method.class, equalSignaturesMethod);
 for (int i = 0; i < amq.size(); i++){
 Method rm = (Method)amq.elementAt(i);
 if (!imq.contains(rm))
 rmq.add(rm);
 }
 return (Method[])rmq.toArray();
 }

Listing 8.6 shows the implementation of selectMethods. There are two public
versions that each return a Method array and a private version for use within
Mopex that returns a unique queue of method objects. The two int parameters
hold Modifier bit vectors. The first (mustHave) specifies modifiers that the

Listing 8.4 getModifiersWithout, a method of Mopex

Listing 8.5 getMethodsLackingImplementation, a method of Mopex

Decorator class-to-class transformations 193
selected methods must have. The second parameter (mustNotHave) specifies
modifiers that the selected methods must not have. For example, in getMethods-
LackingImplementation, selectMethods0 is used twice: once to collect all of the
abstract methods and once to collect all of the methods that are not abstract.
The entire inheritance graph of both classes and interfaces is used to select
methods. The fourth parameter (limit) is used to prune the upper part of the
superclass chain. Usually, the limit parameter is used to eliminate the methods
of java.lang.Object.

 public static Method[] selectMethods(Class cls,
 int mustHave,
 int mustNotHave) {
 return (Method[])selectMethods0(cls,
 mustHave,
 mustNotHave,
 null).toArray();
 }

 public static Method[] selectMethods(Class cls,
 int mustHave,
 int mustNotHave,
 Class limit) {
 return (Method[])selectMethods0(cls,
 mustHave,
 mustNotHave,
 limit).toArray();
 }

 private static UQueue selectMethods0(Class cls,
 int mustHave,
 int mustNotHave,
 Class limit) {
 UQueue mq = new UQueue(Method.class, equalSignaturesMethod);
 Class[] ca = selectAncestors(cls,0,0,limit);
 for (int j = 0; j < ca.length; j++){
 Method[] ma = ca[j].getDeclaredMethods();
 for (int i = 0; i < ma.length; i++) {
 int mods = ma[i].getModifiers();
 if (((mods & mustHave) == mustHave)
 && ((mods & mustNotHave) == 0))
 mq.add(ma[i]);
 }
 }
 return mq;
 }

Listing 8.6 selectMethods, a method of Mopex

194 CHAPTER 8

Design patterns
The implementation of selectMethods requires a comparison of Method objects
for signature equality. This comparison is performed with equalSignatures, a
method of Mopex that is presented in listing 8.7. Note that a minor optimization is
performed in listing 8.7. A static initializer is used to set the value of a static field
equalSignaturesMethod, which selectMethods0 uses to construct the UQueue.

 static private Method equalSignaturesMethod;

 static {
 Class[] fpl = { Method.class, Method.class };
 try {
 equalSignaturesMethod = Mopex.class.getMethod("equalSignatures",
 fpl);
 } catch(NoSuchMethodException e){
 throw new RuntimeException(e);
 }
 }

 public static boolean equalSignatures(Method m1, Method m2){
 if (!m1.getName().equals(m2.getName())) return false;
 if (!Arrays.equals(m1.getParameterTypes(),
 m2.getParameterTypes()))
 return false;
 return true;
 }

The implementation of selectMethods also requires a list of all of the classes from
which the specified class can inherit methods and all of the interfaces that con-
tribute method declarations. The selectAncestors method in listing 8.8 provides
that capability.

 public static Class[] selectAncestors(Class cls,
 int mustHave,
 int mustNotHave) {
 return selectAncestors(cls, mustHave, mustNotHave, null);
 }

 public static Class[] selectAncestors(Class cls,
 int mustHave,
 int mustNotHave,
 Class limit) {
 UQueue cq = new UQueue(Class.class);
 if (!cls.isInterface()) {

Listing 8.7 equalSignatures, a method of Mopex

Listing 8.8 selectAncestors, a method of Mopex

Decorator class-to-class transformations 195
 for (Class x = cls; x != limit; x = x.getSuperclass()){
 int mods = x.getModifiers();
 if (((mods & mustHave) == mustHave)
 && ((mods & mustNotHave) == 0))
 cq.add(x);
 }
 }
 Class[] ca = getAllInterfaces(cls, limit);
 for (int i = 0; i < ca.length; i++) {
 int mods = ca[i].getModifiers();
 if (((mods & mustHave) == mustHave)
 && ((mods & mustNotHave) == 0))
 cq.add(ca[i]);
 }
 return (Class[])cq.toArray();
 }

Because the interfaces contributing to a class form a directed acyclic graph, the
algorithm to find a unique list of these interfaces is more complex than that of find-
ing all of the superclasses. Listing 8.9 shows a depth-first search for these interfaces.

 public static Class[] getAllInterfaces(Class cls, Class limit) {
 assert(limit == null
 || (!limit.isInterface() && !limit.isPrimitive()));
 UQueue cq = new UQueue(Class.class);
 if (cls.isInterface())
 cq.add(cls);
 for (Class x = cls; x != null && x != limit; x = x.getSuperclass())
 getInterfaceSubtree(x, cq);
 return (Class[])cq.toArray();
 }

 private static void getInterfaceSubtree(Class cls, UQueue cq) {
 Class[] iArray = cls.getInterfaces();
 for (int j = 0; j < iArray.length; j++) {
 cq.add(iArray[j]);
 getInterfaceSubtree(iArray[j], cq);
 }
 }

Listing 8.10 presents the Mopex method createCooperativeWrapper. This method
is handy for generating overrides that decorate a super call with actions before
and after the call.

Listing 8.9 getAllInterfaces, a method of Mopex

196 CHAPTER 8

Design patterns
 public static String createCooperativeWrapper(Method m,
 String code1,
 String code2) {
 Class[] pta = m.getParameterTypes();
 Class retType = m.getReturnType();
 String fpl = formalParametersToString(pta);
 String apl = actualParametersToString(pta);
 Class[] eTypes = m.getExceptionTypes();
 String result
 = retType.getName() + " " + m.getName() + "(" + fpl + ")\n";
 if (eTypes.length != 0)
 result += " throws " + classArrayToString(eTypes) + "\n";
 result += "{\n" + code1 + " ";
 if (retType != void.class)
 result += retType.getName() + " cooperativeReturnValue = ";
 result += "super." + m.getName() + "(" + apl + ");\n";
 result += code2;
 if (retType != void.class)
 result += " return cooperativeReturnValue;\n";
 result += "}\n";
 return result;
 }

Now that we have presented the C2InvariantCheckingC transformation, there are
several decision issues to ponder:

■ The solution implemented by the transformation uses inheritance rather than delega-
tion—This fails to capture one facet of the intent of the Decorator pattern,
which is:

“Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functional-
ity.” [38]

The solution fails to provide the ability to add or remove invariant checking
dynamically. Of course, if you always want the invariant checked, the trans-
formation provides an adequate solution. On the other hand, if Java sup-
ported dynamic reclassification (that is, the capability to dynamically
change the class of an object, for example, see [24]), then the solution
would fulfill the dynamic facet of the intent of the Decorator pattern.

■ Once an invariant checking subclass has been created, all of its subsequent subclasses
also check invariants—This implies that the same class invariant must hold
down the inheritance hierarchy. In addition, C2InvariantCheckingC may be

Listing 8.10 createCooperativeWrapper, a member of the Mopex class

Proxy (again) 197
used to generate invariant checking subclasses further down in the inherit-
ance hierarchy. This implies that class invariants may only be strengthened
(which is a cornerstone of the Eiffel programming language; see Eiffel: The
Language [70]).

This section showed how to create a transformation for a very specific decoration
of a class. If you wish, a more general transformation that directly supports the
Decorator pattern is possible. Such a transformation would have command-line
parameters for the code to be executed before and after method invocations. The
specification (and not the implementation) would follow the scheme described in
[32] (which is repeated in chapter 8 of Putting Metaclasses to Work [33]).

8.3 Proxy (again)

Chapter 4 presented the use of java.lang.reflect.Proxy to implement a number
of design patterns. This section presents a transformation that implements the
Proxy pattern. That is, given an input class object (representing an interface), the
transformation generates a class supporting that interface in which the imple-
mentation of each method forwards all calls to a target object. In effect, this

target = t

return target.method(...)
ProxyForX

- target : X

method(...) : ...
ProxyForX(t : X)

«interface»
X

method(...) : ...

Figure 8.3 Design for the outcome of the use of the C2ProxyForC transformation

198 CHAPTER 8

Design patterns
transformation replicates the workings of java.lang.reflect.Proxy. This trans-
formation generates code to replace dynamic proxies (which forward calls with
the invoke method of Method) with faster static proxies (which forward calls with
compiled method invocations). For example, a good candidate for such replace-
ment may be a scheme for dynamic class replacement similar to what is presented
in section 6.4.

Figure 8.3 show the design for the transformation C2ProxyForC. The gray area
highlights the result of the transformation. The basic concept is simple: have one
constructor that sets the target of the proxy instance, and implement each
method to forward the call to the target.

Listing 8.11 presents the code for the C2ProxyForC transformation, which fol-
lows the design in figure 8.3.

package c2c;
import java.lang.reflect.*;
import mopex.*;

public class C2ProxyForC extends C2CTransformation {

 static public void main(String[] args) {
 new C2ProxyForC().createClass(args);
 }

 protected String generateClassNamePrefix() {
 return "ProxyFor" + super.generateClassNamePrefix();
 }

 protected void checkAndProcessArgs(Args args) {
 super.checkAndProcessArgs(args);

 if (!inputClassObject.isInterface())
 throw new C2CException("input class is not an interface");
 }

 protected UQueue generateInterfaces() {
 return super.generateInterfaces().add(inputClassName);
 }

 protected String generateFields() {
 return super.generateFields()
 + " private " + inputClassName + " target;\n"
 + " private static final String targetClassName = \""
 + qualifiedInputClassName + "\";\n";
 }

 protected String generateConstructors() {
 return super.generateConstructors()

Listing 8.11 The C2ProxyForC transformation

B Ensures that the input
class is an interface

Places the name of the input
class in the list for implements

C

D
Generates declarations
for two private fields

E
Creates a constructor
that initializes the target

Proxy (again) 199
 + outputClassName + "(" + inputClassName + " tgt) {\n"
 + " target = tgt;\n"
 + "}\n";
 }

 protected String generateMethods() {
 String result = "";
 Method[] methods = Mopex.selectMethods(inputClassObject,
 Modifier.PUBLIC,
 Modifier.STATIC,
 java.lang.Object.class);
 for (int i = 0; i < methods.length; i++) {
 int mods = Mopex.getModifiersWithout(methods[i],
 Modifier.NATIVE
 | Modifier.ABSTRACT);
 result += " " + Modifier.toString(mods) + " "
 + Mopex.headerSuffixToString(methods[i]) + "{\n";
 Class[] fpl = methods[i].getParameterTypes();
 String apl = Mopex.actualParametersToString(fpl);
 if (methods[i].getReturnType() == void.class) {
 result += " target."
 + methods[i].getName()
 + "(" + apl + ");\n";
 } else {
 result += " return target."
 + methods[i].getName()
 + "(" + apl + ");\n";
 }
 result += " }\n";
 }
 result +=
 " public boolean equals(Object obj) {\n" +
 " return target.equals(obj);\n" +
 " }\n" +
 " public int hashCode() {\n" +
 " return target.hashCode();\n" +
 " }\n" +
 " public String equals() {\n" +
 " return target.toString();\n" +
 " }\n";
 return super.generateMethods() + result;
 }

 protected void checkPostconditions(){
 if (outputClassObject.getDeclaredConstructors().length != 1)
 throw new C2CException("a proxy has only one constructor");
 super.checkPostconditions();
 }
}

F
Creates an implementation for
each method in the interface

G Ensures that no other
transformation adds a constructor

200 CHAPTER 8

Design patterns
There is very little subtlety in this transformation. Let’s look at the details:

b checkAndProcessArgs ensures that the input class is an interface.

c generateInterfaces places the name of the input class in the list for the imple-
ments clause.

d generateFields ensures that there are two private fields. One is an instance
variable for holding the target of the proxy object. The other is a static for conve-
niently determining the type of the target objects.

e generateConstructors creates a one-parameter constructor that initializes
the target.

f generateMethods creates an implementation for each method in the interface.
In addition, overrides are generated for equals, hashCode, and toString, all of
which are forwarded to the target; this parallels the workings of
java.lang.reflect.Proxy. Each implemented the method forwards each call with
a statically compiled invocation.

g The override of checkPostConditions ensures that no other transformation
adds a constructor. Such a constructor is likely to cause an error, because it would
not initialize the target instance variable.

This simple transformation has a limitation. It fails to produce compilable code if
the input interface declares either equals, hashCode, or toString with the same
signature as Object, because these methods become doubly declared. We leave it
to you to correct this limitation.

The restriction that the input class file represents a Java interface steers us clear
of many problems. For example, suppose the input class file represents a Java
class. The generated output class must extend (subclass) that input class, because
a proxy instance must be assignable to any entity of the type of the input class. But
subclassing implies that the instance variables of the input class are inherited.
These instance variables are vestigial in the sense that they have no meaning in
the proxy. However, the fact that their initializers do get called in the context of
the proxy instance can be a cause for concern.

The C2ProxyForC transformation is narrowly focused. It generates a class that
applies the Proxy pattern for the purposes of hiding the location of the target
object. Because the code that forwards method calls is a local method call, the
hidden target must reside in the same address space as the proxy instance. This
could, of course, be changed by using a different version of the transformation.
Although C2ProxyForC is simple, it has its uses, for example, when you wish to

Problematic issues in writing class-to-class transformations 201
dynamically change the implementation of an object (which is a problem that is
addressed in chapter 6).

It is worthwhile to compare the C2C framework with java.lang.reflect.Proxy.
As an example of the former, C2ProxyForC is a specific transformation with one
purpose: to hide the location of the target. The latter, java.lang.reflect.Proxy,
produces proxy instances that may do the job of a number of transformations (for
example, invariant checking) depending on what the invocation handler does.
This highlights the difference between the two facilities. With the C2C framework,
variation is achieved with the implementation (and composition) of small trans-
formations. With Proxy, variation is achieved through the implementation and
composition of different invocation handlers. The C2C framework is more mallea-
ble (for example, the coding of a singleton is not a problem amenable to a solu-
tion with Proxy). On the other hand, Proxy usually requires less code. Each has its
own performance advantages. The use of the invoke method of Method in the
invocation handler is much slower than using a compiled method call (a fact that
we demonstrate in chapter 9). But if proxy classes must be dynamically generated,
Proxy can create proxy classes faster than code generation.

8.4 Another composition feature

The classes generated by C2ProxyForC create simple proxies. That is, their
instances hide the reference to the target and forward method calls but add no
new functionality. This is different from the use of java.lang.reflect.Proxy in
chapter 4, where we demonstrated how proxy instances can add new functionality.
On the other hand, section 8.2 demonstrates how to create a transformation that
adds functionality via subclassing. This leads to a very pleasing composition fea-
ture. A class generated by C2ProxyForC may be decorated by a subclassing transfor-
mation. For example, given an interface Squirrel, C2ProxyForC can generate
ProxyForSquirrel. Subsequently, you can use C2InvariantCheckingC to generate
the InvariantCheckingProxyForSquirrel class (the -output parameter defined in
section 7.2.3 may be used to give this class a more pleasing name). This composi-
tion feature mitigates the problem of having a great subclassing transformation
but no ability to use it on a class declared to be final.

8.5 Problematic issues in writing
class-to-class transformations

This chapter and the previous chapter are dedicated to reflective code genera-
tion—more specifically, class-to-class transformations. This extensive coverage is

202 CHAPTER 8

Design patterns
needed because code generation is the main tool used to circumvent the limita-
tions of Java reflection with respect to intercessional features. But code genera-
tion does have its problems. Before leaving this topic, let’s summarize the Java
features that cause difficulty in code generation.

■ Final classes and final methods—Some transformations (for example,
C2ExtentManagedC in listing 7.7 on page 160) attempt to create a subclass of
the input class. This cannot be done if the input class is declared final.
Even if the input class is not final, some methods may be declared final,
which may also make the transformation impossible to apply if a final
method needs to be overridden. In some circumstances (for example, when
applying the Decorator pattern), you may employ a delegation strategy that
uses a proxy, as is done in chapter 4 or as alluded to in section 8.4.

■ Static methods—Private instance variables may be accessed by a static method
if it is passed an object reference. This kind of variable access breaks encap-
sulation in such a way that the reflective programmer has no opportunity to
intercede. For example, a call to such a static method could violate an
invariant. Our invariant-checking transformation does not generate code to
quickly detect the violation.

■ Public fields—When creating a subclass of the input class, public fields are
very problematic for a transformation, because there is no way to intercede
on access to a public field. Java correctly does not allow a subclass to reduce
the access permissions of inherited methods, which means if the input class
declares an instance variable public, a transformation that creates a subclass
cannot change that declaration. However, public fields break encapsula-
tion. The only way to reestablish encapsulation is with a delegation strategy
that presents a proxy to a client.

■ equals—A transformation must take care to handle equals properly. This is
required even if the input is an interface. A change to equals requires a
change to hashCode (proper Java programming requires that two equal
objects have the same hash code). In addition, if Comparable is imple-
mented, the implementation of compareTo must be consistent with equals.

■ RuntimeException and Error—The handling of runtime exceptions and
errors is also problematic, because they are not declared by the input class.
The programmer of a transformation needs to understand whether to han-
dle them or pass them on.

Problematic issues in writing class-to-class transformations 203
■ Constructors—Generating constructors for a class is usually simple (as in
C2ExtentManagedC), but there are times when it can get complex. For
example, in the C2SingletonC transformation, a factory method is gener-
ated for each constructor, but it is unclear whether you should be allowed
to call a factory method with arguments when a singleton exists.

■ Nested classes—The C2C framework does not allow transformation of a
nested class. The topic of nested classes by itself is complex. Trying to cope
with nested classes makes the transformations so complex that there does
not appear to be a reasonable return on investment.

■ Data inheritance—Situations arise when you would prefer to transform an
interface rather than a class or an abstract class. Such situations occur when
you create a subclass where the inherited fields have no meaning. For exam-
ple, C2ProxyForC restricts the input class to be an interface. There is a
strong temptation to eliminate this restriction. You should resist this
temptation because to be substitutable, the generated proxy class must be a
subclass of the input class. This raises the nasty question of how to handle
any inherited instance variables. For an object that must forward methods,
these instance variables have no meaning, but they exist and there is no way
to get rid of them.

■ Inheritable properties—Various properties of an input class must also be
properties of the output class if a transformation generates a subclass. For
example, if the input class is Cloneable, then the output class must be Clo-
neable, too. The same is true for Serializable, Runnable, Comparable, and
so on. At times, method inheritance takes care of the situation and there is
nothing you need to do. At other times, the nature of the transformation
dictates that you must consider issues specific to the transformation. For
example, C2SingletonC does not subclass a Cloneable class, because the sin-
gleton property is in conflict with the cloneable property.

■ Multiple execution of code added by transformations—In using class-to-class
transformations, you must take care when transforming both a class and
one of its subclasses. This can lead to undesired multiple executions of the
code added by the transformation.

This is a good, but not comprehensive, list of the problematic issues. Many of
them have the same underlying cause. The type checking of the compiler is pro-
grammed as if a subclass implements a subtype. This complex topic is covered
excellently in Barbara Liskov and John Guttag’s Program Development in Java [62].

204 CHAPTER 8

Design patterns
Suffice it to say that the better transformations do not fool the compiler by gener-
ating subclasses that are not subtypes.

8.6 Summary

Understanding how to apply design patterns makes you a better designer of
object-oriented applications. This chapter presented a set of code-generation
tools, class-to-class transformations, for quickly applying a pattern. Such tools do
not characterize the pattern as much as they capture a particular style of applying
the pattern. Introspection is particularly important in this kind of code

UQueue

Args

Uses

GeneratedBy

C2InvariantCheckingC

Uses

Uses

C2CExceptionC2IdentitySubclassOfC

C2SingletonC

C2ProxyForC

C2CTransformation

C2CConstructor

HelloWorldConstructor

C2C

C2ExtentManagedC

Figure 8.4 Complete class diagram for the class-to-class transformation framework. The classes added
to the framework in this chapter are displayed in the gray area.

Summary 205
generation because introspection allows the code generator to examine the con-
text in which the pattern is applied and properly adapt the code to be generated.

We chose to present transformations for Singleton, Decorator, and Proxy,
because they are among the easiest patterns to support with transformations. Six
other of the twenty-three presented in Design Patterns [38] have the potential to be
supported with a class-to-class transformation. Of these, five—Flyweight,
Memento, Prototype, Chain of Responsibility, and Builder—have effective sup-
port with a transformation (see [34]). The sixth, Adaptor, requires so much ancil-
lary information to apply the pattern that writing a transformation does not
produce a useful tool. There are many software design patterns; in fact, there is
The Patterns Almanac 2000 [77]. How many of these are amenable to being sup-
ported with class-to-class transformations is an open question.

This concludes the two-chapter sequence on class-to-class transformations. Fig-
ure 8.4 contains the class diagram for the framework as presented in this book.
After two chapters, it is easy to forget that there are two primary reasons for intro-
ducing class-to-class transformations. First, they are a concrete problem that allows
us to exercise our understanding of the Java reflection API. Second, code genera-
tion is the main tool for circumventing the limitations of the Java reflection API.

Evaluating performance
Evaluating performance

In this chapter

■ How to use microbenchmarks
to time reflective code

■ How to assess the performance impact
of the use of reflection during design
207

208 CHAPTER 9

Evaluating performance
The flexibility achieved by reflection in Java is attained to a large extent by delay-
ing the binding of names. That is, the binding of names (of methods, fields, and
so on) that is normally done by the compiler is delayed until runtime. This
delayed binding has a performance impact in the form of searches and checks
executed at runtime. As an example of the former, getMethod must search the
inheritance hierarchy for the appropriate method object. An example of the lat-
ter is Method.invoke,1 which must check accessibility. This is not a negative state-
ment; it is merely an observation of the trade-off involved in the use of reflection.

The purpose of this chapter is to show you how to measure the performance of
reflection. As Java evolves, as computer architecture progresses, and as circuit fea-
tures contract, the performance trade-offs will change. Understanding how to
make the design decisions is a skill that outlasts memorizing the performance
numbers for a particular platform.

In chapter 5, George was assigned to write an invariant-checking facility.
George is now interested in refactoring the checkInvariant calls into one place.
This refactoring will improve readability, which lowers maintenance costs. His
understanding of reflection gives him two design alternatives:

1 He can use java.lang.reflect.Proxy with an invocation handler that
wraps the Method.invoke that forwards the method with calls to check-
Invariant.

2 He can use the C2InvariantCheckingProxyForC transformation (see
section 8.4) that calls checkInvariant before and after forwarding the
method. (Note that he does not want to use C2InvariantCheckingC
directly, because he cannot rearrange the inheritance hierarchy to avoid
duplicate calls to the invariant method.)

In the application, classes that check invariants have interfaces and have
instances created only in factory methods. This means that the refactoring will be
relatively easy. George also knows that the application currently satisfies its per-
formance requirements.

George prefers the first alternative because there is less code to write. Before
he performs this refactoring, George would like to have some idea that, after the
refactoring, his application will still satisfy its performance requirements. This

1 Because both Method and InvocationHandler have an invoke method, just writing invoke is confus-
ing and can be ambiguous. The phrase “the invoke method of Method” leads to some ugly sentences.
In this chapter, we use Method.invoke to mean “the invoke method of Method.” Unqualified uses of
invoke denote the invoke method of an invocation handler.

Categorizing performance impact 209
chapter shows how to write programs to make the measurements required for
such design decisions and how to go about the analysis.

9.1 Categorizing performance impact

The impact on performance associated with the use of Java reflection can be
divided into three categories. It is important to understand these categories
because each impacts the performance of an application at different times. Con-
sequently, each may matter more or less in design decisions depending on the
application. Let’s define the categories:

■ Construction overhead—The time it takes to perform modifications to a class
object during its construction. This may manifest itself in extra latency for
constructing a proxy class or instance. It may also take place during
dynamic loading and reflective construction of a delegate. For our transfor-
mation framework, construction overhead takes place during the running
of the transformation and the compilation of the new class, in addition to
dynamic loading and construction. Normally, this is just a one-time cost.

■ Execution overhead—The extra time added to the services supplied by an
object/component because of its reflective features. For example, this is the
extra time it takes to call a method using Method.invoke compared to a
compiled call. Another example is the added latency of forwarding method
calls through a proxy. Generally, execution overhead, of course, is incurred
more frequently than construction overhead.

■ Granularity overhead—Added latency resulting from reflective code that
applies to more of an object/component than was intended or necessary.
Sometimes, when using a proxy (either generated with Proxy or with our
framework), the change need not apply to the entire interface. For exam-
ple, consider the synchronized proxy of section 4.6.2 It may not be neces-
sary for all methods to be synchronized. The extra synchronization may
result in a decrease in attainable concurrency, which in turn may slow an
application.

These categories enable us to make some quick decisions. For example, construc-
tion overhead may not be an issue for a very long-lived application because all
classes are loaded when the application begins execution. In the following section
we concentrate on the execution overhead because, in general, it has the highest
impact. Our goal is to demonstrate how to measure the performance of a reflec-
tive feature and how to make inferences about a design from such measurements.

210 CHAPTER 9

Evaluating performance
9.2 Using microbenchmarks

A benchmark is a test used to assess the performance of hardware or software. A
microbenchmark [2] is a performance measurement of a short piece of code.
Deciding how short a piece of code must be to qualify is subjective. However, the
intent is the desire to obtain a measurement of some small identified capability
that can be used as a parameter to a performance model. This section shows you
how write microbenchmarks. Later in the chapter, we write another microbench-
mark to help George with his design decision.

A program for a microbenchmark has the basic form of the following pseudo
code:

Perform setup
m0 = get first measurement
for (int i=0; i<repCount; i++) {
 Run code to be measured
}
m1 = get second measurement
report (m1-m0)/repCount

The metric may be time or space or some other quantity that is important enough
to deserve this special attention. Determining a sufficient number of repetitions is
a tactical decision based on issues such as clock resolution, the need to amortize
overhead, and so on. Listing 9.1 shows a real program for a microbenchmark to
measure the time it takes to print “Hello world!”

public class HelloWorldBenchmark {
 public static double aDouble = 123456789.0;
 public static void main(String args[]) {

 int numberOfIterations = 15000;

 // Loop to measure the overhead
 long time0 = System.currentTimeMillis();
 for (int j = 0; j < numberOfIterations; j++) {
 aDouble /= 1.000001;
 }
 long time1 = System.currentTimeMillis();

 aDouble = 123456789.0;
 System.out.println("Hello world!");

 long time2 = System.currentTimeMillis();
 for (int j = 0; j < numberOfIterations; j++) {
 aDouble /= 1.000001;
 System.out.println("Hello world!");

Listing 9.1 HelloWorldBenchmark

Using microbenchmarks 211
 }
 long time3 = System.currentTimeMillis();

 double timeForOverheadLoop = (time1 - time0);
 double timeForHelloWorld = (time3 - time2) - timeForOverheadLoop;
 System.out.println("HelloWorldBenchmark: " + timeForOverheadLoop
 + " milliseconds for basic loop.");
 System.out.println("HelloWorldBenchmark: " + timeForHelloWorld
 + " milliseconds for " + numberOfIterations
 + " iterations.");
 System.out.println("HelloWorldBenchmark: "
 + (timeForHelloWorld/numberOfIterations)
 + " milliseconds per print command");
 }
}

Here are some general guidelines for writing microbenchmarks properly.

■ Account for overhead—This is the code for loop control and obtaining the
metric. In listing 9.1, the loop is timed without the code to be measured in
order to compute the overhead, which subsequently can be subtracted from
the timing of the code to be measured.

■ Warm up the code—The code to be measured may need to be executed
(possibly more than once) to eliminate variance due to special events (for
example, the loading of a dependent class). The microbenchmark in list-
ing 9.1 executes the print command once outside the main timing loop for
this reason.

■ Know the clock resolution—The program in listing 9.1 uses System.current-
TimeMillis to get the time in milliseconds. However, the reporting of the
timing of the overhead clearly showed the clock resolution be 10 millisec-
onds. The main timing loop is executed for sufficient iterations to make the
resolution an insignificant issue. You should not make judgements based on
measurements that differ by less than twice the clock resolution.

■ Understand the effect of compiler optimizations—A common pitfall is for opti-
mization to remove the overhead loop. In listing 9.1, we avoid this pitfall by
having the overhead loop change the field, aDouble, that is static and public
with a divide command (the change cannot be eliminated because access
from outside the class is possible). Another optimization is in-line expan-
sion, or in-lining, in which the compiler substitutes the body of a method at
the method call site in place of the method call. The technique used later to

212 CHAPTER 9

Evaluating performance
prevent in-lining works for Java 1.4.1—a different technique may be
required for other versions of Java.

■ Eliminate interference—With a modern operating system, much is going on
asynchronously that can potentially interfere with obtaining accurate mea-
surements. Some examples of possible sources of interference are network
communications, garbage collection, maintenance tasks such as defragmen-
tation, and so on. To properly run a microbenchmark, you must ensure that
these interfering activities are shut down.

■ Apply proper statistical methods—Running a microbenchmark is an experi-
ment, and so you can expect different results from run to run. This is where
the elementary statistics that you were required to study comes in handy.
Bill Alexander [2] recommends repeating your benchmark measurements
until the t -test indicates .95 confidence that the true value is within 5% of
the mean of the measurements. (If you need a good statistics book, try Sta-
tistics: The Exploration and Analysis of Data [20].)

■ Use common sense—You should examine your measurements for patterns. If
you find one, you may have to redesign your microbenchmark. For exam-
ple, the distribution may look bimodal—the measurements seem to form
two clusters. In the bimodal case, you should redesign the microbenchmark
to measure each modality separately.

■ Expect uncertainty—Modern processors are exceedingly complex. At times
the microbenchmark code itself affects the measurement (for example, by
affecting the content of the various caches). No matter how hard you try,
there is no way to eliminate this source of uncertainty (short of using the
simulators used by the microprocessor designers).

Each of these guidelines has a Java interpretation that you must understand. For
example, garbage collection in Java happens asynchronously, and you probably
do not want to count the time used for garbage collections. If your microbench-
mark creates few objects, garbage collection is usually not a problem. On the
other hand, if many objects are created, it would be prudent to study the rules for
garbage collection in your Java runtime environment.

We ran the simple microbenchmark on an IBM T20 Thinkpad (750 MHz Pen-
tium III with 256MB RAM running Java 2 Platform, Standard Edition, version
1.4.1 for Windows 2000). For 10 runs of the microbenchmark, we obtained a
mean of 327.4 microseconds to print “Hello world!” to a command window. The
standard deviation was .326. The t-test indicates that a .95 confidence interval

Using microbenchmarks 213
would be 327.15 microseconds to 327.65 microseconds, which is well within 5%
of the mean.

The reason for running the simple microbenchmark was to get an idea of the
time required for a common operation, System.out.println. We need to know
this when we look at the times for some reflective operations later in this chapter.
Intuitively, we know that System.out.println is an expensive operation. In addi-
tion, we need to time an inexpensive operation.

Now let’s do one more microbenchmark to calculate the time required to call a
nonstatic method. Listing 9.2 presents an interface, DoNothingInterface, with one
method, doNothing. This interface is implemented by the DoNothing class in
listing 9.3. A microbenchmark CallBenchmark (listing 9.4) measures the time for
calling the method. Oddly, doNothing does something. The code in the body of
doNothing is written to prevent the compiler from in-lining the method. For 20
runs of the microbenchmark on our Thinkpad, we obtained a mean of 8.89 nano-
seconds to call doNothing. The standard deviation was .71. The t-test indicates that
a .95 confidence interval would be 8.46 nanoseconds to 9.31 nanoseconds, which
is just within 5% of the mean.

interface DoNothingInterface {
 void doNothing();
}

public class DoNothing implements DoNothingInterface {
 public void doNothing() {
 CallBenchmark.aDouble
 = CallBenchmark.compute(CallBenchmark.aDouble);
 }
}

public class CallBenchmark {

 public static double aDouble;
 public static double aDouble1;
 public static double aDouble2;
 public static double aDouble3;

 public static double compute(double x) {
 aDouble1 = aDouble1 + aDouble;

Listing 9.2 DoNothingInterface

Listing 9.3 DoNothing, which implements DoNothingInterface

Listing 9.4 CallBenchmark

214 CHAPTER 9

Evaluating performance
 aDouble2 = aDouble2 + 2 * aDouble;
 aDouble3 = aDouble3 + 3 * aDouble;
 return x / 1.000001;
 }

 public static void main(String args[]) {
 int numberOfIterations = 100000000;
 DoNothing target = new DoNothing();
 long time0 = System.currentTimeMillis();
 aDouble = 123456789.0;
 aDouble1 = 0;
 aDouble2 = 2;
 aDouble3 = 3;
 for (int j = 0; j < numberOfIterations; j++)
 aDouble = compute(aDouble);
 long time1 = System.currentTimeMillis();
 aDouble = 123456789.0;
 aDouble1 = 0;
 aDouble2 = 2;
 aDouble3 = 3;
 for (int j = 0; j < numberOfIterations; j++)
 target.doNothing();
 long time2 = System.currentTimeMillis();

 double timeForCall = (time2 - time1) - (time1 - time0);
 System.out.println("CallBenchmark: " + (time1 - time0)
 + " milliseconds for basic loop executing "
 + numberOfIterations + " iterations.");
 System.out.println("CallBenchmark: "
 + timeForCall + " milliseconds for "
 + numberOfIterations + " calls.");
 }
}

9.3 Benchmarking two ways to use Proxy

Next, we present a microbenchmark that addresses George’s design decision. This
microbenchmark measures both the time to forward a call to a Java proxy with a
compiled method call and the time to forward a call to a Java proxy using
Method.invoke. Listing 9.5 shows the microbenchmark. It times the invocation
of the method named doNothing in the CallBenchmark class by first calling the
method on a proxy where the invocation handler, DoNothingCaller, implements
the forwarding of the call with a compiled method call. The microbenchmark also
uses a second class named DoNothingInvoker, which also implements the Invoca-
tionHandler interface. The invoke method in this class uses Method.invoke to
forward the call to doNothing. Listing 9.6 contains the DoNothingCaller and DoNo-
thingInvoker classes.

Benchmarking two ways to use Proxy 215
import java.lang.reflect.*;

public class InvokeBenchmark {

 public static DoNothing target = new DoNothing();
 public static Class[] interfaces = { DoNothingInterface.class };

 public static Object newProxy(InvocationHandler obj) {
 return Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 interfaces,
 obj);
 }
 public static void main(String args[]) {
 int numberOfIterations = 5000000;
 DoNothingCaller caller = new DoNothingCaller();
 DoNothingInterface proxyForCaller
 = (DoNothingInterface)newProxy(caller);
 DoNothingInvoker invoker = new DoNothingInvoker();
 DoNothingInterface proxyForInvoker
 = (DoNothingInterface)newProxy(invoker);

 long time0 = System.currentTimeMillis();
 CallBenchmark.aDouble = 123456789.0;
 for (int j = 0; j < numberOfIterations; j++)
 InvokeBenchmark.target.doNothing();
 long time1 = System.currentTimeMillis();
 CallBenchmark.aDouble = 123456789.0;
 for (int j = 0; j < numberOfIterations; j++)
 proxyForCaller.doNothing();
 long time2 = System.currentTimeMillis();
 CallBenchmark.aDouble = 123456789.0;
 for (int j = 0; j < numberOfIterations; j++)
 proxyForInvoker.doNothing();
 long time3 = System.currentTimeMillis();

 double timeForProxyCall = (time2 - time1) - (time1 - time0);
 double timeForProxyCallPlusInvoke = (time3 - time2) - (time1 - time0);
 System.out.println("InvokeBenchmark: " + timeForProxyCall
 + " milliseconds for "
 + numberOfIterations + " proxy calls.");
 System.out.println("InvokeBenchmark: " + timeForProxyCallPlusInvoke
 + " milliseconds for " + numberOfIterations
 + " proxy calls using invoke.");
 }
}

Listing 9.5 InvokeBenchmark

Direct call
to method

b Call thru a proxy
using a compiled call

c Call thru a
proxy using a
Method.invoke

216 CHAPTER 9

Evaluating performance
import java.lang.reflect.*;

public class DoNothingCaller implements InvocationHandler {

 public Object invoke(Object t, Method m, Object[] args)
 throws Throwable
 {
 InvokeBenchmark.target.doNothing();
 return null;
 }
}

import java.lang.reflect.*;

class DoNothingInvoker implements InvocationHandler {

 public Object invoke(Object t, Method m, Object[] args)
 throws Throwable
 {
 return m.invoke(InvokeBenchmark.target, args);
 }
}

Figure 9.1 presents three sequence diagrams that each depict one of the intervals
timed in the benchmarks. The top sequence diagram represents the situation pro-
grammed in CallBenchmark (listing 9.4). The bottom two sequence diagrams rep-
resent the situations programmed in InvokeBenchmark (listing 9.5). Keep in mind
that the last one is an abstraction of the reality depicted in figure 4.2.

For nine runs of the microbenchmark on our Thinkpad, we obtained the fol-
lowing results:

■ For calling doNothing through the proxy with a method call, the time to use
a proxy had a mean of 25.0 nanoseconds. The standard deviation was 1.34.
The t-test indicates that a .95 confidence interval would be 23.99 nanosec-
onds to 26.01 nanoseconds, which is just within 5% of the mean.

■ For calling doNothing through the proxy that uses Method.invoke, the time
to use a proxy had a mean of 2928.0 nanoseconds. The standard deviation
was 12.57. The t-test indicates that a .95 confidence interval would be 2918.5
nanoseconds to 2937.5 nanoseconds, which is well within 5% of the mean.

Both cases measure the time required to get the method into control and return.
These measurements are consistent with what we learned from CallBenchmark.

Listing 9.6 Classes used by InvokeBenchmark

Benchmarking two ways to use Proxy 217
The InvokeBenchmark program provides basic measurements that directly apply
to the issue of replacing a method call with either a dynamic proxy that forwards
calls using Method.invoke or a proxy that forwards calls using a compiled
method. This is not quite George’s design problem. However, if the dynamic
proxy that forwards calls with compiled methods is sufficient, then so is a static
proxy generated by the C2InvariantCheckingProxyForC transformation (because
it forwards the method call without marshalling the arguments into an array).
Rather than taking a direct approach to George’s problem, we presented the
InvokeBenchmark program because it provides more valuable insight into the per-
formance of Java reflection, namely, the performance of dynamic proxies in the
absence of Method.invoke.

The measurements show that calling a method (that has no parameters)
through a proxy is about 2.29 times as expensive as executing a directly compiled
call. Further, calling the method through a proxy that uses Method.invoke is
about 331 times as expensive as directly calling the method. This certainly does
not mean that an application will run either 2.29 or 331 times slower if it uses
these features. Applications do much more than call methods.

Next we consider how such raw performance measurements can be used to
analyze software design decisions.

client target
doNothing()

client target
doNothing()

:Proxy

doNothing()

client target
doNothing()

:Proxy

invoke(“doNothing”,null)

{

{

{

timed in
CallBenchmark���

�����
�������� �

���

����

��������3

timed in�
listing 9.5

timed in�
listing 9.5

b

C

Figure 9.1 The three cases timed in the program InvokeBenchmark

218 CHAPTER 9

Evaluating performance
9.4 Understanding Amdahl’s Law

We know that the use of reflection will slow our application in exchange for
greater adaptability, increased reuse, and higher quality. All software engineers
face the question of whether to pay the price for these benefits. There are two via-
ble strategies:

■ Use the features that yield maximum adaptability and higher quality. If the
resulting application is too slow, then it is easier to speed up a high-quality
program than correct a low-quality program.

■ Analyze the impact of the reflective features and know beforehand which
to use.

Rarely is the software engineer in a position to adopt the first strategy. For this rea-
son, we now focus on how to perform analyses required by the second strategy.

When designing an enhancement to a microprocessor, computer architects use
Amdahl’s Law to compute speedup [43] where speedup is expected to be a num-
ber greater than 1. The basic idea is

In this formula, the enhancement is the use of the reflective feature, which we
expect to be slower. If speedup is computed, we would deal with numbers less
than 1.

However, in general, the design problem that most interests us is using reflec-
tive features to gain flexibility. For this reason, it is better to use the inverse of this
formula to calculate slowdown. This has the additional advantage of yielding
numbers greater than 1, which makes for a more understandable presentation.
The formula to compute slowdown is

Amdahl’s Law is quite general and can be applied at various levels of granularity.
For example, it can be applied to an entire application, a thread, a method, or a
short code sequence. Amdahl’s Law recognizes that slowdown (or speedup)
depends on the proportion of the work affected by the enhancement. The

Performance of task without using the enhancement
Speedup =

Performance of task using the enhancement

Performance of task using the enhancement
Slowdown =

Performance of task without using the enhancement

Understanding Amdahl’s Law 219
following equation is the version of Amdahl’s Law that is used in the remainder
of this chapter.

where RTime is the microbenchmark measurement of a reflective feature and
NTime is the microbenchmark measurement for its nonreflective alternative. Work
is the relative amount of time spent doing other things. For example, RTime may
be the time to call a method through a proxy that executes a compiled call (as in
DoNothingCaller) with the corresponding NTime being the time to simply execute
a compiled call (the measurement obtained with CallBenchmark).

It is usually convenient to express Work in terms of multiples of NTime, that is,

where x is the scaling factor that dictates how much more time is spent doing
other things. Making this substitution yields

which can be rewritten as

This form of Amdahl’s Law allows us to make design decisions for a range of pro-
cessors. For example, the RTime/NTime ratio should be about the same for all Pen-
tium IIIs no matter the speed at which the clock is running. That is, once the ratio
RTime/NTime is established, the slowdown is about the same for all Pentium IIIs. A
design decision that is appropriate for a slow processor of a particular family is in
general also appropriate for a faster processor, but the converse is not true.

Before using this form of Amdahl’s Law with the data gathered in section 9.3,
let us study the properties of the previous slowdown function with x as an inde-
pendent parameter. Knowing the properties of such an important function is
important for building intuition and accurate decision making. The following
properties are derived using some elementary calculus:

RTime + Work
Slowdown =

NTime + Work

Work = NTime * x

RTime + NTime * x
Slowdown =

NTime + NTime * x

RTime
 + x

NTime
Slowdown =

 1 + x

220 CHAPTER 9

Evaluating performance
■ The y-intercept is RTime/NTime (derived by setting x = 0).

■ For positive x, the function is greater than 1 (because RTime/NTime is
greater than 1).

■ The limit as x approaches infinity is 1 (that is, the line y=1 is an asymptote).

■ The function is monotonically decreasing for positive x (the first derivative
is (1-RTime/NTime)/(1+x)2, which is negative for positive x).

■ The shape of curve appears as shown in figure 9.2. The knee of the curve is
the point at which the rate of decrease falls below -1 (this is found by solving
for x when the value of the first derivative is -1).

The properties aid in making better design decisions. Consider knowing the knee
of the curve. If you believe that the value of x for your application is much, much
larger than the x value of the knee, then your calculation of slowdown is not going
to be sensitive to how accurately you measure x (the amount of other work the
application does). On the other hand, slowdown is very sensitive to the workload,
if it is estimated to be to the left of the knee.

It is now time to combine our microbenchmark results with Amdahl’s Law to
calculate the slowdown curves for two kinds of enhancements. The first is using
dynamic proxies that forward with compiled method calls as in DoNothingCaller.
The second is using dynamic proxies that forward methods with Method.invoke as
in DoNothingInvoker.

1

0

RTime/NTime

(RTime / NTime -1 -1 , 1 + RTime / NTime -1)

Figure 9.2 The shape of the slowdown curve

Applying Amdahl’s Law 221
9.5 Applying Amdahl’s Law

First, let us examine the use of Proxy. Figure 9.3 shows the slowdown curve for use
of Proxy where NTime is 8.89 nanoseconds and RTime/NTime is 2.81. (If the posi-
tion of the knee of the curve at x = .346 looks odd, remember that the axes are not
uniform.) The slowdown curve shows us that if Work is 10 times NTime (88.9 nano-
seconds for our T20 Thinkpad), the overhead for using a proxy is just under 17%.
If Work is 20 times NTime, the overhead decreases to just under 9%. Executing a
compiled method call in Java 1.4.1 is highly efficient, which means that 10 or 20
times NTime is not very much work. For example, a side effect of CallBenchmark is
the timing of that code added to suppress in-lining of the doNothing method.
Those few additions, multiplications, and the loop control take between 10 and
20 times NTime. In addition, the HelloWorldBenchmark demonstrated that the
println is about 32,000 times NTime. Slowdown goes below 1% at about 190 times
NTime. So the slowdown due to the use of Proxy at miniscule levels (below 5%)
should be quite tolerable in most applications.

In general, should the software engineer be concerned about this level of over-
head from the use of Proxy? This is a highly context-dependent issue. On one
hand, microprocessor performance is improving at about 3.9% per month
(which is the monthly growth rate that is implied by Moore’s Law). On the other
hand, the global context set by Moore’s Law provides little solace to the software

0 2 4 6 8 10 12 14 16 18 20

Multiples of NTime

1

1.5

2

2.5

Sl
ow

do
w

n

1.086

(.346,2.346)

1.165

Figure 9.3 The slowdown curve for calling a method on a proxy

222 CHAPTER 9

Evaluating performance
engineer whose product fails because of performance issues. The use of Amdahl’s
Law arms the software engineer to objectively address the performance issues.

Now let’s turn our attention to Method.invoke. Figure 9.4 shows the slowdown
curve for the use of Proxy where NTime is 8.89 nanoseconds and RTime/NTime is
329.4. The curve shows a very rapid decrease of slowdown when work is less than
17 times NTime where the overhead is 1900%. The slowdown curve shows us that if
Work is 250 times, the overhead for using a proxy is about 131%. If Work is 500
times NTime, the overhead decreases to about 66%. Slowdown goes below 10% at
about 3,500 times NTime and below 5% at 6,000 times NTime.

If these numbers seem high, consider the following. The HelloWorldBench-
mark measured the time to print “Hello world!” as 327.4 microseconds. This is
over 36,000 times NTime, which implies a slowdown of under 1%. It does not take

0 100 200 300 400 500

Multiples of NTime

0

50

100

150

200

250

300

350

Sl
ow

do
w

n

1.662.31
(17.12,19.12)

Figure 9.4 The slowdown curve for using Method.invoke in a proxy

Summary 223
much programming to overwhelm the execution overhead of Method.invoke and
make it inconsequential. In addition, in a user interface, the execution overhead
of Method.invoke (2.93 microseconds on our 750 MHz laptop) cannot be detected
by its human user. In cases where you have discretion in using Method.invoke, the
previous results dictate that you must exercise care in making the decision but
should not dismiss its use out of hand.

As a reader of this book, you are interested in questions of the form, “Can
reflective feature <blank> be used in the design while still satisfying the perfor-
mance constraints?” We chose to present the measurements in figures 9.3 and 9.4
because of their relevance to two important design questions:

■ Can Proxy alone be used while satisfying performance constraints?

■ Can Proxy and Method.invoke be used while satisfying performance con-
straints?

This second question is exactly the one George is asking with respect to his desire
to use the first design alternative. In this case, the situation is depicted in figure 9.4,
where RTime is 2928.0 nanoseconds (the measurement for a proxy that forwards
with Method.invoke) and NTime is 8.89 nanoseconds (the measurement for a com-
piled call). George needs to determine the value of x using the formula

Because George has a running application that he wishes to refactor, he can
instrument his application to determine Work for each applicable performance
requirement. Note that the execution time of the checkInvariant method must
be included in his determination of Work.

At this point, we need to leave George to finish this task. However, we must
emphasize that when performing this kind of analysis, the granularity of the Work
measurements must be the same as that of the performance requirements. That
is, for each performance requirement, you must do a separate analysis with a com-
mensurate Work measurement.

9.6 Summary

Runtime performance is often cited as a disadvantage that renders reflection APIs
impractical. Don’t be taken in by this argument. Reflection is not slow! Over the
first 50 years of software engineering, similar arguments were made against the
move to high-level languages, against the move to virtual memory, against the

Work = NTime * x

224 CHAPTER 9

Evaluating performance
move to object-oriented programming, and, most recently, against the move to
garbage collection.

Historically, the tide in software engineering favors those abstractions offering
the best return on investment. Return on investment is a complex issue dealing
with time to market, flexibility, availability of programmers, quality, and maintain-
ability as well the performance of the software. As a software engineer, you should
be making design decisions based on satisfaction of requirements and maximiz-
ing return on investment.

The speed of your software is not a measure of your competency as a software
engineer. Most applications have no performance constraints other than “if possi-
ble, don’t let any human user perceive any latency.” This constraint is not chang-
ing. Meanwhile, ubiquitous multigigahertz multiprocessor laptops with ever-
increasing amounts of storage are just around the corner. In addition, improved
compilation of reflection APIs will further mitigate performance concerns associ-
ated with the use of reflection.

This progress increases the likelihood that software engineers can profitably
apply reflection. However, you, as the software engineer, are not relieved of the
obligation concerning performance requirements. You now have the tools to
address these concerns when circumstances require it.

Reflecting on the future
In this chapter

■ Future developments
in Java reflection

■ Concepts to remember
225

226 CHAPTER 10

Reflecting on the future
By now, you have probably thought of many places in your own applications
where reflection can increase flexibility. This newfound flexibility has benefits in
two dimensions:

■ Adaptation to change in both requirements and platform—These adaptations
allow an application to better serve the needs of its human users and keep
pace with technology.

■ Reuse of components—Flexible components programmed with reflection can
be used in many contexts.

This improvement in flexibility has been brought about by a steady evolution in
the reflective facilities in Java. This is clearly illustrated in figure 10.1. Java started
from sound theory by representing classes as objects and instances of Class.
Upon this base, metaobjects were added in java.lang.reflect to provide intro-
spective capability. This was augmented in Java 1.3 with Proxy to provide some-
thing that approximates an intercessional capability. This augmentation
continued in Java 1.4 with the addition of the StackTraceElement, which is essen-
tial for call stack introspection.

This timeline illustrates the Java community’s commitment to evolving and
augmenting Java’s reflective capabilities. Following this trajectory and our under-
standing of reflection, we can reasonably expect more metadata and more inter-
cessional capabilities in future versions. Let’s see what is just over the horizon.

10.1 Looking forward: Java 1.5

There are several areas of Java 1.5 that will have a direct impact on programming
with reflection. Among these are the addition of generics, the Annotation Facil-
ity, and a set of Java language extensions that include enumerated types and

Java 1.0

Field

Method

Constructor

java.lang.reflect A

R

ccessibleObject

eflectPermission

UndeclaredThrowableException
InvocationTargetException

InvocationHandler

Proxy

Java 1.1 Java 1.2 Java 1.3 .Java 1 4

Class

Object
ClassLoader

StackTraceElement

Figure 10.1 The timeline represents the evolution of Java reflection by matching features to the release
in which they first appeared.

Looking forward: Java 1.5 227
autoboxing. The web site for the Java Community Process (www.jcp.org) is the
best place to preview what may be in Java 1.5.

The Java Community Process (JCP) is an organization that develops and revises
the Java technology specifications, reference implementations, and test suites.
The main process of the JCP is one that evolves a Java Specification Request (JSR)
into a specification that is used to change a particular Java technology. The three
JSRs of interest to us as reflective programmers are 14, 175, and 201. The overview
in this chapter represents our best guess at how these JSRs will impact reflective
programming in Java 1.5.

None of the new features of Java 1.5 invalidate any technique presented in this
book. Just prior to the completion of this book, J2SE 1.5.0 Beta 1 became avail-
able. The code in this book does compile with Java 1.5. All of our test cases run
without error. Of course, none of these test cases use the new features of Java 1.5,
which may require some changes to code that we have presented. We identify
some such changes later in this chapter.

10.1.1 JSR 14—Generics

Java 1.5 will have generic types and methods [8]. A generic type allows you param-
eterize a class with a type. This is very useful when you want a container that is spe-
cialized. Consider UQueue, which was introduced in chapter 7. That class gets
specialized at runtime by having the user identify the type of queue entries in the
constructor. A more elegant concept is to have a language that allows the special-
ization at compile time. Java 1.5 will have such a facility. For example, here is an
overly simple way to define UQueue in Java 1.5:

class UQueue<T> extends ArrayList<T> {
 public boolean add(T m) {
 if (this.contains(m))
 return false;
 super.add(m);
 return true;
 }
}

The syntax <T> indicates that UQueue has a parameter T that must be a type name.
A unique queue of Method is constructed with new UQueue<Method>() and a
unique queue of String is constructed with new UQueue<String>(). Note that the
Java 1.5 containers in java.util will become genericized.

There are several facets of the JSR 14 specification that can impact reflective
programming. One such facet is that type erasure is used to implement generic

228 CHAPTER 10

Reflecting on the future
types. Type erasure maps a generic type to a suitable non-generic type for imple-
mentation. In our previous example, although a program may declare both
UQueue<Method> and UQueue<String>, there will be only one class object that rep-
resents both. That is, the following will be true:

 UQueue<Method>.class == UQueue<String>.class

In this case, that class object may be thought of as the one associated with
UQueue<Object>. Consequently, the first impact of Java 1.5 on reflection is that dif-
ferent types do not necessarily associate with different class objects.

Another change is that the declarations of Class and Constructor will become
generic. This means you may see type expressions such as Class<Dog>, which can
be used to declare that a method returns a class object whose instances are of
type Dog. One advantages of making Class and Constructor generic is that the
calls to newInstance no longer require a cast, which make reflective code more
readable. With respect to backward compatibility, type erasure ensures that
there is still one class object associated with Class<T> and one class object associ-
ated with Constructor<T>.

A third change due to JSR 14 is the addition of new interfaces needed for
generic types. Five new interfaces will be added to java.lang.reflect, as shown in
figure 10.2. The addition of Type as an interface implemented by Class (where
none existed before) may add complexity to some reflective programming tasks.
However, with respect to compatibility, it is hard to imagine a reflective Java 1.4
program that fails because Class.class.getInterfaces() does not return an
empty array.

Generic types will be a great benefit to Java programmers. However, generic
types in Java 1.5 will have a number of limitations as a result of the type erasure
technique used for implementation. Among these are:

■ Generic type parameters cannot be instantiated with primitive types.

■ Enclosing type parameters should not be used in static members.

■ A type parameter by itself cannot be used in a cast, in an instanceof
operation, in a new operation, in an extends clause, or in an imple-
ments clause.

Various techniques that we have presented may prove useful, if you need to go
beyond these limitations. For example, reflective code generation may be used to
generate a container class for primitive types.

Looking forward: Java 1.5 229
10.1.2 JSR 175—Annotation Facility

An annotation is a note attached to a program element (a method, a class, and so
on) that expresses some additional information about the element. An annota-
tion expresses some intention of the programmer with respect to the element. For
example, a programmer may wish to mark a method to indicate that it should
never appear in a trace. In this sense, an annotation is similar to a modifier, but
Java has only 11 modifiers, and programmers have vastly many more intentions
that they wish to express. In the past, comments have been used for this purpose.
But there are important differences between annotations and comments:

■ Comments appear only in the source code of a program (typically, a com-
piler deletes comments during lexical analysis), while annotations may
remain in the compiled code.

■ Comments are unstructured text (which is difficult to process), while anno-
tations are structured and highly amenable to automated processing.

«interface»
Type

instanceOf

in
st
an
ce
Of

«interface»
ParameterizedType

«interface»
TypeVariable

«interface»
MethodTypeVariable

«interface»
ClassTypeVariable

Object

«metaclass»
Class

Figure 10.2 The gray area represents the new interfaces that are being added to
java.lang.reflect in Java 1.5 for supporting the generic types in the JSR 14 specification.

230 CHAPTER 10

Reflecting on the future
Annotations allow programmers to attach additional metadata to their applica-
tions. This metadata may be used to increase the effectiveness of either tools or
reflective code. This section provides a flavor of what can be accomplished with
annotations based on the JSR 1751 specification, which first became available for
public comment on November 11, 2003. This specification was not final at the
time we finished writing this book, so the following details may have changed by
the time Java 1.5 is released.

To understand how annotations can be used, let’s reconsider George’s solution
for tracing from chapter 4. One of the weaknesses of that solution is that all of the
methods of a class must be traced. Suppose George’s tracing proxy has a user Mar-
tha, who desires the ability to specify which methods are traced. This can be done
in Java 1.4, but only with an annoying amount of work for both George and Mar-
tha. Let’s look at one scenario: George defines a data structure that specifies the
methods exempted from being traced, for example, a static string array named
notTraced. Martha must create such an array in her classes, and George’s code
can then discern her intent by having his invocation handler check the method
name against Martha’s list. In effect, George is requiring Martha to create addi-
tional metadata that he can access at runtime. Although this sounds easy, there
are several complications:

■ Granularity—This solution treats all overloaded methods with identical
names the same. If Martha needs to distinguish between overloaded meth-
ods, George must define a more complex data structure that is more diffi-
cult for her to fill in.

■ Consistency—The method definition and the data structure are separated in
the source text. This increases the difficulty of keeping the two consistent,
especially during maintenance.

■ Inheritance—George’s code must search up the inheritance hierarchy when
dealing with inherited methods. In addition, George must answer some
tricky questions: Should interfaces be allowed to declare notTraced arrays?
If so, how should such declarations be merged?

Problems such as these arise for all reflective code when the reflective program-
mer needs to know more about the intent of the application programmer.

1 JSR 175 began its life titled “Metadata Facility.” The JSR 175 committee chose to retitle the work “Anno-
tation Facility.” That title more precisely characterizes the facility in that Java already has much meta-
data accessible through the Reflection API.

Looking forward: Java 1.5 231
This is where annotation saves the day. In Java 1.5, George can proceed as fol-
lows. First, George declares the following annotation type for Martha to use:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface NotTraced { }

The @interface statement on the third line declares an annotation type.2 The
first line declares that the annotation is available at runtime. The second line
declares that the annotation may be applied to a method declaration. The decla-
ration can be imported into Martha’s code where individual methods can be
declared as not to be traced. Such a method declaration would look like this:

public @NotTraced toString(String separator) { ... }

The introduction of annotations makes the job of both George and Martha easier.
Martha’s job is easier because declaring a method not to be traced is done by

simply writing a new modifier in the method declaration. In addition, mainte-
nance is easier because the new modifier is located within the method declaration.

George’s job is easier for a number of reasons. First, he does not have to design
a data structure to store this information for all the methods of a class. The infor-
mation is stored with the method objects and is accessible through new reflective
methods (described later in this section). Second, the granularity problem is
solved because the information is stored with the method objects. Third, the
annotation facility defines a set of policies for annotation inheritance, which
relieves George of having to program such policies.

The NotTraced annotation is a marker annotation; a method either has it or
does not have it. Annotations may be defined to have structured values. The
Annotation Facility is much more extensive in that an annotation type may be
declared to have members. For example, you could define the annotation type

public @interface TraceParams { int level(); boolean stderr(); }

which allows each of its annotations to be given a pair of values, one for the level
of the trace and one for whether the trace is to be integrated into the standard
error stream. This annotation type may be used in a declaration like this:

2 A new keyword like annotation cannot be used in the design of the Annotation Facility, because key-
words in Java are reserved, which means a keyword cannot be used as an identifier. Adding a new key-
word to Java 1.5 would imply that all of the existing classes that use the new keyword as an identifier
would not longer be valid Java code.

232 CHAPTER 10

Reflecting on the future
@TraceParams(level=3,stderr=true)
public toString(String separator){
 ...
}

More complex annotation types are possible, as is explained in the “JSR 175 Pub-
lic Draft Specification,” but we do not address them because the specification is
not final.

An annotation is a new concept in the Java language. At runtime, an annota-
tion is represented by an object (which is a metaobject, because it is information
about the program rather than the problem domain). Figure 10.3 depicts our
interpretation of how the Annotation Facility draft specification envisions the
implementation of our example annotation, NotTraced. There is the interface
Annotation, which all annotation types extend to declare their members. That
interface in our example is also named NotTraced. This interface is implemented
with a proxy class, whose corresponding invocation handler contains the meta-
data for the annotation and whose invoke method returns the proper value for
each member of the annotation.

11

«interface»
NotTraced

NotTracedIH

generated by the
Java compiler from the
@interface declaration

implementation
of NotTraced

generated by the
Java compiler from the
@interface declaration

equals (Object obj):boolean
toStrint():String

«interface»
Annotation Proxy «interface»

InvocationHandler

$Proxy0

Figure 10.3 The gray area shows the classes generated by the @interface declaration of annotation
type NotTraced. There is a generated interface that is implemented by a dynamic proxy class. Corre-
sponding to the proxy class is an invocation handler that implements the content of the annotation. The
use of NotTraced causes instances of the proxy class and invocation handler to be created.

Looking forward: Java 1.5 233
Figure 10.4 depicts the interfaces for reflective access to annotations. For the
reflective programmer, an annotation is a metaobject. The presence of an annota-
tion may be discerned from a metaobject (for example, a Method object) using the
isAnnotationPresent method. For example, if the field method contains a Method
object declared in one of Martha’s classes, George may write

boolean exemptFromTrace = method.isAnnotationPresent(NotTraced.class);

to query if the method should not be traced. Table 10.1 briefly describes the
new reflective methods for annotations. If an annotation is retrieved, its mem-
ber values may be queried using the members specific to that annotation. In
addition, there is a getParameterAnnotations method for use with method
objects and constructor objects.

Class Package

Method

getParameterAnnotations():Annotation[][]
Field

«interface»
AnnotatedElement

isAnnotationPresent(Class annotationType):boolean
getAnnotation(Class annotationType):Annotation
getAnnotations():Annotation[]
getDeclaredAnnotations():Annotation[]

AccessibleObject

Constructor

getParameterAnnotations():Annotation[][]

Figure 10.4 This class diagram depicts the additions to Java to support reflective access to annotation.
The interface’s AnnotationElement is being added. As the diagram implies, there are several new
methods available for the classes that implement AnnotationElement. Further, both Method and
Constructor will have getParameterAnnotations methods.

234 CHAPTER 10

Reflecting on the future
One way to view the Annotation Facility is as a convenient new communication
channel between application programmers and those who supply them with tools,
which includes reflective programmers. The tool providers declare annotation
types; application programmers use these annotation types to declare their inten-
tions about a program element, and, in the end, the tools take action on those
extra declared intentions. This section is merely a brief overview of the “JSR 175
Public Draft Specification,” which defines a rich facility. Once Java 1.5 is released,
the specifics of the Annotation Facility are likely to change, and this section may
become out of date.

10.1.3 JSR 201—Language extensions

Language extensions will make reflective programming easier. Five language
extensions will be included in Java 1.5.

■ Autoboxing—this is the automatic coercion of a primitive value to an object
of the appropriate wrapper. For example, you may write

 new Object[] { 1 }

instead of
 new Object[] { new Integer(1) }

This will be a great convenience for reflective programming when creating
argument lists for use with Method.invoke and Constructor.newInstance.

■ Enumerations—You will be able to write a declaration like
 public enum Flavors {vanilla, chocolate, strawberry}

Table 10.1 New methods defined by AnnotationElement and its descendents

Method Description

isAnnotationPresent(
Class annotationType)

Returns true if the target element was annotated with an
instance of the specified annotation type.

getAnnotation(Class annotationType) Returns an annotation of the target element that is of the
specified annotation type.

getAnnotations() Returns an array of all annotations for the specified anno-
tated element.

getDeclaredAnnotations() Returns the array of annotations declared by the specified
annotated element.

getParameterAnnotations() For a method or constructor, returns an array of annotation
arrays. Each annotation array represents the annotations of
the corresponding parameter for the method or constructor.

Looking forward: Java 1.5 235
In general, enumerations will make Java programming much better. How-
ever, there may be some complexity added to reflective code when dealing
with the cases of parameter types or return types. For example, listing 4.12
in section 4.7.3 will need to be changed to handle enumerations.

■ Enhanced for loop—You will be able to write for loops of the form
 for (String s : c) { ... }

where c has type Iterable or is an array type. Because this is a control struc-
ture enhancement, it should not have an impact on reflective code.

■ Static imports—A new form of the import statement that allows static meth-
ods and fields to be imported. For example, if you write

 import static java.lang.reflect.Modifier.*;

then instead of writing Modifier.FINAL, you can write just FINAL. This makes
all code that uses Modifier easier to write and simpler to read.

■ Variable-arity methods—The last formal parameter of a method may be
declared with an ellipsis to indicate that the method may be called with a
variable number of arguments. For example, getMethod in Class has been
redefined as

 public Method getMethod(String name, Class ... parameterTypes)

which means that you can now write
 Object.class.getMethod("wait", long.class, int.class)

as well as
 Object.class.getMethod("wait",

 new Class[]{long.class,int.class})

Variable-arity methods makes the writing of many reflective calls easier.

10.1.4 Impact of Java 1.5 on reflective code

The previous brief description of reflection in Java 1.5 makes evident that the
transition to Java 1.5 implies a major increase in the expressiveness and the com-
plexity of the Java language. This increase in complexity must be reflected (liter-
ally) in the metaobject classes by increasing their number and the number of
methods of their interfaces. Some reflective code will have more cases with which
to deal, as with a field representing an enumeration or a method that returns an
enumeration. Java 1.5 reflective programming will not be easier, but it will be
more challenging and more rewarding.

236 CHAPTER 10

Reflecting on the future
10.2 Looking forward: competition for Java reflection

Reflection in general (with the ability to modify classes dynamically) can make
applications hard to maintain. Java avoids this problem by constraining reflection
to be introspective (for example, you cannot add new members to a class after it is
loaded, as reflection in general might allow). This Java language design decision
trades flexibility for more maintainability. Every reflective programming language
must address this trade-off. As reflection is more widely used, language designers
will better understand how to balance maintainability and flexibility. The main
competitors listed here will influence the evolution of Java reflection and vice
versa. The list consists of languages that have effective commercial support as well
as a reflection API.

10.2.1 C#

C# will be the cause of an increase in the pace of Java evolution. Microsoft clearly
intends C# to usurp Java’s dominant position among object-oriented program-
ming languages. Like Java, C# has introspective facilities. Each ordinary object has
an associated Type object that contains the expected metadata about fields, meth-
ods, and constructors of the class of the ordinary object. There are no interces-
sional features in C#. However useful the delegates and events of C# may be for
simulating intercession, they do not qualify as intercessional features. On the
other hand, the code-generation techniques discussed in chapter 7 are applicable
to C# programming.

10.2.2 Python

Python is an interpreted, functional language with an object-oriented extension.
With Python 2.2, that object-oriented extension has been enhanced to have a
reflection API in which Class is permitted to be subclassed to create additional
metaclasses. This follows the theory advanced in Putting Metaclasses to Work [33] in
which metaclasses are the embodiment of class-to-class transformations (see [69]).
Python is open source technology supported by the Python Software Foundation
(www.python.org), which is a place to start if you’re seeking commercial support.

10.2.3 Smalltalk

Xerox Corporation’s Palo Alto Research Center developed Smalltalk in the
1970s, but it never achieved the commercial success of other languages. Smalltalk
has an intercessional reflection API from which there is still much to learn. Those

Looking forward: Aspect-Oriented Programming 237
interested in Smalltalk might start with the Smalltalk Industry Council
(www.stic.org), which includes IBM as a corporate member.

10.2.4 CLOS

Common LISP Object System (CLOS) contains the reflection API that was pub-
lished in The Art of the Metaobject Protocol [49]. The reflection API is highly interces-
sional. CLOS has multimethods rather than being class-based, which makes an
interesting difference to study. Commercial support for CLOS may be found
through the Association of LISP Users (www.lisp.org).

10.2.5 Ruby

Ruby is an interpreted object-oriented scripting language. The reflective features
appear to be simpler than Java but with some novel features. For example, there is
a hook method with which a class can keep track of its subclasses as they are
dynamically created. More information may be found on Ruby at www.ruby-
lang.org.

10.2.6 Perl

As of version 5, Perl supports object-oriented programming only by convention.
However, this makes a Perl class dynamically modifiable because its symbol table is
accessible to programs. Therefore, though there is no formal reflection API,
reflective tasks can be accomplished using Perl. Perl 6 is expected to contain a for-
mal object model and with it a reflection API and metaclasses. This will be an excit-
ing evolution for a dynamic language with such a broad mainstream user base.

10.3 Looking forward: Aspect-Oriented Programming

In A Discipline of Programming [22], Edsgar Dijkstra essentially asserts that an
important goal of programming language design is to facilitate the separation of
concerns that burden a programmer. Such separation permits a programmer to
focus on her many and varied problems one at a time.

One of the observed shortcomings of object-oriented programming languages
is the tangling of concerns in the declaration of a class and its methods. A concern
is an area of interest. Ensuring that a class has just a single instance, enabling a
class to be traced, or establishing a proper proxy for an instance of a class are all
examples of concerns that in the mind of the programmer exist independently of
any class in which the concern is manifest. The examples in this book are largely
based on using reflection to separate concerns into reusable modules.

238 CHAPTER 10

Reflecting on the future
In addition to reflection, there are other ways to achieve separation of con-
cerns. Aspect-Oriented Programming [50] is the name given to this area of study
that identifies and finds ways to untangle concerns and separately express them.
There are three projects that commonly cited as examples of Aspect-Oriented
Programming:

■ AspectJ (www.eclipse.org/aspectj)—AspectJ is a language that permits the orga-
nization of common fragments into a coherent module and then facilitates
the insertion of those fragments into the proper classes. This means that
AspectJ has an insertional component (which specifies where in a class code
the fragment is to be inserted) and a quantification component (which
specifies which classes are to receive particular insertions). AspectJ is avail-
able as a plug-in for Eclipse.

■ Hyper/J (www.research.ibm.com/hyperspace)—Our object-oriented world view
dictates that the class hierarchy is the dominant decomposition. Hyper/J
takes the position that a software application can organized into multiple
dimensions that represent features. The components of the application can
be declared as points in this hyperspace. Hyper/J provides a tool to assem-
ble the features into components and the components into the application.

■ Composition Filters (trese.cs.utwente.nl/composition_filters)—A composition filter
is a wrapper for a class that intercedes on method invocation both into and
out from the class. The code-generation techniques of this book do not
cover intercession on method invocations out from the class.

Note that each of these projects is focused on a tool to support Java programmers
by inserting code that embodies a concern in an aspect. We believe that Aspect-
Oriented Programming will have a large impact on the evolution of Java. How-
ever, aspect code must use introspective methods in order to adapt to the sur-
rounding code (that is, the code into which the aspect is inserted). This leads us
to the conclusion that Aspect-Oriented Programming will increase the impor-
tance of reflection, and what you learned in this book will have enduring value.

10.4 Looking forward: your career

The software marketplace is increasing its demand for flexibility (in both code
that is easily adapted to changing requirements and code that can be reused flaw-
lessly in many applications). Your ability to produce flexible code increases your
value in that marketplace. Reflection is the technology of flexibility. Introspection

Looking forward: your career 239
—the ability of your code to examine itself and its context—is the required first
step for all flexibility. The final step occurs when your code changes its behavior
based on introspectively gathered information.

We have taught you how to use introspection in Java. We have demonstrated
how to use the existing Java reflective facilities to change application behavior.
When these Java facilities appeared to be limiting, we have shown you how to
transcend these limitations by generating code. You are prepared—we wish you
good fortune.

Reflection and
metaobject protocols
Reflection and metaobject protocols are topics with greater breadth than you
would surmise from the facilities available in Java. This appendix elaborates
on the earlier explanation of both reflection and metaobject protocols and
the relationship between the two. This appendix does define some additional
terminology, which is also defined in the glossary. All terminology is consis-
tent with The Java Language Specification (Second Edition) [41] by Gosling, Joy,
Steele, and Bracha. In cases in which such terminology conflicts with UML,
The Java Language Specification is given precedence.
241

242 APPENDIX A
A.1 Reflection

Reflection empowers a program to examine itself and make changes that affect
its execution. Early debugging systems and interpreted programming lan-
guages (especially LISP) took large steps in this direction. However, the begin-
ning of reflection in programming languages is marked by Brian Cantwell
Smith’s 1982 doctoral dissertation [80]. Smith asserts three requirements for a
system to be reflective:

1 A system must have a representation of itself.

2 There must be a causal connection between the system and its repre-
sentation.

3 The system must have an “appropriate vantage point” [81] from which to
perform its reflective work.

Let us examine each of these requirements.
Smith’s first requirement is that a system have a representation of itself. This

representation must be present or else there is nothing to examine. The represen-
tation should be convenient and complete. If the representation is not conve-
nient, examination becomes unwieldy, slow, and cumbersome. If the
representation is not complete, examination is not effective for what the repre-
sentation does not cover.

As an example of something that is neither convenient nor complete, consider
the text of a program residing in the file system. The text of a program is not con-
venient because it has to be parsed to be examined. It is not complete because it is
not a representation of the running program (it is missing a representation of the
location counter, the values of variables, and so on).

All LISP programs are constructed from list structures in the same way as LISP
data. The unification of program and data in LISP provides a convenient
representation. This representation made it possible for LISP to provide the
base for the early research in reflection, which focused on completeness and
Smith’s other two requirements.

Second, Smith requires causal connection between a system and its representa-
tion. Causal connection between a system and its representation means that a
change to the representation implies a change to the system and vice versa. To
illustrate his intent, Smith offered the following baking analogy where recipes and
cakes represent programs and their running instances. With causal connection,

APPENDIX A 243
when you change the cake, the recipe changes accordingly, and if you change the
recipe, the cake changes, too.

With recipes and cakes, causal connection would appear somewhat magical.
However, programs and their running instances are simply electronic ones and
zeros within the same system. Therefore, there is really nothing magical about
programmatic causal connection.

Again we present program text as an inadequate representation for reflective
programming because it lacks causal connection to its compiled and running
instances. Change the program text, and the behavior of the in-memory instances
stays the same. It is clear that a different representation is necessary for successful
reflective programming.

The dangers of modifying a running program lead to the Smith’s third require-
ment. The program requires a safe “place to stand” while executing reflective
code, just as a cyclist needs to dismount a bicycle before changing a tire. Attempt-
ing to change a bicycle tire while riding it might cause damage to the rider, the
bicycle, or other parts of the riding system. In the same way, executing incomplete
changes can damage the executing software.

We can satisfy Smith’s above three requirements for a reflective system the
way Friedman and Wand [37] did, as shown in figure A.1. This model intro-
duces the operations of reification and reflection. The base program must be rei-
fied, or rendered into its representation, before a metaprogram can operate. The
base level, the running program, has available a reify operation that turns the
running program (including stack frames, control registers, and so on) into a
data structure that is passed to a metaprogram. The metaprogram queries the
base program for information and makes changes using these data structures.
These changes are reflected in the behavior of the base program, when it con-
tinues execution. The metaprogram invokes a reflect operation to continue the
execution of the base program.

base program

metaprogram

reify reflect

base level

metalevel

Figure A.1 Friedman and Wand’s model for execution of a reflective system

244 APPENDIX A
Metaprograms basically do the same things we do as programmers. As pro-
grammers, we write code that queries the values of fields and invokes methods.
We create and transform classes, adding properties and aspects as we go. Metapro-
grams have available many of these operations and are algorithmic expressions of
these activities. If such activities need to repeated, an algorithmic description can
enhance productivity, alleviate tedium, and remove human error.

Smith’s vision is not totally fulfilled by figure A.1. According to that vision, both
the base program and the metaprogram are part of the same program and are
written in the same language for which the metaprogram is an interpreter. Fur-
ther, the metaprogram may be considered a base program for an even higher-level
metaprogram. This stacking is continued to form an infinite tower of interpreted
programs. Exploring Smith’s model and its philosophical implications is interest-
ing (see [82]) but not one of our goals for this book. For this reason, we move our
story along to the impact of reflection on object-oriented programming.

A.2 Reflective object-oriented programming

The self-representation required by reflection meshes very nicely with object-ori-
ented programming. A collection of objects, called metaobjects, can be used to
represent the program as well as a situation in the application domain. Reflective
object-oriented programming systems generally do not have a reify operation.
Instead, the metaobject representation exists when the program begins running
and persists throughout the execution of the program.

The notion of having metaobjects in the programming system is present in
Smalltalk-80 [39], where at runtime there exists a class object (a metaobject) to
represent each class of a running program. The late 1980s were abundant with
research in the relationship of reflection to object-oriented programming; nota-
ble examples are the work of Maes [63], Cointe [17], and Foote and Johnson [29].

However, the most notable work is The Art of the Metaobject Protocol [49] by Kicza-
les, des Rivieres, and Bobrow, which introduced the term metaobject protocol to
describe a system’s reflective facilities. Simply stated, a system’s metaobject proto-
col is contained in the interface to its metaobjects.

We present reflection with respect to class-based programming (a term intro-
duced by Peter Wegner [91]). In class-based programming, an object responds to
the methods that its class supports. A class is said to support a method if the class
declares or inherits the method. An object is said to respond to a method if the
method can be invoked on the object. Java is a class-based programming lan-
guage, which is one reason for our bias. A second reason is our belief that the

APPENDIX A 245
formal modeling inherent in class-based languages is the better of the alternatives
for professional programming. Other models, such as prototype-based program-
ming (as in Self [87]), are not addressed in this book.

Class-based programming means that an object has the structure specified by
its class and responds to the methods either inherited or introduced by its class. A
simple, uniform way for a class-based programming language to introduce a
metaobject protocol is to have class objects that can be queried and possibly
changed. A reflective class-based programming language should obey the follow-
ing three postulates:

1 There exists a nonempty finite set of objects, each identified by a value
called an object reference.

2 Every object has a uniquely associated entity called a class.

3 Every class is reified with (represented by) an object.

Note the distinction between class and class object. A class is a notion that is part
of the programming language, while a class object is a reification of that notion.
This distinction explains why you must use the Java .class literal to obtain the
class object from the class name.

Figure A.2 illustrates the object-oriented organization for reflection. The
metaobjects are in the metalevel because they are the reification of the program.
Reflective computation occurs when method calls are made on class objects. The
difference between this situation and the one envisioned by the Friedman and

ordinary

object

class

object

base level

metalevel

X

in
st
an
ce
Of

iX

Figure A.2 The object-oriented organization for reflection

246 APPENDIX A
Wand model is that the reification exists continuously throughout the execution
of the program.

The simplicity and uniformity of object-oriented reflection derives from treat-
ing classes as objects. However, the combination of postulates 2 and 3 leads to
the circularity that the objects that represent classes must themselves have
classes. These classes must also be represented by objects that have classes, and
so on. This circularity is the key concern for organizing a model that satisfies all
three postulates.

Figure A.2 illustrates that the relationship between objects and their class rep-
resentations can be viewed as a graph. The vertices of the graph are objects and its
edges are instanceOf relations. Given that graphical framework for analysis, the
following theorem from graph theory motivates a successful organization that sat-
isfies the postulates.

THEOREM: Every finite acyclic directed graph must have a vertex with no arrows
leaving it.

PROOF: ([42] page 200)—Because the graph is finite and acyclic, the
paths can be listed. Consider any maximal path P. The last vertex of P
can have no successor because P is maximal. Therefore, the graph has
a vertex with no arrows leaving it.

The graph is directed because of the nature of the instanceOf relation. The
graph cannot be infinite, because of Postulate 1 and because it is to be realized in
the finite memory of a computer. Postulate 2 states that every object has a class;
therefore, every vertex has an arrow leaving it. Consequently, the graph must have
a cycle.

This theorem implies that any programming language that obeys the three pos-
tulates must have a cycle in its graph of the instanceOf relation. This is true of
Smalltalk-80 [39], where this notion of an instanceOf cycle was introduced.
Smalltalk-80 had more than one class in the cycle, but in more recent program-
ming languages such as Java, it has become standard to have a single class (named
Class) that has a self loop, as shown in figure A.3. Notice that this level of sophis-
tication is reached without yet introducing inheritance.

A.3 Inheritance

Some programming languages, such as Java and Smalltalk, have a single top to the
inheritance hierarchy. It is customary to name this class Object, as depicted in fig-
ure A.4. It not necessary to have such a class (C++ gets by without one). However,

APPENDIX A 247
having such a class is very convenient for defining methods to which all objects
must respond. For example, as Java programmers, we appreciate the fact that all
objects respond to toString. As we transition to Java metaprogramming in this
book, we equally appreciate that all objects respond to getClass.

There are two kinds of circularities in figure A.4. Class is an instance of itself,
and that forms a self loop in the graph. Class is also a subclass of Object, which
is an instance of Class. It is natural to look at this graph and be wary of the possi-
bility of circular definitions. However, as Java developers, we leverage a system
that is arranged like this every time we program. We know that this arrangement
works from our experiences, even if it has not been explained to us. The circular-
ities of figure A.4 are handled by equations that govern the flow of method and
field definitions, a topic that is beyond the scope of this book. For a more detailed
discussion of why and how reflective class-based object models work, see Putting
Metaclasses to Work [33].

Let’s take a moment to review standard Java terminology for inheritance. A
direct superclass is the one named in the extends clause of a class declaration. A

instanceOf

base level

metalevel
class objects

«metaclass»
Class

in
st
an
ce
Of

in
st
an
ce
Of

iX

X

Figure A.3 The typical arrangement of class objects

248 APPENDIX A
class X is a superclass of a class Y if there is a sequence of one or more direct
superclass links from Y to X. There is a set of corresponding statements defining
direct superinterface and is a superinterface of.

A.4 Metaobject protocols

Reflection empowers a program to examine and modify itself, where modifica-
tions are causally connected to the behavior of the program. The metaobjects
comprise a representation of the program, and the metaobject protocol is the
interface to the metaobjects. It is time to consider what sort of operations you
would like to perform with a metaobject protocol.

Introspection is the act of examining the structure and state of a program.
Listing the names of the instance variables in an object is an example of an
introspective use of a metaobject protocol. Here are some examples of intro-
spective operations:

base level

metalevel

class objects

instanceOf

i
n
s
t
a
n
c
e
O
f

in
st
an
ce
Of

inst
ance

Of «metaclass»
Class

X

iX

Object

Figure A.4 When inheritance is added, Class becomes a subclass of Object. This ensures that all
classes are objects.

APPENDIX A 249
■ Examining instance variable values

■ Listing the methods of a class

Intercession refers to the ability of the metalevel to intercede in the operation of a
program and change its behavior. Typically, intercession occurs by the metalevel
changing the structure of the program. These structural changes subsequently
manifest themselves as behavioral changes. Changing the binding (in a method
table) of a method to the code that implements the method is an example of
intercession. Equivalently, intercepting a method call and rerouting it is also an
example of intercession. Here are more examples of intercessional operations:

■ Adding new methods to a class

■ Adding new instance variables to a class

■ Changing the set of parent classes of a class

■ Redefining methods

■ Controlling method dispatch

All metaobject protocols have limitations. An intrinsic property (of a metaobject
protocol) is a (computable) property that can be programmed with the metaob-
ject protocol. An extrinsic property is a (computable) property that is not intrinsic.
For example, in Java, computing the class object of an object is an intrinsic prop-
erty; you simply use the getClass method. On the other hand, computing the
instances of a class object is an extrinsic property of the Java metaobject protocol.

The Java metaobject protocol is almost totally introspective. Consequently,
there are many useful reflective tasks that cannot be accomplished directly with
the Java metaobject protocol. One of the goals of this book is to show you how to
recognize such situations and show you what to do when they arise.

A.5 Metaclasses

In figures A.3 and A.4, we introduced Class with very little explanation. It is time
to address that issue, because it is an additional important feature of reflective
object- oriented programming. Class is a metaclass. Metaclasses are a set of
classes that produce classes when instantiated. We know this set of classes exists
because our postulates tell us that as objects, classes must themselves have instanti-
ating classes. The class named Class is a metaclass that arises naturally from the
three postulates and the desire to have minimal structure that satisfies them.

250 APPENDIX A
At this point, it is important to review some facts in order to ensure that you
understand the structure of reflective object-oriented programming:

■ A class is a metaobject.

■ A metaclass is a (special) kind of class, whose instances are classes.

It is also important to understand these two points:

■ Not all classes are metaclasses.

■ Not all metaobjects are metaclasses.

We know the first point to be true because we have programmed with classes that
instantiate objects that are not classes. The second point is illustrated by classes
like Field, Method, and Constructor. These metaobjects do not produce classes by
instantiation and are therefore, by definition, not metaclasses.

Because a metaclass is a class, there exists both the metaclass as written in the
programming language and the metaclass object in the implementation of the
programming language. Although precision in writing dictates that we distinguish
between the terms class and class object, we avoid the awkward term metaclass object
in favor of using the term metaclass for both cases (the class and the class object).
Context will easily disambiguate the uses of metaclass.

Figure A.5 illustrates the relation between the set of objects, the set of classes,
and the set of metaclasses. That is, all classes are objects and all metaclasses are
classes. A class that is not a metaclass is called an ordinary class. An object that is
not a class object is called an ordinary object.

For an object-oriented programming model design, as shown in figure A.5, the
metaobject protocol includes both the methods introduced by Class and the
methods introduced by Object (because Class inherits from Object). In addi-
tion, subclasses of Class also have the interface for class objects, which leads to
the following little theorem.

THEOREM: Any subclass of a metaclass is a metaclass.
PROOF: A subclass of a metaclass inherits the interface for examining

and modifying a class object. The instances of the subclass must be a
class object.

This theorem addresses the issue of creating new metaclasses. You create a meta-
class by subclassing Class or another metaclass. You cannot subclass Class in Java
because Class is final. This means that a Java programmer cannot create new
metaclasses. This topic is included in this book for two reasons. First, there is the

APPENDIX A 251
desire to convey a complete discussion of the topic of metaobject protocols. Sec-
ond, metaclasses are the natural entry to the topic of class-to-class transformations.

A.6 Class-to-class transformations

The important issue is not how you create a metaclass but why you would want do
to so. Because each class object has a metaclass, the construction of a class object
is controlled by its metaclass. Furthermore, during the construction, the metaob-
ject protocol may be used to change the class in a programmatic way. That is, a
metaclass is the natural and proper modularity concept of a class-to-class transfor-
mation in reflective object-oriented programming.

To better understand why class-to-class transformations are valuable, consider
the following linguistic interpretation of the evolution of computer programming.
In the 1950s and 1960s, programming was about commanding the computer—

set of objects

set of classes

set of metaclasses

in
st
an
ce
Of

in
st
an
ce
Of

instanceOf
«metaclass»

Class

X

iX : X

Figure A.5 Venn diagram depicting the containment of the set of metaclasses in the set of classes,
which is contained in the set of objects

252 APPENDIX A
verbs. In the 1970s, this approach proved deficient. A new paradigm arose in
which the specification of abstract data types and then classes—nouns—became
foremost for the programmer. This paradigm, object-oriented programming, has
evolved throughout the 1980s and 1990s. Although powerful and useful, object-
oriented programming has proved deficient in isolating properties of objects—
adjectives—so that the code that implements a property can be reused. In other
words, we have pushed object-oriented programming with only classes and objects
to its limit, and out of its breakdown the need for the metalevel arises.

Handling compilation errors
in the “Hello world!” program
The “Hello world!” program in chapter 7 is a fine generator if there are no
compilation errors in the generated code. However, on some platforms
(including Windows 2000), if there are compilation errors, the waitFor state-
ment misses the termination signal from the compilation process. The result is
that generator program hangs and the error stream is not displayed. The Java
documentation on Process states:

The Runtime.exec methods may not work well for special processes on cer-
tain native platforms, such as native windowing processes, daemon pro-
cesses, Win16/DOS processes on Microsoft Windows, or shell scripts. The
created subprocess does not have its own terminal or console. All its stan-
dard io (i.e. stdin, stdout, stderr) operations will be redirected to the
253

254 APPENDIX B
parent process through three streams (Process.getOutputStream(), Pro-
cess.getInputStream(), Process.getErrorStream()). The parent pro-
cess uses these streams to feed input to and get output from the subprocess.
Because some native platforms only provide limited buffer size for standard
input and output streams, failure to promptly write the input stream or read the
output stream of the subprocess may cause the subprocess to block, and even
deadlock.

The problem seems to be that the reading of the error stream occurs after the
waitFor, but the compilation process is blocked waiting for the error stream to be
read before terminating.

Presented in listing B.1 is a version of the “Hello world!” program that does not
use waitFor. Instead, the program polls the compilation process using
exitValue. While the compilation process is running, exitValue throws an
IllegalThreadStateException. Each time the exception is caught, the process
is checked for a nonempty error stream whose size has stabilized. Once the error
stream has stabilized, the compilation process has effectively terminated, and the
error stream may be drained and displayed. Note that error stream is also dis-
played if the process terminates with a nonzero exit value.

This solution is used to test the C2C framework on Windows 2000 using Java
1.4.1. Other platforms may require different solutions.

public class HelloWorldGenerator2 {

 public static void main(String[] args) {

 try {
 FileOutputStream fstream = new

FileOutputStream("HelloWorld.java");
 PrintWriter out = new PrintWriter(fstream);
 out.println("class HelloWorld { \n"
 + " public static void main(String[] args) { \n"
 + " System.out.println(\"Hello world!\");\n"
 + " } \n"
 + "} ");
 out.flush();
 Process p = Runtime.getRuntime().exec("javac HelloWorld.java"

);

 // The following section substitutes for p.waitFor()
 int exitValue = -1; // compilation failure is not –1
 int errStreamAvailable = 0;
 while (exitValue == -1) {

Listing B.1 HelloWorldGenerator2

APPENDIX B 255
 Thread.sleep(10);
 try {
 exitValue = p.exitValue();
 } catch(IllegalThreadStateException e){
 InputStream errStream = p.getErrorStream() ;
 if (errStream.available() > 0
 && errStream.available() == errStreamAvailable) {
 for (int j = errStream.available(); j > 0; j--)
 System.out.write(errStream.read());
 p.destroy();
 throw new RuntimeException("compile failed");
 }
 errStreamAvailable = errStream.available();
 exitValue = -1;
 }
 }

 if (p.exitValue() == 0) {
 Class outputClassObject = Class.forName("HelloWorld");
 Class[] fpl = { String[].class };
 Method m = outputClassObject.getMethod("main", fpl);
 m.invoke(null, new Object[]{ new String[] {} });
 } else {
 InputStream errStream = p.getErrorStream();
 for (int j = errStream.available(); j > 0; j--)
 System.out.write(errStream.read());
 }
 } catch(Exception e){ throw new RuntimeException(e); }
 }
}

UML
Table C.1 summarizes the UML conventions used to diagram reflective programs.
In UML, boxes represent classes and objects. The style of the name in the

box indicates whether it is a class or not. The name of an object that is not a
class is underlined. The name of a class object is never underlined. This book
uses class diagrams, object diagrams, and sequence diagrams.

In UML, you typically draw class diagrams showing only classes or object dia-
grams showing only non-class objects. Modeling reflection calls for combining
the two and using the instanceOf dependency to connect an object with its
instantiating class. UML defines the instanceOf dependency with same mean-
ing as the Java instanceof operator. However, this book uses the instanceOf
dependency only to show that an object is a direct instance of a class. Figure 1.4
on page 19 is such diagram.

Sequence diagrams depict the interactions of an object with other objects.
Figure 4.1 on page 75 is such a diagram. It depicts three objects: a client, a
proxy, and a target. The lifeline of each object is drawn below the object. The
256

APPENDIX C 257
long thin rectangles represent periods when the object is active. Between the
active periods, arrows that represent method calls and the returns are drawn.

Table C.1 UML conventions for this book

Diagram Feature Description

A class is drawn as a box with the name of the call written centered at
the top of the box. The members of the class are written in compart-
ments below the class name.

A metaclass is drawn similarly to a class with the addition of the ste-
reotype name <<metaclass>>.

An interface in drawn similarly to a class with the addition of the ste-
reotype name <<interface>>.

An ordinary object is drawn as a box with the name of the object under-
lined. The name of the object may be followed by a clause giving the
type of the object.

A note box contains a comment that elaborates on some other model
element.

This arrow represents a dependency between two model elements. It
is labeled with the kind of dependency being depicted. Typical depen-
dencies are imports from, uses, and calls.

This arrow represents the extends dependency. The arrow points from
a subclass to its direct superclass (or from an interface to a super-
interface).

This arrow represents the implements dependency. The arrow points
from an implementing class to an interface.

This dependency is drawn from an object to a class. In general, the
dependency indicates that the object may be typed by the class. In this
book, we draw this dependency only to the class that instantiates the
object.

This arrow indicates a method call in a sequence diagram.

This arrow indicates a return from a method call in a sequence diagram.

Dog

<<metaclass>>
Class

<<interface>>
Runnable

fido : Dog

label

instanceOf

glossary
causally connected. A computation is causally connected to its representation if a

change to one causes a change in the other.
class invariant. A logical condition that is true for each instance of the class after

the instance is constructed and whenever no method of the class is executing.
class loader. An instance of a subclass of ClassLoader.
class object. A metaobject that is the representation of a class.
extrinsic property. A computable property that is not intrinsic.
header of a method. Consists of the method modifiers, the return type, the name

of the method, the number and types of formal parameters to the method, and
the throws clause.

instance variable. A field that is not static.
intercession. Those aspects of a reflection API that allow you to change the struc-

ture or behavior of a program.
intrinsic property. A computable property that can be programmed with the

reflection API.
introduces. A class or interface introduces a member if it declares the member

and that member is not declared by any of its superclasses or superinterfaces.
introspection. Those aspects of a reflection API that allow you to examine the

structure and state of a program.
invariant. A logical condition of the state of a program that is always true, or

always true except if control is in some particular piece of code.
258

GLOSSARY 259
marker interface. An interface that declares no methods or variables but when
used indicates that an implementing class has some property. Cloneable is a
marker interface.

metacircular interpreter. An interpreter that is written in the same language that
it interprets.

metaclass. A class or class object whose instances are class objects.
metaobject. An object that represents part of the program.
metaobject protocol. The interface to the metaobjects.
metaprogrammer. A programmer who uses the reflection API.
microbenchmark. A performance measurement of a short piece of code.
ordinary class. A class object that is not a metaclass.
ordinary object. An object that is not a class object.
reflection. The empowerment of a program to examine and modify itself in a

causally connected manner.
reify operation. An operation that renders an executing program into a data

structure.
respond. An object responds to a method if the method can be invoked on the

object.
self-representation. The data structures of an executing program that represent

that program.
signature of a method. Consists of the name of the method and the number and

types of formal parameters to the method.
support. A class supports a method if the class declares the method or inherits

the method.
type error. A type error occurs when code accesses an object as if it belongs to a

type to which it does not in fact belong.
type safety. A property of a program or a programming language. A program is

type safe if it contains no type errors; a language is type safe if its complier is able
to recognize and reject all programs containing type errors at compile time.

references
[1] Agesen, O., S. N. Freund, and J. C. Mitchell. “Adding Type Parameterization

to the Java Language.” OOPSLA ’97 Conference Proceedings, October 1997,
49–55.

[2] Alexander, B. “The Art of Writing and Running Microbenchmarks.”
Unpublished.

[3] Alpert, S. R. “Primitive Types Considered Harmful.” In More Java Gems, edited by
D. Duego, 435–54. Cambridge, UK: Cambridge University Press, 2000.

[4] Back, R. J. R. and R. Kurki-Suonio. “Superimposition and Fairness in Reactive
System Refinements.” Jerusalem Conference on Information Technology,
Jerusalem, Israel: October 1990, 22–25.

[5] Bawden, A. “Reification without Evaluation.” Proceedings of the 1988 ACM
Conference on LISP and Functional Programming, 1988, 342–349.

[6] Beck, K. and E. Gamma. “Test-Infected: Programmers Love Writing Tests.” In
More Java Gems, edited by D. Duego, 357–376. Cambridge, UK: Cambridge
University Press, 2000.

[7] Bloch, J. Effective Java. Reading, MA: Addison-Wesley, 2001.

[8] Bracha, G., N. Cohen, C. Kemper, S. Marx, M. Odersky, S.-E. Panitz, D.
Stoutmire, K. Thorup, and P. Wadler. “Adding Generics to the Java
Programming Langauge: Participant Draft Specification.” April 27, 2001 (http:/
/ java.sun.com/Download4).

[9] Brooks, F. P., Jr. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1995.
260

REFERENCES 261
[10] Cartwright, R. and G. L. Steele, Jr. “Compatible Genericity with Run-time Types
for the Java TM Programming Language.” OOPSLA ’98 Conference
Proceedings, October 1998, 201–215.

[11] Cazzola, W. “Evaluation of Object-Oriented Reflective Models.” Proceedings of
ECOOP Workshop on Reflective Object-Oriented Programming and Systems,
July 1998.

[12] Cazzola, W. “SmartMethod: An Efficient Replacement for Method.” SAC’04,
March 2004.

[13] Chan, P., R. Lee, and D. Kramer. The Java Class Libraries, 2d ed., vol. 1. Reading,
MA: Addison-Wesley, 1998.

[14] Chandy, K. M. and L. Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems.” ACM Transactions on Computer Systems, 3(1), 63–75
(February 1985).

[15] Chiba, S., “Load-time Structural Reflection in Java.” ECOOP 2000—Object-
Oriented Programming, 313–36, LNCS 1850. Berlin: Springer-Verlag, 2000.

[16] Cohen, G. A., J. S. Chase, and D. L. Kaminsky. “Automatic Program
Transformation with JOIE.” USENIX 1998 Annual Technical Conference, 1998.

[17] Cointe, P. “Metaclasses Are First Class: The ObjVlisp Model.” OOPSLA ’87
Conference Proceedings, October 1987, 156–165.

[18] Copeland, G. Personal communication.

[19] Czarnecki, K. and Eisenecker, U. W. Generative Programming: Methods, Tools, and
Applications. Reading, MA: Addison-Wesley, 2000.

[20] Devore, J. and R. Peck. Statistics (4th ed.). Pacific Grove, CA: Duxbury, 2001.

[21] Dijkstra, E. W. “Go to Statement Considered Harmful.” In Communications of the
ACM, 147–48, vol. 11 (March 1968).

[22] Dijkstra, E. W. A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall,
1976.

[23] Driver, C. “Evaluation of Aspect-Oriented Software Development for Distributed
Systems.” Master’s thesis, University of Dublin, 2002.

[24] Drossopoulou, S., F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. “Fickle:
Dynamic Object Re-classification” (extended abstract). Presented at The Eighth
International Workshop on Foundations of Object-Oriented Languages,
January 2001.

[25] Drossopoulou, S., F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. “More
Dynamic Object Reclassification: FickleII.” ACM Transactions of Programming
Languages and Systems, 153–91, 24(2), (March 2002).

[26] Elnozahy, E. N., L. Alvisi, Y.-M. Wang, and D. B. Johnson. “A Survey of Rollback-
Recovery Protocols in Message-Passing Systems.” ACM Computing Surveys,
375–408, 34(3), (September 2002).

262 REFERENCES
[27] Elrad, T., R. E. Filman, and A. Bader (editors). “Aspect-Oriented
Programming.” Communications of the ACM, 29–97, 44(10), (October 2001).

[28] Erradi, M., G. v. Bochmann, and I. A. Hamid. “Type Evolution in a Reflective
Object-Oriented Language.” University of Montreal Technical Report 827
(April 1996).

[29] Foote, B., and R. E. Johnson. “Reflective Facilities in Smalltalk-80.” OOPSLA ’89
Conference Proceedings, October 1989, 327–35.

[30] Foote, B. and J. Yoder. “Evolution, Architecture, and Metamorphosis.” In Pattern
Languages of Program Design 2, edited by J. M. Vlissides, J. O. Coplien, and N. L.
Kerth. Reading, MA: Addison-Wesley, 1996.

[31] Forman, I. R. “On the Time Overhead of Counters and Traversal Markers.”
Proceedings of the 1981 International Conference on Software Engineering,
164–69.

[32] Forman, I. R., S. H. Danforth, and H. H. Madduri. “Composition of Before/
After Metaclasses in SOM.” OOPSLA ’94 Conference Proceedings, October
1994, 427–39.

[33] Forman, I. R. and S. H. Danforth. Putting Metaclasses to Work. Reading, MA:
Addison-Wesley, 1999.

[34] Forman, N. B. Metaclass-Based Implementation of Software Patterns. Master’s report,
University of Texas at Austin (December 1999).

[35] Forman, I. R. “Declarable Modifiers: A Proposal to Increase the Efficacy of
Metaclasses.” In Reflection and Software Engineering, edited by W. Cazzola, R.
Stroud, and F.Tisato. LNCS 1826, Berlin: Springer-Verlag, (June 2000).

[36] Francez, N. and I. R. Forman. Interacting Processes: A Multiparty Approach to
Distributed Systems Design. Reading, MA: Addison-Wesley, 1996.

[37] Friedman, D. P. and M. Wand. “Reification: Reflection without Metaphysics.”
Conference Record of the 1984 ACM Symposium on LISP and Functional
Programming, 1984, 348–55.

[38] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Object-Oriented Programming. Reading, MA: Addison-Wesley, 1995.

[39] Goldberg, A. and D. Robson. Smalltalk-80: The Language and Its Implementation.
Reading, MA: Addison-Wesley, 1983.

[40] Gong, L., G. Ellison, and M. Dageforde. Inside Java 2 Platform Security (2d ed.):
Architecture, API Design, and Implementation. Reading, MA: Addison-Wesley, 2003.

[41] Gosling, J., B. Joy, G. Steele, and G. Bracha. The Java Language Specification
(2d ed.). Reading, MA: Addison-Wesley, 2000.

[42] Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1972.

[43] Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative Approach
(2d ed.). San Francisco, CA: Morgan Kaufmann Publishers, 1996.

REFERENCES 263
[44] Herrington, J. Code Generation in Action. Greenwich, CT: Manning Publications,
2003.

[45] Hilsdale, E. and G. Kiczales. “Aspect-Oriented Programming in Aspect/J.” 2002
(www.parc.com/groups/csl/projects/aspectj/downloads/PARC-Workshop-
2002.pdf).

[46] Hoare, C. A. R. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice
Hall, 1985.

[47] IBM. Jikes Bytecode Toolkit. (http://www.alphaworks.ibm.com/tech/jikesbt).

[48] Keller, R. and U. Holzle. “Binary Component Adaptation.” Proceedings of
ECOOP’98, 1998.

[49] Kiczales, G., J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol.
Boston, MA: The MIT Press, 1991.

[50] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irving. “Aspect-Oriented Programming.” Proceedings of ECOOP’97,
June 3–13, 1997. Also in Lecture Notes in Computer Science 1241, Berlin: Springer-
Verlag, 220–42.

[51] Kirby, G., R. Morrison, and D. Stemple. “Linguistic Reflection in Java.”
Software—Practice and Experience, 28(10), 1998.

[52] Kniesel, G., P. Constanza, and M. Austermann. “JMangler—A Framework for
Load-time Transformation of Java Classes.” Proceedings of First International
Workshop on Source Code Analysis and Manipulation (SCAM 2001).

[53] Knuth, D. E. The Art of Computer Programming: Sorting and Searching, vol. 3.
Reading, MA: Addison-Wesley, 1973.

[54] Laddad, R. AspectJ in Action. Greenwich, CT: Manning Publications, 2003.

[55] Lamport, L. “Time, Clocks, and the Ordering of Events in Distributed Systems.”
Communications of the ACM, 558–65, 21(7) (July 1978).

[56] Ledru, P. “Smart Proxies for Jini Services.” ACM Sigplan Notices, 36–44, 37(4)
(April 2002).

[57] Liang, S. and G. Bracha. “Dynamic Class Loading in the Java Virtual Machine.”
OOPSLA ’98 Conference Proceedings, October 1998, 36–44.

[58] Lieberherr, K. J., I. Silva-Lepe, and C. Xaio. “Adaptive Object-Oriented
Programming Using Graph Customization.” Communications of the ACM,
94–101, 37(5) (May 1994).

[59] Lieberherr, K. J. Adaptive Object-Oriented Software. Boston, MA: PWS Publishing,
1996.

[60] Lindholm, T. and F. Yellin. The Java Virtual Machine Specification (2d ed.).
Reading, MA: Addison-Wesley, 1999.

264 REFERENCES
[61] Linger, R. C., H. D. Mills, and B. I. Witt. Structured Programming: Theory and
Practice. Reading, MA: Addison-Wesley, 1979.

[62] Liskov, B. and J. Guttag. Program Development in Java. Reading, MA: Addison-
Wesley, 2001.

[63] Maes P. “Concepts and Experiments in Computational Reflection.” OOPSLA
’87 Conference Proceedings, October 1987.

[64] Malabarba, S., R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. “Runtime Support
for Type-Safe Dynamic Java Classes.” University of California, Davis TR-CSE-
2000-7 (earlier version in the Proceedings of the 14th European Conference
 on Object-Oriented Programming, June 2000).

[65] Massol, V. and T. Husted. JUnit in Action. Greenwich, CT: Manning Publications,
2003.

[66] Mätzel, K.-U. and W. R. Bischofberger. “Designing Object Systems for
Evolution.” TAPOS’97.

[67] Mems, T. “A Formal Foundation for Object-Oriented Software Evolution.”
Ph.D. dissertation, Vrije Universiteit Brussel (August 1999).

[68] Merriam-Webster’s Collegiate Dictionary, version 2.5. 2000.

[69] Metz, D. and M. Simionato. “Metaclass Programming in Python.” IBM
developerWorks. February 2003 (www-106.ibm.com/developerworks/library/
l-pymeta.html?ca=dnt-48h).

[70] Meyer, B. Eiffel: The Language. Englewood Cliffs, NJ: Prentice Hall PTR, 1991.

[71] Myers, A. C., J. A. Bank, and B. Liskov. “Parameterized Types for Java.”
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1997, 132–45.

[72] Neward, T. Server-based Java Programming. Greenwich, CT: Manning, 2000.

[73] Ourosoff, N. “Primitive Types in Java Considered Harmful.” Communications of
the ACM, 105–6, 45(8) (August 2002).

[74] Parnas, D. L. “Software Aging.” Proceeding of the 16th International
Conference on Software Engineering, 1994, 279–87.

[75] Portwood, M. T. “Using Java Technology Reflection to Improve Design.”
(ftp://ftp.oreilly.com/pub/conference/java2001/Portwood_Reflection.ppt).

[76] Riehle, D. and K.-U. Mätzel. “Using Reflection to Support System Evolution.”
1998 (http://www.riehle.org/papers/1998/oopsla-1998-ws-28-pp.html).

[77] Rising, L. The Patterns Almanac 2000. Reading, MA: Addison-Wesley, 2000.

[78] Roubstov, V. “Cracking Java Byte-Code Encryption.” Java World. May 2003
(javaworld.com/javaworld/javaqa/2003-05/01-qa-0509-jcrypt.html).

[79] Shavit, N. and N. Francez. “A New Approach to Detection of Totally Indicative
Stability.” Proceedings of 13th ICALP, LNCS 226, Springer-Verlag, July 1986.

REFERENCES 265
[80] Smith, B. “Reflection and Semantics in a Procedural Language.” Ph.D. thesis,
Massachusetts Institute of Technology, 1982 (also published as technical report
LCS TR-272).

[81] Smith, B. “Reflection and the Semantics of LISP.” Conference Record of
Symposium on Principles of Programming Languages, 1984, 23–35.

[82] Smith, B. C. The Origin of Objects. Boston, MA: The MIT Press, 1996.

[83] Steele, G. L., Jr., D. R. Woods, R. A. Finkel, M. R. Crispin, R. M. Stallman, and G.
S. Goodfellow. The Hacker’s Dictionary. New York: Harper and Row, 1983.

[84] Sun Microsystems. “From Mantis to Tiger.” (http://java.sun.com/features/
2002/03/totiger.html).

[85] Tatsubo, M., T. Sasaki, S. Chiba, and K. Itano. “A Bytecode Translator for
Distributed Execution of ‘Legacy’ Java Software.” ECOOP 2001—Object-
Oriented Programming, 236–55, LNCS 2072. Berlin: Springer Verlag, 2001.

[86] Tel, G., R. B. Tan, and J. van Leeuwen. “The Derivation of Graph Marking
Algorithms from Distributed Termination Detection Algorithms.” Technical
report, University of Utrecht (August 1986).

[87] Ungar, D. and R. B. Smith. “Self: The Power of Simplicity.” OOPSLA ’87
Conference Proceedings, October 1987, 227–242.

[88] Vlissides, J. Pattern Hatching: Design Patterns Applied. Reading, MA: Addison-
Wesley, 1998.

[89] Wand, M. and D. Friedman. “The Mystery of the Tower Revealed: A Non-
reflective Description of the Reflective Tower.” Proceedings of the 1986 ACM
Conference on LISP and Functional Programming, 1986, 298–307.

[90] Warren, I. The Renaissance of Legacy Systems. Berlin: Springer, 1999.

[91] Wegner, P. “Dimensions of Object-Based Language Design,” OOPSLA ’87
Conference Proceedings, October 1987, 168–82.

[92] Welch, I. and R. Stroud. “Kava—A Reflective Java Based on Bytecode Rewriting.”
In Reflection and Software Engineering, edited by W. Cazzola, R. Stroud, and
F.Tisato, 155–68. LNCS 1826, Berlin: Springer-Verlag (June 2000).

[93] World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (2d ed.).
(www.w3.org/TR/2000/REC-xml-20001006).

[94] World Wide Web Consortium. “Web Services Architecture.” W3C Working
Draft 8, August 2003, (http://www.w3.org/TR/ws-arch).

index
A

Abstract Factory pattern 51, 54, 134
AccessibleObject

isAccessible 39
setAccessible 39, 41, 65, 67, 86, 139

active class 132
Amdahl’ s Law 218
AnnotationElement

getAnnotation 234
getAnnotations 234
getDeclaredAnnotations 234
getParameterAnnotations 234
isAnnotationPresent 234

Apache 50, 100, 109
Args 152–153

complete 153
getFlagValue 152
getFlagValues 152
getLast 153
hasFlagValue 153
toString 153

Array
get 40
getBoolean 41
getLength 40
newInstance 40, 65, 171
set 41, 67
setBoolean 41

array types 14
arrays

class objects 56
name encoding 56

AspectJ 238
Aspect-Oriented Programming 175–176
assert statement 151

atomic class 74
attributes 29
Axis 100

B

base level 9, 19, 243
Base level object 9
base program 9
BCEL 176
benchmark 210
Builder pattern 54, 205
bytecode verifier 139

C

C# 236
C++ 246
C2C 148, 150

command line flags 155
command line processing 152

C2CConstructor 155, 157
C2CException 147, 169
C2CTransformation 158
C2ExtentManagedC 160
C2IdentitySubclassOfC 168, 188
C2InvariantCheckingC 188
C2ProxyForC 198, 208
C2SingletonC 183, 186
call stack introspection 108, 111–112, 191, 226
Castor 70
cglib 176
Chain of Responsibility pattern 205
checkAndProcessArgs 151
checkPostconditions 152
267

268 INDEX
Class
forName 53, 61–62, 65, 67, 84, 146, 158
getClassLoader 81, 88, 96, 136
getComponentType 13, 41, 65, 67
getConstructor 58, 61
getConstructors 58
getDeclaredConstructor 58, 65
getDeclaredConstructors 58, 183
getDeclaredField 32, 67, 87
getDeclaredFields 32, 38
getDeclaredMethod 11, 20, 134
getDeclaredMethods 11, 193
getDeclaringClass 158
getExceptionTypes 166
getField 32
getFields 32
getInterfaces 22

getAllInterfaces and 82
uses 81, 88

getMethod 6, 11, 146
getModifiers 194
getName 13, 167, 188
getSuperclass 20, 22, 32, 38
isArray 13, 158
isAssignableFrom 22, 86, 183
isInstance 22, 86
isInterface 13, 183, 198
isPrimitive 13, 44, 158
newInstance 62, 84, 94, 130

class diagram 256
class invariant 116
Class literals 11
class loader

delegation model 123, 126
dynamic class replacement and 132
security and 139

class object 10
ClassCastException 56–57, 83
ClassLoader

defineClass 125, 127
findClass 125
findLoadedClass 125
getParent 125
getSystemClassLoader 125
loadClass 125

ClassNotFoundException 55–56, 125
class-to-class transformation 144, 251

Decorator pattern 187
extent management 159
Proxy pattern 197
Singleton pattern 181

class-to-class transformations
problematic language features 201

clone 80, 96, 116, 162, 181
Cloneable 14, 19, 160, 162, 181, 185, 203

proxies and 80
CLOS 237
code generation

class management 159
Decorator pattern 187
HelloWorld.java 145
Proxy pattern 197
reflection and 143
Singleton pattern 181

com.sun.tools.javac 146
command line argurment processing 152
Composition Filters 238
construction overhead 209
ConstructOnce 131
Constructor

getDeclaringClass 58
getExceptionTypes 58, 183
getModifiers 58, 65, 183
getName 58
getParameterTypes 59, 166
newInstance 59, 61, 65

constructor objects 57
ConstructorgetParameterTypes 183
convenience facility 40, 48, 59, 165
cooperative method 148
createClass 151
createCooperativeWrapper 190, 196
createDBFacade 53
createRenamedConstructor 166, 183

D

Decorator pattern 170, 187, 197, 202, 205
delegation 51
deserialization 63

assignFieldValues 67
createInstances 65
deserializeObject 65
deserializeValue 68

design patterns
Abstract Factory 54, 134
Builder 54, 205
Chain of Responsibility 205
Decorator 170, 187, 197, 202, 205
Facade 51
Factory Method 51, 54, 181
Flyweight 205

INDEX 269
design patterns (continued)
Memento 205
Null Object 93
Prototype 205
Proxy 136, 197, 205
Singleton 181, 205
Strategy 133
Template Method 148

direct superclass 22, 247
direct superinterface 22, 248
document 29
dynamic class replacement 132
dynamic invocation 7, 26, 142

latency of 8
using primitives with 16

dynamic loading 9, 31, 34, 48, 53, 105, 122
array classes and 56
construction overhead 209
delegation and 71
designing for 60
disadvantages of constructors with arguments

and 61
no argument constructors and 70
reflective construction and 54, 60, 71

E

element 29
encryption of class files 141
endorsed standard 142
equalSignatures 194
Error 202
exception

C2CException 147, 169
ClassCastException 56–57, 83
ClassNotFoundException 55–56, 125
IllegalAccessException 18, 21, 35, 57, 59
IllegalArgumentException 8, 17–18, 35, 77
IllegalStateException 117, 130–131
IllegalThreadStateException 254
InstantiationException 57
InvocationTargetException 18
NoSuchFieldException 31, 88
NoSuchMethodException 12, 21, 58
NullPointerException 83
RuntimeException 169, 202
SecurityException 31, 39, 58, 125
UndeclaredThrowableException 83
WrappedException 92, 96

execution overhead 209

extent of a class 145, 159
extrinsic property 138, 159

F

Facade pattern 51
Factory Method 54, 181
Field

get 33, 86
getBoolean 33
getDeclaringClass 33, 41
getModifiers 33, 38, 41, 67
getName 33
getType 33, 41
set 34, 67
setBoolean 34

finalize 96
findField 87
flexibility 28, 48, 69, 71, 105, 108, 218, 224, 226,

238
class loaders and 142
delayed binding and 208
delegation and 51
dynamically linked libraries and 50
in use of C2C framework 175

Flyweight pattern 205
forName 53, 55–56, 122, 128, 130, 144, 152

primitives and 56

G

generateClassNamePrefix 151
generateConstructors 151
generateFields 151
generateImports 151
generateInterfaces 151
generateMethods 151
generateNestedClasses 151
getAllInterfaces 195
getInstanceVariables 38
getMethodsLackingImplementation 190, 192
getModifiersWithout 192
getSecurityManager 139
granularity overhead 209

H

Hacker’ s Dictionary, The 122
HelloWorldBenchmark 210
Hibernate 176
Hyper/J 238

270 INDEX
I

IBM 140, 237
identity class-to-class transformation 168
IllegalAccessException 18, 21, 35, 57, 59
IllegalArgumentException 8, 17–18, 35, 77
IllegalStateException 117, 130–131
IllegalThreadStateException 254
infinite recursion 108, 118, 187, 191
initiating loader 125
instance variables 35
instanceOf dependency 19, 23, 256
InstantiationException 57
intercession 74

class loading and 122
introspection 7, 26

accessing constructors 57
accessing fields 31
argument interfaces and 105
dynamic invocation and 9

invariant 116
invariant checking 187
InvariantChecker 119
InvariantSupporter 117
InvocationHandler

invoke 79
InvocationHandlerBase 86
InvocationTargetException 18

J

Java 1.5 226
annotation facility 229
generics 173, 227
impact on reflective code 235
language extensions 234

Java Community Process 227
Java compiler dynamically invoked 146, 148, 150
Java Language Specification 22, 37, 241
Java reflection

limitations 144
Java Specification Requests 227
Javassist 140, 176
JDOM 30, 46, 71
Jikes 140, 176
JSR 14 227
JSR 175 229
JSR 201 234
JUnit 129

K

Kiczales, Gregor 175

L

LISP 242
loaded class 132
Logger 110
logging 108–109

M

Member 36
getDeclaringClass 36
getModifiers 36
getName 36

Memento pattern 205
memory leaks 28
metaclass 23
metadata 48
metalevel 9, 19, 245, 252
metaobject 48, 57–58, 71
metaobject class 9, 15, 26, 59, 235
metaobject protocol 250
metaobjects 9
Method

getDeclaringClass 15
getExceptionTypes 15, 196
getModifiers 15, 171, 192–193
getName 15, 81, 194, 196, 198
getParameterTypes 15, 100, 171, 194, 196, 198
getReturnType 15, 94, 171, 196
invoke 6, 15, 21, 81, 88, 96, 134, 136, 146

method invocation intercession 74
method objects 14
Microsoft 236
Modifier

isAbstract 37
isFinal 37
isInterface 37
isNative 37
isPrivate 36
isProtected 36
isPublic 36, 41, 65, 67
isStatic 36, 38
isStrict 37
isSynchronized 37
isTransient 37, 41

INDEX 271
Modifier (continued)
isVolatile 37
isStatic 171

modifying bytecodes 140
Monkey 118
Moore’ s Law 221
Mopex 20, 165, 191

actualParametersToString 166–167, 183, 198
classArrayToString 166–167, 183
createCooperativeWrapper 188, 196
createRenamedConstructor 160, 166, 168, 183
equalSignatures 193–194
findField 86–87
formalParametersToString 166, 183
getAllInterfaces 82, 194–195
getInstanceVariables 38, 41
getMethodsLackingImplementation 188, 192
getModifiersWithout 188, 192, 198
getSupportedMethod 21
getTypeName 166–167
headerSuffixToString 198
selectAncestors 193–194
selectMethods 188, 193, 198

multithreading 80, 89, 108, 119, 138, 175, 218

N

namespaces 130, 137
NoSuchFieldException 31, 88
NoSuchMethodException 12, 21, 58
NTime 219
Null Object pattern 93
NullPointerException 83

O

Object
clone 116

object diagram 256

P

parent class loader 123
pattern application 180
Perl 63
persistence 75
pitfalls

class-to-class transformation 201
infinite recursion 118, 191
of call stack introspection 114

of dynamic invocation 17
of dynamic proxy 103
of interface introspection 37
of microbenchmarking 211

property sheets 28
Prototype pattern 205
Proxy

getInvocationHandler 77, 86, 134
getProxyClass 77, 174
isProxyClass 77
newProxyInstance 77, 81, 88, 96, 100, 136
use of 208

proxy 74, 134, 142
clone and 80
for tracing 81
invocation handlers and 79

proxy classes 78
proxy instance 78
proxy interfaces 78
Proxy pattern 136, 197, 205
Python 236
Python Software Foundation 236

R

readObject 69, 162, 182
referent 136
reflection

call stack introspection 111
class loading 122
code generation and 140, 143
dynamic loading 50
evolution in Java 226
flexibility and 8
introspection and 8
reflective construction 50, 57

reflective access 26, 34, 69
setAccessible and 38
to annotations 233
to array elements 40

reflective construction 48, 53–54, 209
delegation and 71
disadvantages of constructors with

arguments 61
dynamic loading and 54, 60, 71
factory method and 54

reflective programming 9–10, 23, 227–228
regression testing 122
reify operation

getStackTrace 111

272 INDEX
reusability 226
root element 29
RTime 219
Runtime.exec 253
RuntimeException 169, 202

S

SecureClassLoader 139
security manager 31, 39, 58, 139
SecurityException 31, 39, 58, 125, 139
selectAncestors 194
selectMethods 193
Self (programming language) 245
self-representation 9
sequence diagram 256
Serializable 182
serialization 28

limitations 69
serializeObject 41
serializeVariable 44

Servlets 50
setProperty 128
Simple Object Access Protocol 99
SimpleClassLoader 127, 139
SimpleClassLoaderTest 130
Singleton pattern 181, 205
slowdown 218
Smalltalk 236–237, 244, 246
SOAP 99
software rot 122
stack frame 108, 112, 114, 243
StackTraceElement 226

getClassName 112–113, 119, 188
getFileName 112
getLineNumber 112–113
getMethodName 112–113, 119, 188
isNativeMethod 112

Strategy pattern 133
SynchronizedInvariantChecker 119
system class loader 122

T

target of a proxy 74
Template Method 148
test stub 90
Throwable

getStackTrace 111, 113, 119, 188
printStackTrace 111

Tomcat 50, 109
tracing 74, 76, 81, 89, 109, 170, 230
types, represented as class objects 12

U

UML 9, 19, 256
class diagram 18, 92, 232

annotations 233
C2C framework 148, 174, 204
CustomerDatabase facade 52
Decorator pattern 188
dynamic class replacement 133
example of C2ExtentManagedC 163
java.lang.reflect 59
Parrot example 61
Proxy pattern 197
Singleton pattern 182
Squirrel example 164–165
support for generics 229
zoo application 45

class/object diagram 10, 19, 84
class loader delegation model 124
metalevel boundary 24–25, 245, 247–248
set of metaclasses 251

object diagram
zoo application 45

sequence diagram
actual objects in method forwarding 80
class loader delegation model 126
intervals timed 217
proxy chaining 90
proxy definition 75
use of getMethod and invoke 17

UndeclaredThrowableException 83
unit testing 90
unloaded class 132
UQueue 151

definition 171
uses

Args 153
C2CConstructor 155
getAllInterfaces 195
getMethodsLackingImplementation 192
selectAncestor 194
selectMethod 193

URLClassLoader 139
URLStreamHandler 139

INDEX 273
V

Venn diagram
set of metaclasses 251

W

WeakReference 136, 159, 182, 185
Web services 29, 99, 101, 103
Web Services Description Language 102
WrappedException 92, 96
writeObject 69
WSDL 99, 102

X

Xerox PARC 175, 236
XMethods 99, 102
XML 29–30, 99

illegal characters 70

Z

ZooTest 46
output 46

ions

I
a r
ch
fea
of
ap

Jav
do
sta
th
in
rep
to
res
yo

Wh

■ P
■ E
■ H
■ W
■ P

Dr.
ref
M
wh
Na

JAVA

JAVA Reflection IN ACTION
Ira

y

on

JAVA

e

ng

;t;P
www.manning.com/forman

Authors respond to reader quest

Ebook edition available

AUTHOR
✔

ONLINE

✔

magine programs that are able to adapt—with no intervention
by you—to changes in their environment. With Java reflection
you can create just such programs. Reflection is the ability of

unning program to look at itself and its environment, and to
ange what it does depending on what it finds. This inbuilt
ture of the Java language lets you sidestep a significant source
your maintenance woes: the “hard-coding” between your core
plication and its various components.

a Reflection in Action shows you that reflection isn’t hard to
. It starts from the basics and carefully builds a complete under-
nding of the subject. It introduces you to the reflective way of
inking. And it tackles useful and common development tasks,
each case showing you the best-practice reflective solutions that
lace the usual “hard-coded” ones. You will learn the right way
use reflection to build flexible applications so you can nimbly
pond to your customers’ future needs. Master reflection and
u’ll add a versatile and powerful tool to your developer’s toolbox.

at’s Inside

ractical introduction to reflective programming
xamples from diverse areas of software engineering
ow to design flexible applications
hen to use reflection—and when not to

erformance analysis

Ira Forman is a computer scientist at IBM. He has worked on
lection since the early 1990s when he developed IBM’s SOM
etaclass Framework. Nate Forman works for Ticom Geomatics
ere he uses reflection to solve day-to-day problems. Ira and
te are father and son. They both live in Austin, Texas.

 R. Forman and Nate Forman

“Even occasional users [of
reflection] will immediatel
adopt the book’s patterns
and idioms to solve comm
problems.”

—DOUG LEA

SUNY Oswego, author of
CONCURRENT PROGRAMMING IN

“... guide[s] you through on
compelling example after
another, each one illustrati
reflection’s power while
avoiding its pitfalls.”

—JOHN VLISSIDES

IBM, coauthor of
DESIGN PATTERNS

,!7IB9D2-djebie!:p;o;O

M A N N I N G $44.95 US/$67.95 Canada ISBN 1-932394-18-4

	Cover
	contents
	preface
	A few basics
	1.1 Reflection’s value proposition
	1.2 Enter George the programmer
	1.2.1 Choosing reflection
	1.2.2 Programming a reflective solution

	1.3 Examining running programs
	1.4 Finding a method at runtime
	1.5 Representing types with class objects
	1.5.1 Representing primitive types
	1.5.2 Representing interfaces
	1.5.3 Representing array types

	1.6 Understanding method objects
	1.6.1 Using dynamic invocation
	1.6.2 Using primitives with dynamic invocation
	1.6.3 Avoiding invocation pitfalls

	1.7 Diagramming for reflection
	1.8 Navigating the inheritance hierarchy
	1.8.1 Introspecting the inheritance hierarchy
	1.8.2 Exposing some surprises
	1.8.3 Another reflective circularity

	1.9 Summary

	Accessing fields reflectively
	2.1 Serializing objects
	2.1.1 Serializing to XML
	2.1.2 Choosing reflection
	2.1.3 Designing serialization with reflection

	2.2 Finding fields at runtime
	2.3 Understanding field objects
	2.4 Getting and setting field values
	2.5 Examining modifiers
	2.5.1 Introducing Member
	2.5.2 Interface introspection pitfall
	2.5.3 Introspecting for instance variables

	2.6 Accessing nonpublic members
	2.7 Working with arrays
	2.8 Serialization: putting it all together
	2.8.1 Serializing each component
	2.8.2 Serializing instance variables

	2.9 Using reflective serialization
	2.10 Summary

	Dynamic loading and reflective construction
	3.1 George’s deployment problem
	3.1.1 Designing with patterns
	3.1.2 Programming a reflective solution
	3.1.3 Enhancing the factory method with reflection
	3.1.4 Combining benefits of delegation and reflection

	3.2 Loading classes dynamically
	3.2.1 Basics of forName
	3.2.2 Getting array classes
	3.2.3 Primitives and forName

	3.3 Constructing objects reflectively
	3.3.1 Reflective construction basics
	3.3.2 Using constructor objects
	3.3.3 Constructing arrays reflectively

	3.4 Designing for dynamic loading
	3.4.1 Disadvantages of reflective construction with arguments
	3.4.2 Initializing through an interface

	3.5 Implementing deserialization
	3.5.1 Initiating deserialization
	3.5.2 Constructing the instances
	3.5.3 Restoring the object structure

	3.6 George’s serialization: limitations
	3.6.1 No interaction with readObject or writeObject
	3.6.2 No handling of final instance variables
	3.6.3 Only no-argument constructors
	3.6.4 No handling of illegal XML characters
	3.6.5 Performance

	3.7 Summary

	Using Java dynamic proxy
	4.1 Working with proxies
	4.2 George’s tracing problem
	4.3 Exploring Proxy
	4.3.1 Understanding invocation handlers
	4.3.2 Handling the methods of Object

	4.4 Implementing a tracing proxy
	4.5 A note on factories
	4.6 Chaining proxies
	4.6.1 Structuring invocation handlers for chaining
	4.6.2 Implementing a synchronized proxy
	4.6.3 Chaining the two proxies

	4.7 Stubbing interfaces for unit testing
	4.7.1 Examining stubs
	4.7.2 Design for stubbing with Proxy
	4.7.3 Implementation of stubbing with Proxy

	4.8 Generating SOAP remote proxies
	4.9 Pitfalls of using Proxy
	4.10 Summary

	Call stack introspection
	5.1 George’s logging problem
	5.2 Performing call stack introspection
	5.3 Logging with call stack introspection
	5.4 Pitfalls
	5.5 Class invariant checking
	5.6 Summary

	Using the class loader
	6.1 George’s test problem
	6.2 Essentials of ClassLoader
	6.2.1 Understanding the delegation model
	6.2.2 Programming a simple class loader
	6.2.3 Reinitializing static fields: a solution

	6.3 Multiple namespaces
	6.4 Dynamic class replacement
	6.4.1 Designing for replacement
	6.4.2 Implementing replacement
	6.4.3 Simplifying assumptions

	6.5 Additional considerations
	6.5.1 Security
	6.5.2 Don’t reinvent the wheel
	6.5.3 Modifying bytecode in a class loader
	6.5.4 When not to invent a specialized class loader
	6.5.5 Additional examples
	6.5.6 Endorsed Standards Override

	6.6 Summary

	Reflective code generation
	Reflective code generation
	7.1 Generating HelloWorld.java
	7.2 Class-to-class transformation framework
	7.2.1 C2C
	7.2.2 Args
	7.2.3 C2CConstructor
	7.2.4 C2CTransformation

	7.3 Example: extent management
	7.4 C2IdentitySubclassOfC and its subclasses
	7.5 UQueue
	7.6 Using the framework
	7.7 Relation to Aspect-Oriented Programming
	7.8 Summary

	Design patterns
	8.1 Singleton
	8.2 Decorator class-to-class transformations
	8.3 Proxy (again)
	8.4 Another composition feature
	8.5 Problematic issues in writing class-to-class transformations
	8.6 Summary

	Evaluating performance
	Evaluating performance
	9.1 Categorizing performance impact
	9.2 Using microbenchmarks
	9.3 Benchmarking two ways to use Proxy
	9.4 Understanding Amdahl’s Law
	9.5 Applying Amdahl’s Law
	9.6 Summary

	Reflecting on the future
	10.1 Looking forward: Java 1.5
	10.1.1 JSR 14-Generics
	10.1.2 JSR 175-Annotation Facility
	10.1.3 JSR 201-Language extensions
	10.1.4 Impact of Java 1.5 on reflective code

	10.2 Looking forward: competition for Java reflection
	10.2.1 C#
	10.2.2 Python
	10.2.3 Smalltalk
	10.2.4 CLOS
	10.2.5 Ruby
	10.2.6 Perl

	10.3 Looking forward: Aspect-Oriented Programming
	10.4 Looking forward: your career

	Reflection and metaobject protocols
	A.1 Reflection
	A.2 Reflective object-oriented programming
	A.3 Inheritance
	A.4 Metaobject protocols
	A.5 Metaclasses
	A.6 Class-to-class transformations

	Handling compilation errors in the “Hello world!” program
	UML
	glossary
	references
	index

