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1. Operator Valued Measurable Functions

The theory of direct integrals of von Neumann algebras will rely heavily on the
notion of an operator valued measurable function. So we will need to establish some
results on Banach and Operator Valued Measurable functions first. Also, many facts
about direct integrals require the use of a measurable cross-section theorem, which
can only be apply to Borel functions. Because of this, we will need to worry about
the case of measurable functions as well as Borel measurable functions.

1.1. Measurable Functions Into Banach Spaces. Before we talk about the
special case of Operator or Hilbert valued measurable functions, it will be helpful to
handle some general facts about Banach valued measurable functions. In particular,
we will need this material, when we discuss measurable functions into the Banach
space of trace class operators. In this section we will need to prove a collection
of technical results, analogous to the classical case before we discuss the theory of
Operator Valued Measurable functions as well as direct integrals. Fortunately, most
results one expects to work out do, but one has to repeat most of the work that
goes into standard measure theory. All this work will pay off, but the results may
seem technical at first and we will have to do a lot of grunt work before getting to
the really interesting material Throughout the entire discussion our measure spaces
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to have a locally compact Hausdorff space topology. We are only really concerned
with standard Borel spaces, so this is not a big assumption.

Definition 1.1.1. Let X be a separable Banach space and µ a Radon measure on
a locally compact Hausdorff space Y. A function f : Y → X is µ-measurable if the
following two conditions hold:

(i)for all φ ∈ X∗, y → φ(f(y)) is µ-measurable
(ii) for every compact K ⊆ Y, there is µ-measurable set E ⊆ K such that f(E)

is separable and µ(K \ E) = 0.
Note that since a Banach space X has a topology, it makes sense to talk about

Borel sets in X (the sets in the σ-algebra generated by open sets), we will can also
talk about weakly Borel sets in X (the sets in the σ-algebra generated by weakly
open sets). We can also talk about Borel functions into X. We will need some basic
propositions about measurable and Borel Banach valued functions.

Proposition 1.1.2. Let X be a Banach space and µ a Radon measure on a locally
compact Hausdorff space Y. Then

(i) The sum of two µ-measurable X-valued functions is µ-measurable, also if
λ ∈ C and f : Y → X is µ-measurable, then so if λf. If X is separable, then the
sum of two Borel functions is Borel and λf is Borel for all Borel f : Y → X and
λ ∈ C.

Let fn : Y → X be a sequence of µ-measurable functions. (ii) If fn(x) → g(x)
pointwise almost everywhere, then g is µ-measurable.

Assume X is separable.
(iii) If f : Y → X is µ-measurable, then so is ‖f‖. If f is Borel, then so is ‖f‖.
(iv) If fn : Y → X are Borel, then the set E of points where fn converges is

a Borel set and defining g(x) = limn→∞ fn(x) when x ∈ E and 0 otherwise, is a
Borel function.

(v) The Borel sets coincide with the weakly Borel sets.
(vi) A function f : Y → X is Borel if and only if for every φ ∈ X∗ we have that

φ ◦ f is Borel.

Proof. For A ⊆ X we will use Nε(A) = {x ∈ X : ‖x− y‖ < ε, for some y ∈ A} it
is an open set.

(i) Let f, g : Y → X be µ-measurable. It is clear that φ ◦ (f+ g) is µ-measurable
for all φ ∈ X∗. Let K ⊆ Y be compact. Choose N1, N2 null such that f(K \
N1), g(K \N2) are separable, set N = N1 ∪N2. Then

f + g(K \N) ⊆ f(K \N1) + g(K \N2)

since the sum of two separable sets is separable we are done. A similar proof works
for λf, λ ∈ C.

Now suppose f, g as above are Borel, and X is separable. Let F ⊆ X be closed,
and let (xn) be a countable dense sequence in X. Then f(y) + g(y) ∈ F if and
only if for every ε > 0 there exists n, k such that ‖f(y) − xn‖, ‖g(y) − xk‖ ≤ ε and
x+ y ∈ Nε(F ). Thus

(f + g)−1(F ) =

∞⋂

n=1

∞⋃

k,l=1,xk+xl∈Nε(F )

f−1(B(xn, ε)) ∩ g
−1(B(xk, ε))

and this is a Borel set.



DIRECT INTEGRALS OF HILBERT SPACES AND VON NEUMANN ALGEBRAS 3

(ii) The fact that φ◦g is µ-measurable for all φ ∈ X∗ follows from basic measure
theory. Suppose K ⊆ Y is compact, and for each n choose Nn null such that
fn(K \Nn) is measurable. Let N ′ be the set of points where fn does not converge
to g, then

N = N ′ ∪
∞⋃

n=1

Nn

is null. We claim that g(K \N) is separable. Since the closure of a countable union
of separable spaces is separable, it suffices to show that

g(K \N) ⊆

∞⋃

n=1

fn(K \Nn).

So let y ∈ K \N and ε > 0. Then since y /∈ N ′ we can find k such that

‖g(y) − fk(y)‖ < ε.

Since y /∈ Nk we have that fk(y) ∈ fk(K \Nk) ⊆
⋃∞

n=1 fn(K \Nn), since ε > 0 is
arbitrary, this verifies the claim.

(iii) First note that there is a countable sequence (φn) in X∗ such that ‖φn‖ = 1
and the weak∗ closed convex hull of the φn is {ψ ∈ X∗ : ‖ψ‖ ≤ 1}. Indeed, let (xn)
be a dense sequence in X and, by the Hahn-Banach Theorem, choose φn ∈ X∗ such
that ‖φn‖ = 1 and φn(xn) = ‖xn‖, let C be the weak∗-closed convex hull of the φn.
If φ ∈ X∗, ‖φ‖ = 1 and φ /∈ C, then, by the Hahn-Banach Theorem, there exists
real numbers α < β and ψ : X∗ → C weak∗-continuous such that

Re(ψ(φn)) < α < β < Re(ψ(φ))

for all n. Since ψ is weak∗ continuous there exists x ∈ X such that ψ(φ) = φ(x).
Thus

Re(φn(x)) < α < β < Re(φ(x))

for all n. Choose xnk
→ x, then

|‖xnk
‖ − φnk

(x)| = |φnk
(x− xnk

)| ≤ ‖x− xnk
‖ → 0.

Since ‖xnk
‖ → ‖x‖ we have

‖x‖ ≤ α < β < |φ(x)|

and this contradicts the fact that ‖φ‖ = 1.
So let (φn) be as above. Then the Hahn-Banach Theorem implies that

‖f(x)‖ = sup
n

|φn(f(x))|

and this is µ-measurable, and if f is Borel the above implies that ‖f(x)‖ is Borel.
(iv) Since X is complete, the set of points where fn converges is the same as the

set of points where it is Cauchy. Thus

E =
∞⋂

n=1

∞⋃

m=1

⋂

k,l≥m

{x : ‖fk(x) − fl(x)‖ < 1/n}

this is a Borel set by (i) if each fn is Borel. Further if F ⊆ X is closed and x ∈ E,
then g(x) ∈ F if and only if for all ε > 0 fk(x) is at distance at most ε from F for
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all large k. Thus

g−1(F ) = E

(
∩

∞⋂

n=1

⋃

m=1

∞⋂

k=m

f−1
k (Nε(F ))

)
∪ Ec if 0 ∈ F

and

g−1(F ) = E ∩

∞⋂

n=1

⋃

m=1

∞⋂

k=m

f−1
k (Nε(F )) if 0 /∈ F.

These are Borel sets, so g is Borel.
(v) Since weakly open sets are open it is clear that the weakly Borel sets are

Borel.
Let φn be the sequence inX∗ constructed as in (iii). For x, y ∈ X, ε > 0 note that

the Hahn-Banach Theorem implies that ‖x−y‖ ≤ ε if and only if |φ(x)−φ(y)| ≤ ε
for all φ ∈ X∗ with ‖φ‖ = 1. Since the closed convex hull of the φn are weak∗ dense
in the unit ball of X∗ we have that ‖x− y‖ ≤ ε if and only if |φn(x − y)| ≤ ε for
all n. Thus

B(x, ε) =

∞⋂

n=1

{y : |φn(x− y)| ≤ ε}

so B(x, ε) is weak∗-dense. The seperability (or more appropriately second count-
ability) of X shows that every open set is a countable union of sets of the form

B(x, ε) and this proves (v).
(vi) If f : Y → X is Borel, then for all φ ∈ X∗ and U ⊆ C open we have

(φ ◦ f)−1(U) = f−1(φ−1(U))

and since φ−1(U) is open ,we have that f−1(φ−1(U)) is Borel. Conversely, suppose
φ ◦ f is Borel for all φ ∈ X∗. As above, let (φn) be a sequence in X∗ such that
‖φn‖ = 1 and the weak∗-closed convex hull of the φn is the norm closed unit ball
of X∗. Then as in (v) we have

B(x, ε) =

∞⋂

n=1

{y : |φn(x− y)| ≤ ε} =

∞⋂

n=1

φ−1
n (B(φn(x), ε))

thus

f−1(B(x, ε)) =

∞⋂

n=1

f−1(φ−1
n (B(φn(x), ε)))

as in (v), this shows that f is Borel.
�

Corollary 1.1.3. Let X be a Banach space and µ a Radon measure on a locally
compact Hausdorff space Y, let f : Y → X be µ-measurable and φ : Y → C µ-
measurable. Then φf is µ-measurable. If X is separable and f as above is Borel,
and φ as above is Borel, then φf is Borel.

Proof. Let us handle the µ-measurable case first. Approximating φ by simple func-
tions, we may assume that φ is a simple function. By the proceeding proposition,
it suffices to show that χEf is µ-measurable for all E ⊆ Y measurable. Fix E and
f, and let K ⊆ Y be compact, choose F ⊆ K such that µ(K \ F ) = 0 and f(F ) is
separable. Then

(χEf)(F ) ⊆ f(F ) ∪ {0},
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hence is separable. The equation

φ(χE(x)f(x)) = χE(x)φ(f(x))

shows that φ ◦ χEf is measurable whenever φ ◦ f is measurable and φ ∈ X∗. Thus
χEf is measurable.

Assume X is seperable, as above all we have to show is that χEf is Borel for all
Borel E ⊆ Y. But by the above proposition we know that f is Borel if and only if
φ ◦ f is Borel for all φ ∈ X∗ (since this is the same as requiring that f is weakly
Borel). As above the equation

φ ◦ (χEf) = χEφ ◦ f

shows that χEf is Borel.
�

Proposition 1.1.4. Let X be a Banach space and µ a Radon measure on a σ-
compact locally compact Hausdorff space Y. Let f : Y → X. Then f is µ-measurable
if and only if for any compact K ⊆ Y and ε > 0, there is a compact C ⊆ K such
that f

∣∣
C

is continuous and µ(K \ C) < ε.
If X is separable, then f is µ-measurable if and only if there exists a Borel map

g : Y → X, such that g = f almost everywhere.

Proof. Let Y =
⋃∞

n=1Kn with Kn compact.
Suppose the condition about compact sets and ε’s holds. If φ ∈ X∗ then for each

n, by assumption, we can find Cn ⊆ Kn compact, such that

(a)µ(Kn \ Cn) <
1

2n

(b)f
∣∣
Cn

is continuous.

By Tietze Extension Theorem, we may find hn : Y → C continuous such that
hn = φ ◦ f on Cn. Let

N =

∞⋂

n=1

∞⋃

k=n

{x ∈ Y : hk(x) 6= φ ◦ f(x)}.

Note that if x /∈ N there is an n such that hk(x) = f(x) for all k ≥ n. In particular
we may define g(x) to be the limit of the hn(x) when it exists, and 0 otherwise,
and this will be a Borel function. Further we will have g(x) = φ ◦ f(x) off N, so to
show φ ◦ f is measurable, it suffices to show that N has measure 0. To do this, it
suffices to show that µ(N ∩Kn) = 0, for every n. But

µ(N ∩Kn) = lim
m→∞

µ

(
Kn ∩

∞⋃

k=m

{x ∈ Y : hk(x) 6= f(x)}

)

and for all large k,

µ

(
Kn ∩

∞⋃

k=m

{x ∈ Y : hk(x) 6= f(x)}

)
≤

∞∑

k=n

1/2k → 0

as m→ ∞.
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Let K ⊆ Y be compact, choose Cn ⊆ K compact such that µ(K \ Cn) ≤ 1/2n,
and f is continuous on Cn Set E =

⋃∞
n=1Cn. Then µ(K \ E) = 0 and

f(E) =

∞⋃

n=1

f(Cn).

Each f(Cn) is compact, since f is continuous on Cn. Thus f(Cn) is separable, being
compact metric, so f(E) is separable, being a countable union of separable spaces.

Conversely, suppose that f : Y → X is µ-measurable and ε > 0, K ⊆ Y is
compact. Choose E ⊆ K such that µ(K \E) = 0 and f(E) is separable. Let X0 be
the closed linear span of f(E) and let (xn) be a dense sequence in X0. The same
proof as in the above proposition shows that gn(x) = ‖f(x)−xn‖ is measurable on
E, and hence on K since µ(K \ E) = 0. By measure theory, we can find Cn ⊆ K
compact such that µ(Kn \ C) < ε/2n and gn

∣∣
Cn

is continuous. Set C =
⋂∞

n=1Cn,

then C is compact, and µ(K \ C) ≤ ε, and on C each gn(x) is continuous. If
y ∈ X, then ‖f(x) − y‖ is a uniform limit of the gn (choose xnk

→ y), and is thus
continuous. Fix y0 ∈ C, by the preceding y → ‖f(y) − f(y0)‖ is continuous on C,
and y → f

∣∣
C
(y) is continuous at y0. Thus f

∣∣
C

is continuous.
Now suppose X is separable. If f is almost everywhere equal to a Borel function,

it is clear that φ◦f is µ-measurable for all φ ∈ X∗, so f is µ-measurable. Conversely,
if f is µ-measurable hen for each n, by assumption, we can find Cn ⊆ Kn compact,
such that

(a)µ(Kn \ Cn) <
1

2n

(b)f
∣∣
Cn

is continuous.

By Tietze Extension Theorem, we may find hn : Y → X continuous such that
hn = φ ◦ f on Cn. If we define g(x) to be the limit of hn(x) when it exists and
0 otherwise, then the proceeding proposition shows that g is Borel. The same
argument as above show that g = f almost everywhere, so we are done.

�

We wish to extend analogous facts about simple functions from the the current
situation.

Definition 1.1.5. Let X be a Banach space and µ a Radon measure on a σ-
compact locally compact Hausdorff space Y. A function f : Y → X is a simple
function if there exist disjoint measurable sets Y1, . . . , Yn in Y and x1, . . . , xn ∈ X
such that f(y) =

∑n
j=1 χYj

(x)xj.

Proposition 1.1.6. Let X be a Banach space and µ a Radon measure on a σ-
compact locally compact Hausdorff space Y. Let f : Y → X, if f is µ-measurable
function then there exists simple functions (φn)n∈N such that f(x) = limn→∞ limm→∞ φn(x)
for almost every x. If f is Borel and X is separable, then we can choose Borel sim-
ple functions (φmn)m,n∈N such that f(x) = limn→∞ limm→∞ φmn(x) for every x.
Further, if ‖f(x)‖ ≤ R for some R > 0, then we may force the φmn (either Borel
or µ-measurable depending upon the case) so that ‖φmn(x)‖ ≤ R as well.

Proof. Let Y =
⋃∞

n=1Kn with the Kn compact and Kn ⊆ Kn+1.
We first handle the case when f is continuous, and show that we can choose a

sequence of simple functions which converge to f uniformly on compact sets. By
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compactness, for each n we can find x
(n)
1 , . . . , x

(n)
kn

in f(Kn) which are 1/2n dense.

Let A
(n)
j = {y ∈ Y : ‖φ(y) − x

(n)
j ‖ < 1/2n}, and define B

(n)
j by

B
(n)
1 = A

(n)
1 , B

(n)
j = A

(n)
j \

(
j−1⋃

l=1

An
l

)
.

Set

φn(x) =

n∑

j=1

χ
B

(n)
j

x
(n)
j .

For x ∈ Kn we have that f(x) ∈ B
(n)
j by construction and ‖φn(x) − x‖ ≤ 1/2n.

Thus φn(x) → f(x) uniformly on Kn. If ‖f(x)‖ ≤ R, then defining y
(n)
j by R

x
(n)
j

‖x
(n)
j

‖

if ‖xn‖ > R and setting

ψn(x) =

n∑

j=1

χ
B

(n)
j

y
(n)
j

we see that ‖ψn(x)‖ ≤ R and still ψn(x) → φn(x) uniformly on compact sets.
Now suppose f : Y → X is µ-measurable. Then we can choose Cn ⊆ Kn compact

such that µ(Kn\Cn) < 1/2n and f
∣∣
Cn

is continuous. By the first step we can choose

a simple function φn which is zero outside Cn and bounded by R if f is such that

‖φn(x) − f(x)‖ ≤ 1/2n

for x ∈ Cn. Set N =
⋂∞

n=1

⋃∞
m=n X \ Cn, we see exactly as in 1.1.4 that N has

measure zero, and that φn(x) → f(x) for x /∈ N.
Now suppose f is Borel and that X is separable. Let (xn) be a countable dense

subset of X. Let

A
(n)
j = f−1(B(xj , 1/2

n)), B
(n)
1 = A

(n)
1 , B

(n)
j = A

(n)
j \

(
j−1⋃

l=1

A
(n)
l

)
.

Then B
(n)
j are Borel sets, and if we set

φmn(x) =

m∑

j=1

χ
B

(n)
j

(x)xj

it is easy to see that B
(n)
j have the desired properties. If ‖f(x)‖ ≤ R for every

x, then we replace xn with a countable dense subset of B(0, R) and run the same
construction. �

For later use, we will also need the generalizations of Lp spaces to Banach valued
measurable functions.

Definition 1.1.7. Let X be a separable Banach space and µ a Radon measure on
a locally compact Hausdorff space Y. For 1 ≤ p < ∞, let Lp(Y,X, µ) be the set of
all f : Y → X µ-measurable such that

∫

Y

‖f‖p dµ <∞
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We only proved measurability of ‖f‖, for f measurable, when X is seperable.
This is why we need this assumption. This is how separability will be used in the
proofs below as well. We shall use

‖f‖p =

(∫

Y

‖f‖p dµ

)1/p

for the norm of f in Lp(Y,X, µ).

Theorem 1.1.8. Let X be a separable Banach space and µ a Radon measure on a
locally compact Hausdorff space Y, and 1 ≤ p < ∞. Then Lp(Y,X, µ) is a Banach
space under the norm ‖f‖p. The set of continuous functions from Y to X with
compact support is dense in Lp(Y,X, µ) as well as the simple functions from Y to
X. Further, if fn → f in Lp, then there exists a subsequence fnk

of f such that
fnk

→ f almost everywhere.

Proof. From the standard Minkowski Inequality it follows that Lp(Y,X, µ) is a
normed space. Suppose fn ∈ Lp(Y,X, µ) is such that

∞∑

n=1

‖fn‖p <∞.

Then ∫

Y

(
∞∑

n=1

‖fn‖

)p

dµ =

∫

Y

lim
N→∞

(
N∑

n=1

‖fn‖

)p

dµ ≤

lim inf

∫

Y

(
N∑

n=1

‖fn‖

)p

dµ.

By Minkowski’s inequality we know that

lim inf

∫

Y

(
N∑

n=1

‖fn‖

)p

dµ ≤

(
N∑

n=1

‖fn‖p

)p

≤

(
∞∑

n=1

‖fn‖p

)p

<∞.

These inequalities tell us that
∞∑

n=1

‖fn(x)‖ <∞

almost everywhere. Since X is complete we have an almost everywhere defined
function f(x) =

∑∞
n=1 fn(x). By the same inequalities as above

∫

Y

‖f −

N∑

n=1

fn‖
p dµ =

∫

Y

‖

∞∑

n=N

fn‖
p dµ ≤

(
∞∑

n=N

‖fn‖p

)p

→ 0

as N → ∞. This proves completeness of Lp(Y,X, µ).
We show that the continuous functions with compact support from Y to X are

dense. By the dominated convergence theorem∫
‖f − fχ{‖f‖≤N}‖

p dµ =

∫

{‖f‖>N}

‖f‖p dµ→ 0

as N → ∞. So we may assume that f is bounded. Again by the dominated
convergence theorem we know that∫

‖f − fχ{‖f‖>1/n}‖
p dµ =

∫
‖fχ{‖f‖≤1/n}‖

p dµ→ 0
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and by Chebyshev {‖f‖ > 1/n} has finite measure. Thus we may assume that f
is bounded and supported on a set of finite measure. Since Radon measures are
inner regular on all sets of finite measure (see [1] Proposition 7.5), we can find
compact sets Kn ⊆ {x : f(x) 6= 0} such that µ({x : f(x) 6= 0} \Kn) → 0. As above
this implies that ‖f − χKn

f‖ → 0, and this we may assume that f is bounded
and compactly supported, let K be the support of f. Let R > 0 be such that
‖f‖ ≤ R, and given ε > 0, choose C ⊆ K compact, such that f

∣∣
C

is continuous, and

µ(K \ C) < ε. By Tietze Extension Theorem, we may find a compactly supported
g : K → BX(0, R) which is continuous and such that g

∣∣
Y

= f. Then
∫

Y

‖f − g‖p dµ =

∫

C

‖f − g‖p dµ ≤ 2Rpε,

since R is fixed and ε > 0 is abritrary this shows that the continuous functions with
compact support are dense in Lp(Y,X, µ). The case of simple functions is similar, as
above we may assume that Y is compact and that f is bounded by R > 0. Then we
use the proceeding proposition to find φn : Y → R simple, such that ‖f−φn‖p → 0.

Finally suppose that ‖fn − f‖p → 0, by Chebyshev’s inequality for every ε > 0

µ({‖f − fn‖ ≥ ε}) → 0.

Thus we may choose an increasing sequence of integers {nk} such that

µ({‖f − fm‖ ≥ 1/2k}) ≤ 1/2k

if m ≥ nk. Let

N =

∞⋂

k=1

∞⋃

m=nk

{‖f − fm‖ ≥ 1/2k}

as in Proposition 1.1.4 we have that N is a null set and fnk
→ f on Y \ N, this

completes the proof. �

1.2. Measurable Operator Valued Functions. In this section, we will primar-
ily be concerned with measurable functions f : Y → B(H), with H a Hilbert space.
We could use the Banach space structure of B(H) to define measurability of such
a function. But we saw in the preceding section, that we typically have good theo-
rems about measurability of functions when the Banach space we are mapping into
is separable. Since B(H) is not separable in the cases we are primarily concerned
with, we shall use a different notion of measurability. Before introducing it, we
shall note one fact.

Proposition 1.2.1. Let µ be a Radon measure on a locally compact Hausdorff
space Y. Let H be a Hilbert space and T : Y → B(H) be such that x → T (x)ξ
is µ-measurable for all ξ ∈ H. Then for all ξ : Y → H µ-measurable we have
x → T (x)ξ(x) is µ-measurable. Similarly if H is separable, and T : Y → B(H) is
such that x → T (x)ξ is Borel for all ξ ∈ H, then for all Borel ξ : Y → H we have
that x→ T (x)ξ is Borel.

Proof. By proposition 1.1.6 we may approximate ξ, pointwise almost everywhere by
a sequence ξn : Y → H of simple µ-measurable functions. Since µ-measurability is
closed under pointwise almost everywhere limits, we may assume that ξ is a simple
function. In this case, our assumption and Proposition 1.1.2 and Corollary 1.1.3
imply that T (x)ξ is µ-measurable. The proof of the Borel case is the same. �
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Definition 1.2.2. Let µ be a Radon measure on a locally compact Hausdorff space
Y and H a Hilbert space. We say that T : Y → B(H) is strongly∗ µ-measurable,
if for all ξ ∈ H both x → T (x)ξ and x → T (x)∗ξ are µ-measurable. Similarly we
say that T : Y → B(H) is strongly∗ Borel if for all ξ ∈ H, both x → T (x)ξ and
x→ T (x)∗ξ are Borel.

By the above proposition, strongly∗ µ-measurable maps are closed under point-
wise multiplication as well as pointwise adjoints. The same remark applies to
strongly∗ Borel maps, provided that the Hilbert space in question is separable.

The next proposition lists some basic facts about operator valued measurable
maps. As in the Banach case, by a simple function φ : Y → B(H) we mean a
function of the form

∑n
j=1 χAj

Tj with Aj disjoint measurable sets and Tj ∈ B(H),
similarly we define Borel simple functions.

Proposition 1.2.3. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y. Let H be a separable Hilbert space and T : Y → B(H).

(i) If T is strongly∗ µ-measurable, then ‖T‖ is measurable. If T is strongly∗

Borel, then ‖T‖ is Borel.
(ii) If T is strongly∗ µ-measurable, then there is a sequence Tn : Y → B(H) of

simple functions such that Tn → T in the strong∗ topology. That is, Tnξ → Tξ and
T ∗

nξ → T ∗ξ for all ξ ∈ H. If T is Borel, then there are Tmn : Y → B(H) Borel
simple functions such that limn limm Tmn = T in the strong∗ topology. If ‖T‖ ≤ R
for some R > 0, then in either case we may assume that ‖Tn‖ ≤ R.

(iii) If Tn : Y → B(H) are strongly∗ Borel, then E = {x : Tn(x) converges in the strong∗ topology}
is a Borel set, and if we set S(x) = limn→∞ Tn(x), for x ∈ E and zero for x /∈ E,
then S is strongly∗ Borel.

(iv) If Tn : Y → B(H) are strongly∗ µ-measurable and Tn → S pointwise almost
everywhere then S is strongly ∗ µ-measurable.

Proof. (i) First assume that T is strongly∗ µ-measurable. Let (ξn) be a dense
sequence in {ξ ∈ H : ‖ξ‖ = 1}. By assumption x→ T (x)ξn is measurable for all n,
and thus Proposition 1.1.2 implies that ‖T (x)ξn‖ is measurable. Thus

‖T‖ = sup
n

‖T (x)ξn‖

is measurable. The same proof works for the Borel case.
(ii) Let Y =

⋃∞
n=1Kn with Kn compact and Kn ⊆ Kn+1. Let Pn be a sequence

of finite rank projections which converge strongly to 1. Set Tn = PnTPn, then Tn is
strongly∗ µ-measurable. Since PnHPn is finite-dimensional, we may regard Tn as a
map from a fintie dimensional Hilbert space to itself. Regarding Tn as a matrix, we
see that we can find φm,n(x), simple functions with values in B(PnHPn) such that
φm,n(x) → PnTPn pointwise (by applying the standard result to each matrix entry).
By Egoroff’s Theorem and inner regularity, we can find Cn ⊆ Kn compact,mn ∈ N
such that µ(Kn \ Cn) < 1/2n and ‖φmn,n(x) − T (x)‖ < 1/2n, ‖φ∗

mn(x) − T (x)‖ <
1/2n on Cn (here we use the uniqueness of a vector space topology on a finite
dimensional space). As before, if

N =

∞⋂

n=1

∞⋃

k=n

Cc
n

then N has measure zero, and ψn = φmn,n converges in the strong∗ topology to Tn.

If ‖Tn‖ ≤ R, write ψn =
∑
χ

A
(n)
j

Sj with A
(n)
j disjoint for fixed j, redefine ψn by
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replacing Sj with R
Sj

‖Sj‖
if ‖Sj‖ > R. Since ψn, ψ

∗
n are uniformly close to Tn, T

∗
n on

Cn we see that ψn still converges pointwise almost everywhere to Tn in the strong∗

topology.
For the Borel case, let Pn be as above. As above we can find simple Borel

functions φmn : Y → B(pnHPn) which converge pointwise to PnTPn as m → ∞.
Since Pn → 1, this shows that limn limm φmn = T pointwise in the strong∗-topology.
If ‖T‖ ≤ R, then if we choose a basis for PnH and write PnTPn as a matrix, we
see that all of its entries have absolute valued at most R. Thus, standard measure
theory tells us the we may force φmn to converge uniformly in norm to PnTPn on
Kn. Again, writing

φmn =
∑

χA
(mn)
j Sj

with A
(mn)
j disjoint for fixed j, and replacing Sj with R

Sj

‖Sj‖
if ‖Sj‖ > R, shows

that we may force ‖φmn‖ ≤ R.1 �

For the next proposition we will investigate how strongly∗ behave with respect
to measurable maps into trace class-operators. Recall that the set of trace-class
operators are those S ∈ B(H) such that

Tr(|S)) =
∑

i

〈|S|ei, ei〉 <∞

with ei an orthonormal basis of H. We shall use B(H)∗ for the set of trace-class
operators. Recall B(H)∗ is a vector space wit norm ‖S‖1 = Tr(|S|), and that
B(H)∗ is complete in this norm. Further, B(H)∗ is separable if H is separable.
Finally, recall that B(H) = (B(H)∗)

∗ under the duality

〈T, S〉 = Tr(TS)

with T ∈ B(H), S ∈ B(H)∗.
(iii) We first establish that E is a Borel set. Let (ξn) be a dense sequence in H.

We claim that

E =

(
∞⋃

n=1

∞⋃

m=1

∞⋂

k=m

{x : ‖Tk(x)‖ ≤ N}

)
∞⋂

l=1

{x : Tn(x)ξl, Tn(x)∗ξl converge }.

Indeed if x is in the set on the right hand side, then ‖Tn(x)‖ is bounded and Tn(x)ξk
converges for all k. Since ξk are dense, standard arguments show that Tn converges
in the strong∗ topology. Conversely, if Tn(x) converges in the strong∗ topology,
then we have that ‖Tn(x)‖ is bounded, by the principal of uniform boundedness.
Also Tn(x)ξl, T

∗
n(x)ξl converges for all l, and so x is in the set on the right hand

side. This shows that E is Borel by Proposition 1.1.2. Once we know that E is
Borel the fact that T is strongly∗ Borel follows from the definition and Proposition
1.1.2.

(iv) This is obvious from the definition and Proposition 1.1.2.

Corollary 1.2.4. Let Y be a σ-compact locally compact Hausdorff space and µ a
Radon measure on Y, and let H be a separable Hilbert space. For any T : Y → B(H),
strongly∗ µ-measurable, there is a T ′ : Y → B(H) strongly ∗-Borel such that T = T ′

almost everywhere.

1Again this uses that φmn is uniformly close to PnTPn on Kn
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Proof. By the above proposition, we can find Tn : Y → B(H) simple functions such
that Tn → T in the strong∗ topology almost everywhere. Write

Tn =
∑

j

χ
A

(n)
j

Tnj

with A
(n)
j measurable and Tnj ∈ B(H). Let B

(n)
j ⊆ A

(n)
j be Borel and such that

µ(B
(n)
j \A

(n)
j ) = 0, (this is possible since Y is σ-compact). Let T ′

n =
∑

j χA
(n)
j

Tnj ,

and let T ′(x) = limn→∞ T ′
n(x), when the limit exists and zero otherwise. By the

above proposition T ′ does is strongly∗ Borel, and we see that T ′ = T almost
everywhere.

�

Proposition 1.2.5. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y. Let H be a separable Hilbert space and T : Y → B(H), S : Y →
B(H)∗.

(i) If S is µ-measurable2, then S∗ is µ-measuarble. Similarly, if S is Borel, then
S∗ is Borel.

(ii) If S is µ-measurable, then when regard as a map into B(H) it is strongly∗

µ-measurable. Similarly, if S is Borel, then regarded as a map into B(H), it is
strongly∗ Borel.

(iii) If S is µ-measurable, and T is strongly∗ µ-measurable, then ST and TS
are µ-measurable as a map into B(H)∗. Similarly, if S is Borel, and T is strongly∗

Borel, then ST and TS is Borel as a map into B(H)∗.

Proof. (i) Since B(H)∗ is separable, by the definition of µ-measurability and Propo-
sition 1.1.2 (vi) all we have to do is check that that x→ Tr(AS(x)∗) is µ-measurable/Borel
whenever S is and A ∈ B(H). But

Tr(AS(x)∗) = Tr(A∗S(x))

so this is clear.
(ii) By (i), all we have to show is that ξ → S(x)ξ is µ-measurable/Borel whenver

S is. But with
ξ ⊗ η∗(ζ) = 〈ζ, ξ〉η

we have that
〈S(x)ξ, η〉 = Tr((ξ ⊗ η∗)S(x))

and thus 〈S(x)ξ, η〉 is µ-measurable/Borel for all ξ, η ∈ H. Since H is separable,
this implies that S(x)ξ is µ-measurable/Borel whenever S is.

(iii) Since (TS)∗ = S∗T ∗, parts (i) and (ii) tell us we only have to check whether
TS is µ-measurable/Borel. Assume first that S is µ-measurable and T is strongly∗

µ-measurable. By Proposition 1.1.6 we can find simple functions Sn : Y → B(H)∗
such that ‖Sn(x) − S(x)‖1 → 0 for almost every x. If we can show each TSn is
µ-measurable we will be done. Since µ-measurablility is closed under sums it thus
suffices to show that TA when A ∈ B(H)∗ is fixed, since we already know that
χES is µ-measurable for all E ⊆ Y measurable by Corollary 1.1.3. Let A ∈ B(H)∗,
then we can find (λn) ∈ l1(N) and orthonormal vectors ξn, ηn such that

Aζ =

∞∑

n=1

λn〈ζ, ξn〉ηn.

2As a map into the Banach space B(H)∗.
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Thus

T (x)A =

∞∑

n=1

λn(T (x)ηn ⊗ ξ∗n

with the sum converging in the ‖ · ‖1 norm. So it suffices to show that T (x)η ⊗ ξ∗

is µ-measurable for all η, ξ ∈ H. But, for all B ∈ B(H) we have

Tr((T (x)η ⊗ ξ∗)B) = 〈BT (x)η, ξ〉 = 〈T (x)η, B∗ξ〉,

and since T is strongly∗ µ-measurable, this is a measurable function. Thus T (x)η⊗
ξ∗ is µ-measurable. The proof for the Borel case is the same, we simply express
S = limm limn Smn with Smn simple and Borel, and repeat the argument.

�

For later use we note the following proposition, which shows that given a Borel
map T : Y → B(H) we have Borel maps Y × B → B(H), Y × B(H)∗ → C, given
by multiplication and evaluation, when B ⊆ B(H) is bounded.

Proposition 1.2.6. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y. Let H be a separable Hilbert space and T : Y → B(H) a strongly∗

Borel map.
(i) The strong∗ topology on B(0, R) ⊆ B(H) is separable and completely metriz-

able (i.e. there is a complete metric on B(0, R) inducing the strong∗-topology).

(ii) The map Y × B(0, R) → B(H) given by (x, S) → T (x)S is Borel when
B(0, R) is given the strong∗ topology.

(iii) The map Y × B(H)∗ → C given by (x, A) → Tr(T (x)A) is Borel.

Proof. Fix a dense sequence (ξn) in the norm closed unit ball of H.
(i) Define

d(S, T ) =

∞∑

n=1

1

2n
‖(S − T )ξn‖ +

∞∑

n=1

1

2n
‖(S∗ − T ∗)ξn‖,

then d is a metric on B(0, R). We claim that d is complete and gives the strong∗-
topology. Suppose Sk in B(0, R) is Cauchy with respect to d. Then Skξn, S

∗
kξn are

Cauchy for each n. If ξ ∈ H and ‖ξ‖ = 1 and ε > 0 is given, we can find n such
that ‖ξn − ξ‖ < ε and K such that k, l ≥ K imply

‖Skξn − Slξn‖ < ε, ‖S∗
kξn − S∗

l ξn‖ < ε.

Then for k, l ≥ K we have

‖Skξ − Slξ‖ ≤ 2Rε+ ‖Skξn − Slξn‖ < (2R+ 1ε

and thus Skξ is Cauchy for ‖ξ‖ = 1. Similarly S∗
kξ is Cauchy for ‖ξ‖ = 1, by scaling

Skξ, S
∗
kξ are Cauchy for each ξ ∈ H. Thus we can define

Sξ = lim
k→∞

Skξ

Tξ = lim
k→∞

S∗
kξ.

We claim that T = S∗. Indeed, for any ξ, η ∈ H we have

〈Sξ, η〉 = lim
k→∞

〈Skξ, η〉 = lim
k→∞

〈ξ, S∗
kη〉 = 〈ξ, Tη〉

thus T = S∗. Standard arguments show that d(Sk, S) → 0, so d is complete.
The argument above also shows that if Si is a net such that d(Si, S) → 0 and

‖Si‖ ≤ R, then Si → S in the strong∗ topology. Conversely suppose ‖Si‖ ≤ R
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and Si → S in the strong∗ topology, in particular ‖S‖ ≤ R. If ε > 0 is given, then
choose n such that 2−n < ε. Then we have

d(Si, S) ≤ 8Rε+
N∑

n=1

1

2n
‖Siξn − Sξn‖ +

N∑

n=1

1

2n
‖S∗

i ξn − S∗ξn‖,

since Si → S in the strong∗ topology, we have that

lim sup
i

d(Si, S) ≤ 8Rε.

Since ε > 0 is arbitrary, this completes the proof of (i).
(ii) By Proposition 1.2.3 we may assume that T is a simple function, and since

strong∗ Borel maps form a ∗-algebra, we may assume that T (x) = χA(x)B for some
A ⊆ Y Borel and B ∈ B(H) with ‖B‖ ≤ R. In this case the map in question is

(x, S) → χA(x)BS.

Since (x, S) → S is strongly∗-Borel and (x, S) → χA(x) is Borel it follows that
(x, S) → χA(x)BS is strongly∗-Borel, and this completes the proof.

(iii) As in (ii), we may assume that T (x) = χE(x)B for some E ⊆ Y Borel and
B ∈ B(H). In this case we are considering

(x, S) → Tr(χE(x)BS) = χE(x)Tr(BS)

since S → BS is continuous and x → χE(x) is Borel, it follows that (x, S) →
Tr(χE(x)BS) is Borel, as desired. �

2. Direct Integrals of Hilbert Spaces and Decomposable Operators

2.1. Direct Integrals of Hilbert Spaces. We already know the notion of a direct
sum of Hilbert spaces, in many cases it is useful to use a more continuous version
of this. For this reason we discuss the notion of a measurable field of Hilbert spaces
and direct integrals of Hilbert spaces.

Definition 2.1.1. Let µ be a Radon measure on the σ-compact locally compact
Hausdorff space Y. A measurable field of Hilbert spaces is a collection {Hx : x ∈ Y }
of Hilbert spaces together with a linear subspace S of

∏
x∈X Hx, whose elements

are called measurable sections satisfying the following axioms:

(i) If η ∈
∏

x∈X Hx, then η ∈ S if and only if x→ 〈ξ(x), η(x)〉 is measurable for
all ξ ∈ S. (ii) There is a sequence (ξn(x)) in S such that for almost every x ∈ X,
the closed linear span of ξn(x) is Hx.

Definition 2.1.2. Let µ be a Radon measure on the σ-compact locally compact
Hausdorff space Y, and Hx a measurable field of Hilbert spaces over Y. We define

the direct integral of Hx,denoted
∫ ⊕

Y
Hx dµ(x) to be the set of all ξ ∈ S (modulo

agreeing on measure zero sets) such that
∫

Y
‖ξ(x)‖2 dµ(x) < ∞. On

∫⊕

Y
Hx dµ(x)

we have the inner product

〈ξ, η〉 =

∫

Y

〈ξ(x), η(x)〉Hx
dµ(x).

By the same argument as in Theorem 1.1.8, we see that
∫ ⊕

Y
Hx dµ(x) is a Hilbert

space. Before proceeding to examples we need one Lemma.
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Lemma 2.1.3. Let µ be a Radon measure on the σ-compact locally compact Haus-
dorff space Y. Let {Hx : x ∈ X} be Hilbert spaces and suppose there exists ξn ∈∏

x∈X Hx such that
(i) x→ 〈ξn(x), ξm(x)〉 is measurable, for all x ∈ X.
(ii) For almost every x ∈ X, the space Hx is closed linear span of {ξn(x) : n ∈ N}.
Then x → dimHx is measurable and there exists ηn ∈

∏
x∈X Hx, n ∈ N with the

following properties:
(a) x→ 〈ξn(x), ηm(x)〉 is measurable for all m, n ∈ N

(b) If η ∈
∏

x∈X Hx has x → 〈ξn(x), η(x)〉 measurable for all n ∈ N, then
x→ 〈ηn(x), η(x)〉 is measurable for all m.

(c) 〈ηn(x), ηm(x)〉 = δmn for m, n ≤ dimHx

(d) ηn(x) = 0 for n > dimHx

(e) Hx is the closed linear span of {ηn(x) : n ∈ N}.

Proof. We construct ηn inductively. Suppose that η1, . . . , ηk have been constructed
so that (a), (b)(c), (d) are satisfied for η1, . . . , ηk. Let

Pk(x)ξ =

k∑

j=1

〈ξ, ηj(x)〉ηj(x)

then kP (x) is the projection onto the closed linear span of η1(x), . . . , ηk(x). Let

Aj = {x : (1 − Pk(x))ξj 6= 0}

Bm = Am \

(
m−1⋃

k=1

Ak

)
.

Set

ηk+1(x) =

∞∑

j=k+1

χBj
(x)

‖(1 − P (x))ξj(x)‖
(1 − P (x))ξj(x).

Then, η1, . . . , ηk+1 satisfy (a), (b), (c), (d). Finally the sequence (ηn(x)) satsifies (e),
since we are simply appying the Gramm-Schmidt process pointwise. Further we
have that

dimHx =

∞∑

k=1

‖ηk(x)‖2

which proves that dimHx is measurable. �

Corollary 2.1.4. Let µ be a Radon measure on the σ-compact locally compact
Hausdorff space Y. Let {Hx : x ∈ X} be Hilbert spaces. Suppose that (ξn)n∈N in a
sequence in

∏
x∈X Hx such that x→ 〈ξn(x), ξm(x)〉 is measurable for all n,m ∈ N,

and such that Hx is the closed linear span of {ξn(x) : n ∈ N} for almost every x.
Let S be the set of all η ∈

∏
x∈X Hx such that 〈ξn(x), η(x)〉 is measurable for all

n ∈ N. Then with S as measurable sections we have that Hx is a measurable field
of Hilbert spaces over Y.

Proof. We only have to show that ξ ∈ S if and only if x→ 〈ξ(x), η(x)〉 is measurable
for all η ∈ S. Let (ηn) be a sequence in

∏
x∈X Hx satisfying (a) − (e) in the

proceeding proposition. Suppose ξ ∈
∏

x∈X Hx has x → 〈ξ(x), η(x)〉 for all η ∈ S.
Then

〈ξ(x), ξk(x)〉 =

∞∑

n=1

〈ξ(x), ηn(x)〉〈ηn(x), ξk(x)〉
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by (a), (b) of the proceeding proposition we have that ξ ∈ S. Conversely, suppose
ξ, η ∈ S. Then

〈ξ(x), η(x)〉 =

∞∑

n=1

〈ξ(x), ηn(x)〉〈ηn(x), η(x)〉,

so (a), (b) of the proceeding proposition imply that x → 〈ξ(x), η(x)〉 is measurable.
�

Example 2.1.5. Let X be a Riemann manifold, then TxX is a measurable field of
Hilbert spaces over X. Indeed, using second countability of X, we can cover X by

open set Un for which there are smooth vector fields ξ
(n)
1 , . . . , ξ

(n)
dim X ∈

∏
x∈Un

TxX

which pointwise give an orthonormal basis for TxX. Setting Bn = An \
(⋃n−1

j=1 Uj

)

and setting ηj(x) =
∑∞

n=1 χBn
(x)ξ

(n)
j gives measurable sections which satisfy the

proceeding proposition. In this case, one can show that
∫ ⊕

X
TxX dµ(x) consists of

all Borel vector fields ξ ∈
∏

x∈X TxX (Borel as a map into TX) such that

∫

Y

‖ξ(x)‖2 dµ(x) <∞

Where µ is the measure we get from the Riemann metric. We can run the same
construction replacing TxX with k-forms at x, or even L2(TxX) with respect to
measure on TxX we get from the Riemann metric, similarly we can perform fiber-
wise operations (direct sum,tensor product) provided these give us an inner product
at every point.

Example 2.1.6. Let A be a separable C∗-algebra, and let Y be a σ-compact locally
compact Hausdorff space. Suppose that φ : Y → A∗ is such that x → φ(x)(a) is
measurable for all a ∈ A and ‖φ‖ ≤ 1. Let L2(A, φ(x)) be the GNS space for
φ(x). If an is a dense sequence in A, then using ξn(x) = an ∈ L2(A, φ(x)) we see
that L2(A, φ(x)) is a measurable field of Hilbert spaces. A similar remark holds
when A is replaced by a von Neumann algebra M and A∗ with M∗, provided M∗

is separable.

Example 2.1.7. Let G be a second-countable locally compact group, and and
let Y be a σ-compact locally compact Hausdorff space with Radon measure µ.
Suppose (πy)y∈Y are cyclic unitary representations of G on Hy (e.g. πy could be
irreducible) with cyclic vectors ξy, such that 〈πy(x)(g)ξy , ξy〉 is measurable for all
g ∈ G. Using vector fields ηn(y) = πy(xn)ξm with xn a dense sequence in G, gives
Hy the structure of a measurable field of Hilbert spaces.

Example 2.1.8. Let Y be a σ-compact locally compact Hausdorff space with
Radon measure µ, and let H be a fixed separable Hilbert space. The constant field
is given by setting Hx = H for all x ∈ Y. The measurable sections are precisely all

ξ : Y → H such that 〈ξ(y), η〉 is measurable for all η ∈ H. In this case
∫ ⊕

Y
H dµ(y)

is just L2(Y,H, µ).

This last example is actually the most important, as the following theorem shows.

Theorem 2.1.9. Let Y be a σ-compact locally compact Hausdorff space with Radon
measure µ, and let Hy be a measurable field of Hilbert spaces over Y. Then there
exists disjoint sets (Yn)n∈N∪{0,∞} in Y such that Y∞ ∪

⋃∞
n=0 Yn is conull, and
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unitary operators Un(y) : Cn → Hy, with y ∈ Yn (using C∞ = l2(N) such that
y → χYn

(y)U∗
n(y)ξ(y) is measurable for all ξ ∈ S. Thus Un induces a unitary

isomorphism between
∫ ⊕

Yn
Hy dµ(y) and L2(Yn, µ,C

n).

Proof. Let ηn(x) be as in Lemma 2.1.3, by Lemma 2.1.3 we know that n(x) =
dimHx is measurable. Thus we can set Yn = {y ∈ Y : dimHy = n}, for y ∈ Yn, if
we define

Un(y) : Cn → Hy

by

Un(y)




n∑

j=1

cjej


 =

n∑

j=1

cjηj(y)

then Un(y) has the desired properties.
�

Because of the proceeding theorem, when discussing direct integrals we can often
reduce to the case of L2(Y,H, µ). Finally, we note one important case of how Direct
Integrals appear naturally.

Theorem 2.1.10. Let Y be a σ-compact locally compact Hausdorff space with
Radon measure µ, and let π : L∞(Y, µ) → H be a nondegenerate normal∗ repre-
sentation on a separable Hilbert space H. Then there is a measurable field Hy of
Hilbert spaces such that π is unitarily equivalent to the representation ρ of L∞(Y, µ)

on
∫ ⊕

Y
Hy dµ(y) given by

ρ(f)ξ(y) = f(y)ξ(y).

Proof. By Zorn’s Lemma and the separability of H there exists a countable set J

and unit vectors (ξj)j∈J such that L∞(Y, µ)ξj ⊥ L∞(Y, µ)ξk if j 6= k and
⊕

L∞(Y, µ)ξj = H.

Since π is normal, we can find gj ∈ L1(Y, µ) such that

〈π(f)ξj , ξj〉 =

∫

Y

fgj dµ.

Let Ej = {x : gj(x) 6= 0} < and let

n(x) =

∞∑

j=1

χEj
(x).

Let πj be the restriction of π to L∞(Y, µ)ξj). Considering the unitary Uf =

fg
1/2
j we see that πj is unitary equivalent to the representation of L∞(Y, µ) on

L2(Ej, µ) given by multiplying by χEj
f. Thus π is isomorphic to the representation

of L∞(Y, µ) on ⊕

j∈J

L2(Ej, µ).

So we will work with this representation instead. Set Hy = Cn(y) with C∞ = l2(N),
set Yn = {x : n(x) = n}. We show that π is isomorphic to the representation of
L∞(Y, µ) on

⊕∞
n=1L

2(Yn,C
n(y), µ)
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given by multiply ξ(y) by f(y)ξ(y). As the above Hilbert space is
∫

Y

Cn(y) dµ(y)

and L∞ acts appropriately on this space this will complete the proof. Since the
representation of L∞(Y, µ) is unitarily equivalent to

⊕

j∈J

L2(Ej, µ) =
⊕

j∈J

L2(Ej , µ)
⊕

n∈N

L2(Ej ∩ Yn, µ) ∼=

∞⊕

n=1

⊕

j∈J

L2(En ∩ Yj, µ)

and this isomorphism is as representations of L∞(Y, µ), working on each direct
summand we may assume that n(x) is constant, order J we assume that J = N. In
this case set

X =

∞⋃

j=1

Ej

nk(x) =

k∑

j=1

χEj
(x)

Ajk = {x : nk(x) = j}, j ≤ k.

Define a linear map Tk : L2(Ek, µ) → L2(X,Cn, µ) by

Tkf(x) =

k∑

j=1

χAjk(x)f(x)ej .

Then Tk intertwines the actions of L∞(X, µ) on L2(Ek, µ) and L2(X,Cn, µ) and

∞⊕

k=1

Tk :

∞⊕

k=1

L2(Ek, µ) → L2(X,Cn, µ)

gives a unitary isomorphism between the two representations.
�

2.2. Direct Integrals of Operators and Representations. In this section, we
study fields of operators acting on measurable fields of Hilbert spaces. We state
necessary and sufficient conditions for an operator acting on a direct integral of
Hilbert spaces to come from a measurable field of operators. We also show when
we can decompose a representation of a separable C∗-algebra as a direct integral
of representations.

Definition 2.2.1. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y and let {Hy : y ∈ Y } be a measurable field of Hilbert spaces over
Y. On

∫
Y
Hy dµ(y) define a representation ρ of L∞(X, µ) by ρ(f)ξ(x) = f(x)ξ(x).

We call the image of this representation the diagonal algebra.

Definition 2.2.2. emphLet µ be a Radon measure on a locally compact Hausdorff
space Y and let {Hx : x ∈ X} be a measurable field of Hilbert spaces over Y.
By a measurable field {Ty : y ∈ Y }of operators we mean an element (Ty)y∈Y ∈∏

y∈Y B(Hy) such that
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(i) y → 〈Tyξ(y), η(y)〉 is measurable for all ξ, η ∈ S. (ii) The essential supremum
of ‖Ty‖ is finite.

Note that

‖Ty‖ = sup
n,m

|〈Tyξn(y), ξm(y)〉|

for ξn ∈ S such that Hy = Span{ξn(x) : n ∈ N} almost everywhere, thus it makes
sense to ask that the essential supremum is finite.

If {Ty : y ∈ Y } is a measurable field of operators, then we can define an operator
T on

∫
Y Hy dµ(y) by

(Tξ)(y) = Tyξ(y)

we shall denote this operator by
∫⊕

Y
Ty dµ(y).

Definition 2.2.3. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y and let {Hy : y ∈ Y } be a measurable field of Hilbert spaces
over Y. Let T be an operator on

∫
Y
Hy dµ(y) we say that T is decomposable if there

exists a measurable field (Ty)y∈Y of operators such that

T =

∫ ⊕

Y

Ty dµ(y).

Direct computations show that following algebraic formulas:

∫ ⊕

Y

Ty dµ(y) +

∫ ⊕

Y

Sy dµ(y) =

∫ ⊕

Y

Ty + Sy dµ(y)

(∫ ⊕

Y

Ty dµ(y)

)(∫ ⊕

Y

Sy dµ(y)

)
=

∫ ⊕

Y

TySy dµ(y)

(∫ ⊕

Y

Ty dµ(y)

)∗

=

∫ ⊕

Y

T ∗
y dµ(y).

Our first Theorem gives an alternative characterization of decomposable opera-
tors.

Theorem 2.2.4. Let µ be a Radon measure on a locally compact Hausdorff space
Y and let {Hy : y ∈ Y } be a measurable field of Hilbert spaces over Y, and set
H =

∫
Y
Hy dµ(y). Let T ∈ B(H), a necessary and sufficient condition that T be

decomposable is that it commutes with the diagonal algebra. If T is decomposable

and T =
∫⊕

Y
Ty dµ(y) =

∫
Y
Sy dµ(y), are two decompositions of T, then Sy = Ty

almost everywhere. Further ‖T‖ is the essential supremum of ‖Ty‖.

Proof. If T is decomposable it clearly commutes with the diagonal algebra. Con-
versely, suppose that T commutes with the diagonal algebra and let (ξn(y)) be
sequence in S such that Hy is the closed linear span on ξn(x) for almost every x.
Set ηn(y) = (Tξn)(y), we claim that for all c1, . . . , cm ∈ Q[i] = {a+ bi : a, b ∈ Q}

∥∥∥∥∥∥

m∑

j=1

cjηn(y)

∥∥∥∥∥∥
≤ ‖T‖

∥∥∥∥∥∥

m∑

j=1

cjξn(y)

∥∥∥∥∥∥
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for almost every y. To see this, it suffices to show that for all f ∈ L∞(Y, µ)∩L2(X, µ)
we have

∫

Y

|f(y)|2

∥∥∥∥∥∥

m∑

j=1

cjηn(y)

∥∥∥∥∥∥

2

dµ(y) ≤ ‖T‖2

∫

Y

|f(y)|2

∥∥∥∥∥∥

m∑

j=1

cjξn

∥∥∥∥∥∥

2

dµ(y).

We have, using ρ(f)ξ(y) = f(y)ξ(y) for f ∈ L∞(Y, µ), that

∫

Y

|f(y)|2

∥∥∥∥∥∥

m∑

j=1

cjηn(y)

∥∥∥∥∥∥

2

dµ(y) =

∫

Y

∥∥∥∥∥∥
ρ(f)T




m∑

j=1

cjξj


 (y)

∥∥∥∥∥∥

2

dµ(y) =

∥∥∥∥∥∥
ρ(f)T


∑

j=1

cjξj



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
Tρ(f)




m∑

j=1

cjξj



∥∥∥∥∥∥

2

≤ ‖T‖2

∣∣∣∣∣∣
ρ(f)




m∑

j=1

cjξj



∥∥∥∥∥∥

2

= ‖T‖2

∫

Y

|f(y)|2

∥∥∥∥∥∥

m∑

j=1

cjξj(y)

∥∥∥∥∥∥

2

dµ(y).

Because there are countably many vectors of the form
∑m

j=1 cjξj with cj ∈ Q[i], we

may select a conull Y0 ⊆ Y such that for all y ∈ Y0, and all c1, . . . , cm ∈ Q[i] we
have

T




m∑

j=1

cjξj


 (y) =

m∑

j=1

cjηj(y)

and ∥∥∥∥∥∥

m∑

j=1

cjηj(y)

∥∥∥∥∥∥
≤ ‖T‖

∥∥∥∥∥∥

m∑

j=1

cjξj(y)

∥∥∥∥∥∥
.

For y ∈ Y0 define

Ty




m∑

j=1

cjηj(y)


 =

m∑

j=1

cjξj(y),

the above inequality guarantees that Ty is well-defined and Q[i]-linear. It also shows
that

‖Ty(ξ − η)‖ ≤ ‖T‖‖ξ − η‖

for ξ, η in the Q[i]-span of ξn(y). Thus Ty is uniformly continuous, and hence by
completeness of Hy, it has a unique extension Ty : Hy → Hy, it is easy to check
that this extension is linear and has norm at most ‖T‖ on Y0. A simple density

argument shows that T =
∫ ⊕

Y Ty dµ(y).

Suppose T =
∫ ⊕

Y Sy dµ(y) is another decomposition of T, we must show that
Sy = Ty almost everywhere. Taking differences, we may assume that T = 0 and
show that Sy = 0 almost everywhere. But for each n, we have that

0 = ‖Tξn‖
2 =

∫

Y

‖Syξn(y)‖2 dµ(y)

and thus we may select a conull subset on which Syξn(y) = 0 for all n. Because the
ξn(y) generate Sy, this shows that Sy = 0 almost everywhere.

For the last claim, note that if T is a decomposable operator, then since we

already checked uniqueness, we can use any decomposition
∫ ⊕

Y
Ty dµ(y) to show
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that ‖T‖ is the essential supremum of ‖Ty‖. The decomposition we constructed in
the first part of the proof had ‖Ty‖ ≤ ‖T‖ almost everywhere by construction. For
the reverse inequality simply note that if the essential supremum of ‖Ty‖ is at most
R then for all ξ ∈ S,

‖Tξ‖2 =

∫

Y

‖Tyξ(y)‖
2 dµ(y) ≤ R2

∫

Y

‖ξ(y)‖2 dµ(y) = R2‖ξ‖2.

Thus ‖T‖ is at most the essential supremum of ‖Ty‖ and this completes the proof.
�

Proposition 2.2.5. Let µ be a Radon measure on a locally compact Hausdorff
space Y and let {Hy : y ∈ Y } be a measurable field of Hilbert spaces over Y. Let

Tn =
∫ ⊕

Y
Tn(y) dµ(y) be a sequence of decomposable operators. If Tn → T in the

strong operator topology, then T is decomposable. If we write T =
∫ ⊕

Y
Ty dµ(y), then

there is a subsequence Tnk
such that Tnk

(y) → T (y) is strong operator topology for
almost every y. 3

Proof. The fact that T is decomposable is obvious from the above proposition. To
see the second claim, let (ξn) be a dense sequence inH. By a diagonal argument and
Theorem 1.1.8 we can find a subsequence Tnk

of Tn such that Tnk
(y)ξn → T (y)ξn

in norm for almost every y. By the principal of uniform boundedness, we can find
an M > 0 such that ‖Tn‖ ≤ M for every n. The above proposition implies that
‖Tn(y)‖ ≤M for almost every y and all n. Therefore, by removing a set of measure
zero we may assume that ‖Tnk

(y)‖ ≤M for all k and y ∈ Y. Since ξn is dense this
implies that Tnk

(y)ξ → T (y)ξ in norm for every ξ ∈ H.
�

We now consider direct integrals of representations.

Definition 2.2.6. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y, and let {Hx : x ∈ X} be a measurable field of Hilbert spaces
over Y. Let A be a C∗-algebra, a measurable field of representations {πy : y ∈ Y }
of A is a collection of ∗-representations πy : A→ B(Hy), for y ∈ Y, non-degenerate
∗-representations such that (y → πy(a)ξ(y)) ∈ S for all ξ ∈ S. Define π : A →

B
(∫ ⊕

Y Hy dµ(y)
)

by (π(a)ξ)(y) = πy(a)ξ(y). Then π is a ∗-representation of A,

which we call the direct integral of πy and denote π =
∫ ⊕

Y
πy dµ(y).

As in the case of decomposable operators, we have an abstract characterization
of direct integrals of representations.

Theorem 2.2.7. Let µ be a Radon measure on a σ-compact locally compact Haus-
dorff space Y, and let {Hx : x ∈ X} be a measurable field of Hilbert spaces over Y.

Set H =
∫ ⊕

Y Hy dµ(y), suppose π : A→ B(H) is a ∗-representation such that π(x)
commutes with the diagonal algebra for all x ∈ X. Then there is a measurable field
{πy : y ∈ Y } of ∗-representations of A, such that

π =

∫ ⊕

Y

πy dµ(y).

3The same can be said about any of the usual operator topologies we typically consider, and

the proof given below works for any of them.
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Proof. Fix a countable subring R ⊆ A, which is norm dense, closed under adjoints
and scaling by elements in Q[i]. For each a ∈ R, by Theorem 2.2.4 we can find a
measurable field of operators ay such that

π(a) =

∫ ⊕

Y

ay dµ(y)

and we have, for almost every y ∈ Y that ‖ay‖ ≤ ‖π(a)‖ ≤ ‖a‖. For a ∈ R set

N1
a = {y ∈ Y : ‖ay‖ > ‖π(a)‖}

N2
a = {y ∈ Y : ay 6= a∗y}

and for a, b ∈ R, λ ∈ Q[i] set

N1
ab = {y ∈ Y : ayby 6= (ab)y}

N2
ab = {y ∈ Y : ay + by 6= (a + b)y}

Nλa = {y ∈ Y : λay 6= (λa)y}

then each of N1
a , N

2
aN

1
ab, N

2
ab, Nλa are all null sets. Since R is countable

N =
⋃

a∈R

(
N1

a ∪N2
a

)
∪
⋃

a,b∈R

(
N1

ab ∪N
2
ab

)
∪

⋃

λ∈Q[i],a∈R

Nλa

is a null set, set Y0 = Y \N0. For y ∈ Y0, we have that

πy(a) = ay

is a ∗-homomorphism on R and ‖πy(a)−πy(b)‖ ≤ ‖π(a−b)‖ ≤ ‖a−b‖ on Y0. Thus
πy is uniformly continuous on R for y ∈ Y0, and since B(Hy) is complete we have
a uniqueness extension πy : A→ B(Hy) for y ∈ Y0. Simple density arguments show
that πy are ∗-homomorphisms such that

π =

∫ ⊕

Y

πy dµ(y).

�

Lemma 2.2.8. Let µ be a Radon measure on a σ-compact locally compact Hausdorff
space Y, and let H be a fixed separable Hilbert space. let A be a separable C∗-
algebra and {πy} a measurable field of representations on Hy.

4 Then there are
representations (ρy)y∈Y such that y → ρy(a) is strongly∗ Borel for each y ∈ Y, and
such that πy = ρy almost everywhere.

Proof. Let R ⊆ A be a countable dense subring closed under the ∗ operation
and scaling by elements in Q[i]. By Corollary 1.2.4, for each a ∈ R we can find
Ta : Y → B(H) strongly∗ Borel such that Ta(y) = πy(a) almost everywhere. As in
the previous proposition, we can find a Borel null set N ⊆ Y such that for y ∈ Y \N
we have

Tab(y) = Ta(y)Tb(y) for all a, b ∈ R

Ta(y)∗ = Ta∗(y) for all a ∈ R

Ta+b(y) = Ta(y) + Tb(y) for all a, b ∈ R

Tλa(y) = λTa(y) for all a ∈ R, λ ∈ Q[i]

‖Ta(y)‖ ≤ ‖a‖ for all a ∈ R.

4This just means y → πy(a) is strongly∗ µ-measurable for every a ∈ A.
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As in the previous proposition for y ∈ Y \N, the map y → Ta(y) extends uniquely
to a ∗-representation of A, which we denote by ρy. By definition y → χY \Nρy is
strongly∗ Borel for each a ∈ R, and since being Borel is closed under norm limits
(see Proposition 1.1.2) it follows that y → ρy(a) is strongly∗-Borel for each a ∈ A.
A similar argument shows that we can find a null set N ′ such that ρy(a) = πy(a)
for all a ∈ A.

�

Theorem 2.2.9. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let {Hy : y ∈ Y } be a measurable field of Hilbert spaces over
Y. Let A be a seperable C∗-algebra and πy, ρy are two measurable fields of representa-
tions on Hy such that πy

∼= ρy for almost every y ∈ Y. Then, for almost every y ∈ Y,
we can find a unitary Uy ∈ B(Hy) such that y → Uyξ(y) ∈ S, y → U(y)∗ξ(y) ∈ S

for each ξ ∈ S such that UyπyU
∗
y = ρy. Thus

∫⊕

Y
Uy dµ(y) implements a unitary

equivalence between
∫ ⊕

Y πy
∼=
∫ ⊕

Y ρy.

Proof. Let Y ′
n = {y ∈ Y : dimHy = n}, for n ∈ N ∪ {∞}, and choose Yn ⊆ Y ′

n

Borel such that µ(Y ′
n \ Yn) = 0. Working on each Yn, we may instead assume that

Y is a Borel subset of a second countable locally compact Hausdorff space and that
there is a fixed separable Hilbert space H, such that {πy : y ∈ Y } is a measurable
field of representations on H. Observe that the one-point compactification of a
second countable locally compact Hausdorff space is still second countable, and
being compact, it is metrizable. In particular a second countable locally compact
Hausdorff space is homeomorphic to an open subset of a Polish space, and is thus
Polish by Theorem 4.1.13. Since U(H) is closed in {T ∈ B(H) : ‖T‖ = 1} for
the strong∗ topology, it is a Polish space by Proposition 1.2.6. By applying the
previous lemma, we may assume that y → πy(a), y → ρy(a) are strongly∗ Borel for
each a ∈ A. Let

X = {(y, U) ∈ Y ×U(H) : Uπy(a)U∗ = ρy(a) for all a ∈ A}.

We claim that X is a Borel subset of Y × U(H), when U(H) is given the strong∗

topology. Indeed, let D be a countable dense subset of A, then

X =
⋂

a∈D

{(y, U) ∈ Y × U(H) : Uπy(a)U
∗ = ρy(a)},

so it suffices to show that for S, T : Y → B(H) strongly∗ Borel

{(y, U) ∈ Y × U(H) : UT (y)U∗ = S(y)}

is Borel. But if (ξn)∞n=1 is a dense sequence in H, then

{(y, U) ∈ Y×U(H) : UT (y)U∗ = S(y)} =

∞⋂

n=1

{(y, U) ∈ Y×U(H) : UT (y)U∗ξn = S(y)ξn}.

Since y → UT (y)U∗ is strongly ∗ Borel by Propositions 1.2.6, we have that

{(y, U) ∈ Y × U(H) : UT (y)U∗ = S(y)}

is a Borel set. Let π1 : X → Y, π2 : X → U(H) be the projections onto the first
coordinate and second coordinates, our assumptions imply that π1(X) is a conull
set in Y, and it is analytic by Corollary 4.1.22. SinceX is a Borel subset of the Polish
space Y ×U(H), Theorem 4.1.33 implies that we can find a universally measurable
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φ : Y → X such that π◦φ(y) = y for all y ∈ π(X). Let U : π(X) → U(H) be defined
by U = π2 ◦ φ. Since

φ(y) = (y, U(y)) ∈ Y for all y ∈ π1(X)

we have
U(y)πy(a)U(y)∗ = ρy(a)

for each y ∈ π1(X), and π1(X) was already seen to be conull. Thus U(y) has the
desired properties.

�

3. Direct Integrals of Von Neumann Algebras

3.1. Measurable Fields of Von Neumann Algebras and Decomposition

Into Factors. In the previous sections, we have discussed the notions of a mea-
surable field of Hilbert Spaces, now we shall consider a measurable field of von
Neumann algebras acting on a measurable field of Hilbert spaces.

Definition 3.1.1. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y, and let {Hy : y ∈ Y } be measurable field of Hilbert spaces
over Y. A collection of von Neumann algebras {My : y ∈ Y } with My ⊆ B(Hy),
such that the identity of My is the identity of B(Hy) for almost every y is said
to be a measurable field of von Neumann algebras if there are measurable fields of
operators {an(y) : y ∈ Y } such that My = W ∗({an(y) : n ∈ N}) for almost every y.
If Hy = H is a fixed separable Hilbert space for each y, we say that My is a Borel
field of von Neumann algebras if the an above can be chosen to be strongly∗ Borel
for each n, and My = W ∗({an(y) : y ∈ Y }) for every y ∈ Y.

We have the following consequence of Corollary 1.2.4. If y →My is a measurable

field of von Neumann algebras acting on H, then there is a Borel field y → M̃y of

von Neumann algebras acting on H such that M̃y = My for almost every y. We
shall often say “let (My, Hy)y∈Y be a measurable field of von Neumann algebras
over Y to indicate that Hy is a measurable field of Hilbert spaces over Y, and that
My is a measurable field of von Neumann algebras such that My ⊆ B(Hy).

Our first propositions of this section establishes basic facts about measurable
and Borel fields of von Neumann algebras.

Proposition 3.1.2. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y, let H be a separable Hilbert space and (My)y∈Y a Borel field of
von Neumann algebras acting on H. Then

(a) (M ′
y)y∈Y is a measurable field of von Neumann algebras.

(b) If Ny is another Borel field of von Neumann acting on H, then Ny ∩My and
Ny ∨My are measurable fields of von Neumann algebras.

(c) Fix R > 0, then using B(0, R) = {T ∈ B(H) : ‖T‖ ≤ R} we have that

{(y, T ) ∈ Y ×B(0, R) : T ∈My}

is a Borel subset of Y × B(0, R).
(d) The set

{(y, φ) ∈ Y × B(H)∗ : φ
∣∣
My

is a trace}5

is a Borel subset of Y × B(H)∗.

5Here we are identifying an element in B(H)∗ with the linear functional on B(H) it defines
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(e) Let A be a separable C∗-algebra and {πy : y ∈ Y } a measurable field of
representations over Y. Then π′′

y is a measurable field of von Neumann algebras.

Proof. Let y → an(y) be strongly∗ Borel maps such that My = W ∗({an(y) : n ∈
N}) for every y ∈ Y.

(a) Let φn be a dense sequence in B(H)∗. The idea is to produce a sequence
bn : Y → B(H) of strongly∗ µ-measurable maps such that

(i) ‖bn(y)‖ ≤ 1 for all y

(ii) ‖φn(bn(y))‖ ≥
‖φn

∣∣
My

‖

2
(iii) bn(y) ∈ My for all y.
Once we have done this, the Hahn-Banach Theorem guarantees that M ′

y =
W ∗({bn(y) : n ∈ N}) for every y, and thus that M ′

y is a measurable field of von
Neumann algebras.

To do this, we first show that for all φ ∈ B(H)∗ we have y → ‖φ
∣∣′
My

‖ is Borel.

Let fy : B(H) → l∞(N)⊗B(H) be defined by fy(T ) = (Tan(y) − an(y)T )n∈N, then

M ′
y = ker(ψy), and ψy is weak∗ continuous. Thus (M ′

y)⊥ = ft
y((l∞(N)⊗B(H))∗).

We can identify (l∞(N)⊗B(H))∗ as all l1(N, B(H)∗). Let ψ(j) = (ψ
(j)
n )∞n=1 be a

dense sequence in l1(N, B(H)∗). Then

‖φ
∣∣
My

‖ = inf{‖φ− ψ‖ : ψ ∈ (M ′
y)⊥} =

inf{‖φ− fy(ψ(j)‖ : j ∈ N}.

Let Tk be a weak∗ dense sequence in the norm closed unit ball of B(H). Because

ft
y(ψ(j))(T ) =

∞∑

n=1

φ(j)
n (Tkan(y) − an(y)Tk)

we have that

‖φ− fy(ψ(j)‖ = sup
k

∥∥∥∥∥φ(Tk) −

∞∑

n=1

φ(j)
n (Tkan(y) − an(y)Tk)

∥∥∥∥∥ .

Because an(y) are strongly∗ Borel, it follows from this formula and Proposition

1.1.2 that ‖φ− fy(ψ(j)‖ is Borel for all j. Thus ‖φ
∣∣
My

‖ is Borel.

We have that

M ′
y = {T ∈ B(H) : Tan(y) = an(y)T}

for every y ∈ Y. Note that by Proposition 1.2.6
∞⋂

n=1

{(T, y) ∈ B(H) × Y : ‖T‖ ≤ 1, Tan(y) = an(y)T}

is a Borel subset of B(0, 1)× Y. This set is precisely {(T, y) ∈ B(H) : ‖T‖ ≤ 1, T ∈
M ′

y}. By a similar logic

Xn = {(T, y) ∈ B(H) × Y ×B(H)∗ : T ∈M ′
y, ‖T‖ ≤ 1, ‖φn(T )‖ ≥

‖φn

∣∣
My

‖

2
}

is Borel and if π : XntoY is the projection , it is easy to see that π is onto. Thus
by Theorem 4.1.33 we can find a universally measurable φn : Y → Xn such that
π ◦ φn = Id . Setting bn = q ◦ φn where q is projection onto the second coordinate,
we see that the bn have the desired properties.
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(b) It is clear from the definitions that My ∨Ny is a Borel field of von Neumann
algebras, since

Ny ∩My = (My ∩Ny)′

the other claim follows from (a). (c) We may assume that the an(y) are self-adjoint
for each y. Fix a dense sequence ξk in H. Let A be the ring of all noncommutative
polynomials in variables x1, x2, . . . with coefficents in Q[i]. Then A is countable, we
claim that

{(T, y) ∈ B(H) × Y : ‖T‖ ≤ R, T ∈ My} =
∞⋂

n=1

∞⋂

m=1

⋃

P∈A

EP .

Where

EP =
m⋂

j=1

{(T, y) : ‖T‖ ≤ R, ‖P (a1(y), . . .)ξk−Tξk‖ < 1/n}∩{(T, y) : ‖P (a1(y), . . .)‖ ≤ 2R+1}.

Indeed if (T, y) is in the right hand-side, then that means we can find a net Pi ∈ A,
such that

Pi(a1(y), a2(y), . . .)ξk → Tξk

for all k, and ‖Pi(a1(y), . . .)‖ ≤ 2R+1. Since ‖Pi(a1(y), . . .)‖ ≤ 2R+1, the density
of the ξk guarantees that

Pi(a1(y), a2(y), . . .) → T

strongly and T is in My. Conversely, if T ∈ My, then by Kaplansky’s Density
Theorem given any n, k ∈ N we can find a noncommutative polynomial P with
coefficents in C, in the variables x1, x2, . . . such that

‖P (a1(y), a2(y), . . .)ξj − Tξj‖ < 1/n for j = 1, . . . , k

and

‖P (a1(y), a2(y), . . .)‖ ≤ R.

Perturbing the coefficents slightly we may find P ′ ∈ A such that

‖P (a1(y), a2(y), . . .)ξj − Tξk‖ < 1/n for j = 1, . . . , k

‖P (a1(y), a2(y), . . .)‖ ≤ 2R+ 1.

Since EP is Borel by Proposition 1.2.6 we have that

{(T, y) ∈ B(H) × Y : ‖T‖ ≤ 1, T ∈My}

is Borel.
(d) Adding in all P (a1(y), a2(y), . . .) where P is in the ring A define in (c), we

may assume that the linear span of an(y) is weak∗ dense in My for all y. Then

{(φ, y) ∈ B(H)∗ × Y : T
∣∣
My

is a trace } =

⋃

n,m∈N

{(φ, y) ∈ B(H)∗ × Y : φ(am(y)an(y)) = φ(an(y)am(y))},

and this is a Borel set by Proposition 1.2.6.
(e) If (xn)∞n=1 is a dense sequence in A, then {πy(an) : n ∈ N} generates πy(A)′′

for every y.
�
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Corollary 3.1.3. Let µ be a Radon measure on a σ-compact locally compact Haus-
dorff space Y, let (My , Hy)y∈Y be a measurable field of von Neumann algebras over
Y. Then

(a) (M ′
y)y∈Y is a measurable field of von Neumann algebras.

(b) If Ny is another measurable field of von Neumann, then Ny∩My and Ny∨My

are measurable fields of von Neumann algebras.

Proof. By partitioning and applying Theorem 2.1.9 we may assume that Hy = H
is constant. Now simply modify My, Ny on null sets to make them Borel and apply
the previous proposition.

�

Definition 3.1.4. Let µ be a Radon measure on a σ-compact locally compact
Hausdorff space Y, and let (My, Hy)y∈Y be a measurable field of von Neumann

algebras over Y. Let M be the set of all operators
∫ ⊕

Y
ay dµ(y) such that ay ∈ My

for almost every y ∈ Y. Then M is called the direct integral of My and denoted∫⊕

Y
My dµ(y).

Theorem 3.1.5. Let µ be a Radon measure on a σ-compact locally compact Haus-
dorff space Y.

(a) Let (My, Hy)y∈Y be a measurable field of von Neumann algebras over Y.

Then M =
∫ ⊕

Y My dµ(y) is a von Neumann algebra and

M ′ =

∫ ⊕

Y

M ′
y dµ(y)

(b) Let A be a separable C∗-algebra, and let {πy : y ∈ Y } be a measurable field
of representations over Y, such that πy is non-degenerate for almost every y, and

set π =
∫ ⊕

Y
πy dµ(y). Then π(A)′′ ⊆

∫⊕

Y
πy(A)′′ dµ(y).

(c) If (My, Hy), (Ny, Hy) are two measurable fields of von Neumann algebras,
then ∫ ⊕

Y

Ny dµ(y) ⊆

∫ ⊕

Y

My dµ(y)

if and only if Ny ⊆My almost everywhere. Further we have
∫ ⊕

Y

Ny ∩My dµ(y) =

∫ ⊕

Y

My dµ(y) ∩

∫ ⊕

Y

Ny dµ(y).

(d) If p ∈M is a projection, and p =
∫ ⊕

Y
p(y) dµ(y) then pMp =

∫ ⊕

Y
p(y)Myp(y) dµ(y).

Proof. (a)It suffices to show that

M ′ =

∫ ⊕

Y

M ′
y dµ(y),

because if we take commutants again (and apply the above to M ′
y in place of My)

we see that

M ′′ =

∫ ⊕

Y

My dµ(y) = M

i.e. M is a von Neumann algebra. It is clear that

M ′ ⊇

∫ ⊕

Y

M ′
y dµ(y).
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For the converse, let an(y) be a measurable field of operators such that My =
W ∗(an(y) : n ∈ N) almost everywhere, and let T ∈M ′. Since the identity operator
is in My for almost every y, we have that T commutes with the diagonal algebra so

that by Theorem 2.2.4 we can write T =
∫⊕

Y
Ty dµ(y). Then, for each n and almost

every y we have[Ty, an(y)] = 0. By removing countably many null sets we see that
for almost every y we have that [Ty, an(y)] = 0 for all n.

(b) Since πy(A)′ = (πy(A)′′)′, we have that πy(A)′ is a measurable field of von
Neumann algebras by the above proposition. Suppose T ∈ π(A)′′, then we can find
an ∈ A, such that ‖π(an)‖ ≤ ‖T‖ and π(an) → T in the strong operator topology.
Thus by Theorem 2.2.5 and passing to a subsequence we can write

T =

∫ ⊕

Y

Ty dµ(y)

in such a way that π(an)(y) → Ty in the strong operator topology almost every-
where. Thus

T ∈

∫ ⊕

Y

πy(A)′′ dµ(y).

(c) Let an(y), bn(y) be measurable fields of operators generating My, Ny almost
everywhere. Set

N =

∫ ⊕

Y

Ny dµ(y),M =

∫ ⊕

Y

My dµ(y).

If N ⊆ M, then we have that bn(y) ∈ My for almost every y, thus Ny ⊆ My for
almost every y. Conversely, suppose that Ny ⊆ My for almost every y. We first
claim that M = W ∗(an : n ∈ N). We have that

W ∗(an : n ∈ N) = ({1} ∪ {an}
∞
n=1 ∪ {an})

′′
.

But by a similar argument as in (a), we have that

({1} ∪ {an}
∞
n=1 ∪ {an})

′
=

∫ ⊕

Y

({1} ∪ {an}
∞
n=1 ∪ {an})

′
dµ(y)

and ∫ ⊕

Y

({1} ∪ {an}
∞
n=1 ∪ {an})

′
dµ(y) =

∫ ⊕

Y

M ′
y dµ(y)

and part (a) now proves the claim, by the double commutant theorem. A similar
result holds for N, and since Ny ⊆ My we have that bn(y) ∈ My for almost every
y. Thus bn ∈M, so

N = W ∗({an : n ∈ N}) ⊆M.

For the second claim, note that the logic we just used implies that
∫ ⊕

Y

My ∨Ny dµ(y) =

∫ ⊕

Y

My dµ(y) ∨

∫ ⊕

Y

Ny dµ(y)

and taking commutatns proves the second claim.
(d) It is straightforward from the definition to verify that y → p(y)Myp(y) is

measurable field of von Neumann algebras. It is clear that
∫ ⊕

Y

p(y)Myp(y) dµ(y) ⊆ pMp.
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On the other hand, if a ∈ pMp, then
∫ ⊕

Y

a(y) dµ(y) = a = pap =

∫ ⊕

Y

p(y)a(y)p(y) dµ(y)

so that a(y) = p(y)a(y)p(y) for almost every y. That is a(y) ∈ p(y)Mp(y) for almost
every y.

�

Theorem 3.1.6. Let Y be a σ-compact locally compact Hausdorff space and let
µ be a Radon measure on Y. Let (My, Hy) be a measurable field of von Neumann

algebras over Y, and M =
∫⊕

Y My dµ(y).
(i) If φ ∈ M∗, then there exists, for almost y, a φy ∈ (My)∗ such that y →

φy(a(y)) is measurable for all a ∈M, and
∫ ⊕

Y

‖φy‖ dµ(y) <∞

φ(a) =

∫

Y

φy(a(y)) dµ(y)

‖φ‖ =

∫

Y

‖φy‖ dµ(y).

This last formula implies that φy is unique up to agreement on a null set. Con-
versely, if φy ∈ (My)∗ is such that y → φy(a(y)) is measurable for all a ∈ M, and∫
Y ‖φy‖ dµ(y) <∞ we have that

φ(a) =

∫

Y

φy(a(y)) dµ(y)

is in M∗. We will write φ =
∫⊕

Y
φy dµ(y).

(ii) If φ, φy are as in (i), then φ ≥ 0 if and only if φy ≥ 0 for almost every y.
(iii) φ ≥ 0 is faithful if and only if φy is faithful.

Proof. (i) If φ ∈ M∗, then by the Hahn-Banch Theorem we can find ψ ∈ B(H)∗
such that ψ

∣∣
M

= φ. Let ξn, ηn ∈ H =
∫⊕

Y
Hy dµ(y) be such that

∞∑

n=1

‖ξn‖
2,

∞∑

n=1

‖ηn‖
2 <∞

and

ψ(T ) =

∞∑

n=1

〈Tξn, ηn〉.

Then ∫

Y

∞∑

n=1

‖ξn(y)‖2 dµ(y) =

∞∑

n=1

∫

Y

‖ξn(y)‖2 dµ(y) =

∞∑

n=1

‖ξn‖
2 <∞,

and similarly for ηn(y). Thus
∑

n

‖ξn(y)‖2,
∑

n

‖ηn(y)‖2 <∞ for almost every y..
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Therefore we can define φy ∈ B(Hy) by

φy(T ) =

∞∑

n=1

〈Tξn(y), ηn(y)〉

and by definition of a measurable field of operators we have that y → 〈a(y)ξn(y), ηn(y)〉
is measurable for all a ∈M. Thus we have that y → φy(a(y)) is measurable for all
a ∈M. Further we have that

∫

Y

‖φy‖ dµ(y) ≤

∫

Y

∞∑

n=1

‖ξn(y)‖‖ηn(y)‖ dµ(y) =

∞∑

n=1

∫

Y

‖ξn(y)‖‖ηn(y)‖ dµ(y) ≤

∞∑

n=1

(∫

Y

‖ξn(y)‖2 dµ(y)

)1/2(∫

Y

‖ηn(y)‖2 dµ(y)

)1/2

≤

(
∞∑

n=1

‖ξn‖
2

)1/2( ∞∑

n=1

‖ηn‖
2

)1/2

<∞.

A straightforward computation verifies that∫

Y

φy(a(y)) dµ(y) = φ(a) for all a ∈M.

If bn ∈M is such that bn(y) is weak∗ dense for almost every y, 6 then

‖φy‖ = sup
n

|φy(bn(y)|

and is thus measurable. Straightfoward estimates show that

‖φ‖ ≤

∫

Y

‖φy‖ dµ(y).

Since M is the dual of M∗, we can find a ∈M with ‖a‖ ≤ 1 such that

φ(a) = ‖φ‖.

Let α : Y → T be measurable such that αφy(ay) = |φy(ay)| for every y. Then

‖φ‖ = φ(a) =

∫

Y

φy(ay) dµ(y) ≤

∫

Y

|φy(a(y))| dµ(y) =

∫

Y

φy(α(y)a(y)) dµ(y) = φ(αa) ≤ ‖φ‖.

Thus by replacing a with αa we may assume that φy(a(y)) ≥ 0 almost everywhere.
We claim that φy(ay) = ‖φy‖ for almost every y. By applying Theorem 2.1.9 we
may assume that there is a partition Yn of Y and separable Hilbert spaces Kn such
that Hy = Kn for y ∈ Yn. Then by modifying ay, φy on a null set we may assume
that y → a(y), y → φy are strongly∗ Borel, and Borel, respectively for y ∈ Yn. For
each n, let

En = {(y, b) ∈ Yn × B(H) : ‖b‖ ≤ 1, φy(b) > ‖φy‖, b ∈My}.

Then En is a Borel set when B(H) ∩ B(0, 1) is given the strong∗ topology by
Proposition 3.1.2. Let π1 : En → Yn, π2 : En → B(H) be the projections. We have
that π1(En) is analytic, and by Theorem 4.1.33 we can find a universally measurable

6e.g. consider all P (a1(y), a2(y), . . .) where P is a noncommutative polynomial with coefficients

in Q[i].
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g : Yn → En such that π1 ◦ g = Id . Let b′ = π2 ◦ g, , set b = χπ1(En
b′ + χπ1(En)ca,

then b ∈M. Also

‖φ‖ ≥ φ(b) =

∫

π1(En

φy(b(y)), dµ(y) +

∫

π1(En)c

φy(a(y)) dµ(y) ≥

∫

π1(En

φy(b(y)), dµ(y) +

∫

π1(En)c

φy(a(y)) dµ(y) = φ(a) = ‖φ‖.

This implies that µ(π1(En)) = 0 for all n. Since π1(En) = {y : φy(a(y)) < ‖φy‖}
we have that ‖φy‖ = φy(a(y)) almost everywhere. Thus

φ‖ =

∫

Y

φy(ay) =

∫

Y

‖φy‖ dµ(y),

as desired.
(ii) For the second claim, it is clear that if φy ≥ 0 almost everywhere then φ ≥ 0.

Conversely, the equality that we just established

‖φ‖ =

∫

Y

‖φy‖ dµ(y)

shows that any two decompositions of φ agree almost everywhere. Thus if φ ≥ 0,
then we can restart the construction by extending ψ to a positive normal functional
on B(H) and finding ζn ∈ H such that

ψ(T ) =
∞∑

n=1

〈Tξn, ξn〉.

Exactly as in the first step of the proof we see that φy(T ) =
∑

n〈Tζn(y), ζn(y)〉
gives a decomposition of φ and clearly φy ≥ 0 almost everywhere.

(iii) Suppose φ ≥ 0 and that φy is faithful for almost every y. If a ∈ M, a ≥ 0,
then a(y) ≥ 0 almost everywhere and if φ(a) = 0 we have that

0 =

∫

Y

φy(a(y)) dµ(y)

since φy(a(y)) ≥ 0 this implies that φy(a(y)) = 0 almost everywhere. Since φy is
faithful almost everywhere we must have that a(y) = 0 almost everywhere.

Suppose that φy is faithful for almost y. If an(y) are measurable operator fields
which generate My almost everywhere then an(y) give generating fields in L2(My, φy).
Thus L2(My , φy) is a meaurable field of Hilbert spaces over Y, and measurable op-
erator fields in M preserve the measurable sections of L2(My, φy). Thus we have a
normal representation π of M on

H =

∫ ⊕

Y

L2(M,φy) dµ(y).

Moreover if we use 1 ∈ H, for the vector which is the identity of My for every y we
have that

φ(a) = 〈a1, 1〉

so to prove that φ is faithful, we only have to show that 1 is cyclic for π(M)′. By
a similar logic as above we have that

N =

∫ ⊕

Y

M ′
y dµ(y)
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has a representation ρ on H with image contained in π(M)′. Suppose η ∈ H is
perpendicular to ρ(N)1, then for every b ∈ N and E ⊆ Y measurable we have that

0 = 〈ρ(χEb)1, η〉 =

∫

E

〈η(y), b(y)〉 dµ(y)

thus 〈η(y), b(y)〉 = 0 for almost every y. If we let bn ∈ N be such that bn(y) is strong∗

dense in My for almost every y, we have for almost every y that 〈η(y), bn(y)〉 = 0
for all n. Since bn(y) are dense in L2(M,φy) by the normality of φy we have that
η(y) = 0 for almost every y. Thus η = 0, so ρ(N)1 is dense in H. Thus 1 is cyclic
for M ′ and thus φ is faithful.

�

Corollary 3.1.7. Let Y be a second countable locally compact Hausdorff space and
let µ be a Radon measure on Y. For a fixed Hilbert space H, and a von Neumann
algebra M ⊆ B(H). we have that the map f ⊗ T → (x → f(x)T ) induces an
isomorphism

L∞(Y, µ) ⊗M ∼=

∫ ⊕

Y

B(H) dµ(y)

In particular, by the results of the above theorem we have the identification

(L∞(Y, µ) ⊗M)∗
∼= L1(X,M, µ).

Proof. We can represent both algebras on

L2(Y, µ) ⊗H ∼= L2(Y, µ,H) ∼=

∫ ⊕

Y

H dµ(y)

and this is compatible with the above identification. Under this identification,

L∞(Y, µ)⊗M ⊆

∫ ⊕

Y

M dµ(y)

since the right hand side is a von Neumann algebra which contains L∞ ⊗ 1 =∫⊕

Y
C dµ(y) and 1 ⊗M. Applying this observation to M ′ we see that

(L∞(Y, µ)⊗M)′ = L∞(Y, µ)⊗M ′ ⊆

∫

Y

M ′ dµ(y) =

(∫

Y

M dµ(y)

)′

and taking commutants in this equation completes the proof.
�

We are in position to prove the main theorem of this section, namely that every
von Neumann algebra is a direct integral of factors. Before we do so, we will show
that the von Neumann algebra structure of a direct integral does not depend upon
the field of Hilbert spaces it is represented on, but only on (almost every) the von
Neumann algebras we are integrating. To do this we will need a few preliminary
results.

Proposition 3.1.8. Let µ be a Radon measure on a second countable locally com-
pact Hausdorff space Y, and let (My, Hy), (Ny, Ky) be two measurable fields of von
Neumann algebras over Y , and let

M =

∫ ⊕

Y

My dµ(y), N =

∫ ⊕

Y

Ny dµ(y).
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If πy : My → Ny are normal ∗-homomorphisms such that for every a ∈ M, we
have that y → πy(a(y)) is in N, then π : M → N defined by π(b)(y) = πy(a(y)) is
a normal ∗-homomorphism, which we will denote by

∫ ⊕

Y

πy dµ(y).

Furthermore π is injective if almost every πy, and π is surjective if almost every πy

is.

Proof. To prove that π is normal, we have to show that for all φ ∈ N∗ we have

that φ ◦π ∈M∗. Fix φ ∈ N∗ and write φ =
∫ ⊕

Y
φy dµ(y) by Theorem 3.1.6. In order

to show that φ ◦ π ∈ M∗, we have to show that ker(φ ◦ π) is weak∗ closed, by the

Krein-Smulian Theorem we have to show that ker(φ ◦ π) ∩B(0, 1) is weak∗ closed.

So we need to show that ker(φ◦π)∩B(0, 1) is weak operator topology closed. Since
M has seperable predual, its weak∗ topology is metrizable on bounded sets, so we
need to show that if an ∈ ker(φ◦π)∩B(0, 1) and an → a in the weak∗ topology, then

a ∈ ker(φ ◦ π) ∩B(0, 1). Note that ‖a‖ ≤ 1, so that ‖a(y)‖ ≤ 1 almost everywhere,
and since πy is contractive we have that ‖πy(a(y))‖ ≤ 1 almost everywhere. Since
πy is weak∗ continuous for each y, the dominated convergence theorem implies that

φ(a) =

∫

Y

φy(a(y)) dµ(y) = lim
n→∞

∫

Y

φyan(y) dµ(y) = 0.

Thus a ∈ ker(φ ◦ π) ∩B(0, 1) and the proof is complete.

For the last two assertions, first note that π∗φ =
∫ ⊕

Y
(πy)∗φy dµ(y) for all φ =∫⊕

Y
Ny dµ(y) ∈ N∗. Suppose πy is surjective for almost every y. Since π : M → N is

a normal ∗-homomorphism, we have that π(M) is a von Neumann algebra, so we
need to show that π(M) is weak∗ dense in N. So by the Hahn-Banach theorem we
have to show that if φ ∈ N∗ is such that φ = 0 on π(M), then φ = 0. Given φ ∈M∗

as such that φ = 0 on M, write φ =
∫ ⊕

Y Ny dµ(y), and set ψy = (πy)∗φy so that
ψ = π∗φ = 0, thus

0 =

∫

Y

‖ψy‖ dµ(y).

Thus ψy = 0 almost everywhere, but since πy is surjective almost everywhere this
implies that φy = 0 almost everywhere, i.e. that φ = 0.

The injectivity is easier, since πy is isometric almost everywhere we have that

‖π(a)‖ = ‖‖π(ay)‖‖L∞(Y ) = ‖‖ay‖‖L∞(Y ) = ‖a‖.

�

Theorem 3.1.9. Let µ be a Radon measure on a second countable locally com-
pact Hausdorff space Y, and let (My, Hy), (Ny, Ky) be two measurable fields of von
Neumann algebras over Y . Set

H =

∫ ⊕

Y

H dµ(y),M =

∫ ⊕

Y

My dµ(y)

K =

∫ ⊕

Y

K dµ(y), N =

∫ ⊕

Y

Ny dµ(y).

Suppose that (My , Hy), (Ny, Ky) are unitary equivalent for almost every y. Then
there are unitary Uy : Hy → Ky for almost every y, such that for all ξ ∈ H, η ∈ K
we have y → Uyξ(y) ∈ K, y → U(y)η(y) ∈ H, and UyMyU

∗
y = Ny for almost every
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y. Thus U =
∫⊕

Y
Uy dµ(y) implements a unitary equivalence between (M,H) and

(N,K).

Proof. By decomposing into direct sums, we may assume that y → My, y → Ny

are Borel and that Hy = H,Ky = K are fixed separable Hilbert spaces for each y.
Let an(y), bn(y) be Borel operator fields which generate My, Ny for every y. Let

X =

∞⋂

n=1

{(y, U) : U : H → K unitary and U∗bn(y)U ∈ Ny , Uan(y)U∗ ∈My}

since the unitary operators from H to K are strong∗-closed we have by Proposition
3.1.2 that X is a Borel set. So if π1 : X → Y is projection to the first axis, then
π1(X) is conull and analytic. Thus by Theorem 4.1.33 we can find φ : Y → X
universally measurable such that π1 ◦ φ = Id . Let U : Y → U(H,K) be such that
φ(y) = (y, U(y)). By construction

U(y)∗NyU(y) ⊆My

U(y)∗MyU(y) ⊆ Ny

so U(y) has the desired properties. �

Theorem 3.1.10. Let µ be a Radon measure on a second countable locally com-
pact Hausdorff space Y, and let (My, Hy), (Ny, Ky) be two measurable fields of von
Neumann algebras over Y , set

M =

∫ ⊕

Y

My dµ(y), N =

∫ ⊕

Y

Ny dµ(y).

Suppose My
∼= Ny for almost every y. Then there are normal ∗-isomorphism

πy : My → Ny, defined for almost every y, such that y → πy(a(y)) ∈ N for all

a ∈M. Thus π =
∫ ⊕

Y
πy dµ(y) is an isomorphism between M and N.

Proof. As in the proceeding proof we may assume that Hy = H,Ky = K are
fixed separable Hilbert spaces and that y → My, Ny are Borel. By the essential
uniqueness of a representation of a von Neumann algebra, we have that for almost
every y, there is a a projection py ∈ M ′

y ⊗ B(l2(N)) and a unitary Uy : py(H ⊗

l2(N)) → K, such that Uy(py(My⊗C)py)U
∗
y = Ny , (py(My⊗C)py) = U∗

yNyUy. We
will apply the measurable selection theorem as in the last theorem, but the one
trick is to choose py measurably so that

My → py(My ⊗ C)py

is an isomorphism for almost every y. However My → py(My ⊗ C)py is an isomor-
phism for almost every y, if and only if its adjoint is isometric on (py(My ⊗ C)py).
Thus we first show that we can choose a sequence φn : Y → B(H)∗ which are Borel
and such that φn(y)

∣∣
py(My⊗C)py

are norm dense in (py(My⊗C)py)∗ for almost every
y.

Let φn ∈ B(H ⊗ l2(N))∗ be a norm dense sequence.
Let an(y), bn(y) be Borel operator fields which are weak∗ dense in the unit ball

of My, Ny for every y. Set X to be the set of (y, v, p) ∈ Y × B(H ⊗ l2(N), K) ×
B(H ⊗ l2(N)) such that

(a) p is a projection in M ′
y ⊗B(l2(N)

(b) v∗v = p, vv∗ = 1
(c) v∗bn(y)v ∈ p(My⊗C)p
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(d) vp(an(y) ⊗ 1)v∗ ∈ Ny

(e) ‖pφn(y)p
∣∣
p(My⊗C)p

‖ = ‖φn(y)
∣∣
My⊗C

‖

(f) (φn(y) ⊗ 1)
∣∣
My⊗C

= pψp for some ψ ∈ (p(M ⊗ C)p)∗. where pψp is defined

by

(pψp)(x) = ψ(pxp).

Let X0 be the set of all (y, p, v) satisfying (a) − (e) Since

‖φn(y)
∣∣
p(My⊗C)p

‖ = sup
n

‖φn(y)(p(an(y) ⊗ 1)p)‖

we see as in the previous theorem that X is Borel. Since

X =

∞⋂

n=1

∞⋂

m=1

∞⋃

j=1

{(y, v, p) : ‖(pφj(y)p)
∣∣
My⊗C

− (φn(y))
∣∣
My⊗C

‖ < 1/m}, 7

the same logic as above shows that X is Borel. As in the previous theorem, if
π1 : X → Y is the projection onto the first axis, then π1(X) is analytic and conull,
and we can use the measurable selection theorem to find

p : Y → B(H ⊗ l2(N))v : Y → B(H ⊗ l2(N), K)

such that

p(y) ∈M ′
y ⊗ B(l2(N))is a projection,

v(y)∗v(y) = p, v(y)v(y)∗ = 1

v∗(y)Nyv(y) ⊆ p(My⊗C)p

v(y)(p(y)(My⊗C)p(y))v(y)∗ ⊆ Ny

‖p(y)φp(y)
∣∣
p(y)(My⊗C)p(y)

‖ = ‖φ
∣∣
My⊗C

‖.

Thus

πy(x) = v(y)(p(y)(x ⊗ 1)p(y))v(y)∗

has the desired properties.
�

Theorem 3.1.11. Let A be a separable C∗-algebra, and let π : A → B(H) be a
non-degenerate representation, with H separable. Let B ⊆ π(A)′ be any abelian
subalgebra and write B ∼= L∞(Y, µ) with Y compact Hausdorff and µ a finite Borel
measure on Y. Then, there is a measurable field over Y of representations πy of A,

on Hy and a unitary U : H →
∫ ⊕

Y
Hy dµ(y) such that

UπU∗ =

∫ ⊕

Y

πy dµ(y).

UAU∗ =

∫ ⊕

Y

C dµ(y).

Further B is a maximal abelian subalgebra of π(A)′ if and only if πy is irreducible
for almost every y. In particular, every nondegenerate representation of A is a
direct integral of irreducible representations. Thus, every unitary representation of
a locally compact group is a direct integral of irreducible representations.

7Here it is crucial that (e) guarantees that φ → pφp is isometric. Note that this extra condition

just says that the image of the map (p(My ⊗ C)p)∗ → (My)∗ is dense.
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Proof. The existence of the disintegration follows form Theorems 2.1.10 and 2.2.4.
Thus we focus on equivalence of B being maximal abelian and πy being irreducible
for almost every y.

First let us establish that {y : πy is irreducible} is measurable. By applying
Theorem 2.1.9, we see that we may assume that there is a partition Yn, n ∈ N∪{∞}
such that Hy = Cn (C∞ = l2(N)) for y ∈ Cn. Modifying πy on a measure zero set
we may assume that y → πy(a) is strongly∗ Borel for y ∈ Yn, and for all n (see
Lemma 2.2.8). Let ak be a dense sequence in A, and ξn a dense sequence in H,
then

Xn = {(y, T ) ∈ Yn × B(H) : ‖T‖ = 1, T ∈ πy(A)′, T /∈ C1} =
∞⋂

k=1

{(y, T ) ∈ Yn ×B(H) : ‖T‖ = 1, [an(y), T ] = 0} ∩ Yn × [(B(H) ∩B(0, 1)) \ C1].

is a Borel set. If π1 : Xn → Y, π2 : Xn → B(H) are the projections we see that

π1(Xn) = {y ∈ Yn : πy is not irreducible }

and this set is analytic, so our claim follows. Throughout the rest of the proof we
will assume that Yn is partitioned as above and we will use the notation we just
established.

Suppose that there is a positive measure set of y on which πy is not irreducible.
Then for some n, we have that µ(π1(Xn)) > 0, fix such an n. By Theorem 4.1.33
we may find a φ : π1(Xn) → Xn, universally measurable and such that π1 ◦φ = Id .
Let T (y) = χπ1(Xn)π2 ◦φ, then T (y) is a decomposable operator in π(A)′, thus T (y)
commutes with ∫ ⊕

Y

C dµ(y) = B

but is not in B, by construction. Thus B is not maximal abelian.
Conversely, suppose that B is not maximal abelian, and let T ∈ B′ \B. Since B

is the diagonal algebra relative to the decomposition
∫ ⊕

Y Hy dµ(y), Theorem 2.2.4
implies that we can write

T =

∫

Y

Ty dµ(y).

We claim that {y : Ty /∈ C1} is measurable. As above we may assume that y → Ty

is Borel for y ∈ Yn. Then

{y : Ty ∈ C1}

is the projection to the first axis of the Borel set
∞⋃

n=1

{(y, λ) ∈ Yn × λ : Ty = λ},

and is thus analytic, in particular measurable. Since T /∈
∫⊕

Y
Ty dµ(y) we must have

that

µ({y : Ty /∈ C1}) > 0.

But then for almost every y in {y : Ty /∈ C1} we have that Ty ∈ πy(A)′. Thus we
have found a positive measure set on which πy(A)′ is not irreducible.

�

Theorem 3.1.12 (The Factor Decomposition). Every von Neumann algebra with
separable predual is a direct integral of factors.
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Proof. Let M be a von Neumann algebra with separable predual, and represent M
faithfully on a separable Hilbert space H. Let A be a separable unital weak∗ dense
C∗-subalgebra of M (with the same unit) and let an be a dense sequence in A. 8

By the preceding corollary we can write H =
∫ ⊕

Y
Hy dµ(y) in such a way that

Z(M) =

∫ ⊕

Y

C dµ(y)

and the identity representation of A decomposes

Id =

∫ ⊕

Y

πy dµ(y).

Set My = πy(A)′′. Then

M = A′′ ⊆

∫ ⊕

Y

πy(A)′′ dµ(y),

by Theorem 3.1.5. However if T =
∫ ⊕

Y
Ty dµ(y) ∈

∫⊕

Y
πy(A)′′ dµ(y) and S ∈ A′,

then since A′′ ⊇ Z(M), we see that S ∈ Z(M)′. Since Z(M) is the diagonal

algebra, we can write S =
∫ ⊕

Y Sy dµ(y), by Theorem 2.2.4. Since S ∈ π(A)′, we
have [S, an] = 0 for all n, so [S(y), an(y)] = 0 for almost every y. Thus Sy ∈ πy(A)′

almost everywhere and thus [Ty, Sy] = 0 almost everywhere. So [T, S] = 0. Thus
T ∈ A′′, therefore

M = A′′ =

∫ ⊕

Y

πy(A)′′ dµ(y).

Thus, by Theorem 3.1.5
∫ ⊕

Y

C dµ(y) = Z(M) = M ∩M ′ =

∫ ⊕

Y

My ∩M ′
y dµ(y),

so My ∩M ′
y = C almost everywhere. That is, My is a factor for almost every y.

�

3.2. Direct Integrals and Type Classification. In this section we show that a

direct integral
∫ ⊕

Y
My dµ(y) is type I (resp. II,resp. III) if and only if almost every

My is I (resp.II,resp.III). We similarly show that
∫

Y
My dµ(y) is finite if and only

if My is finite almost everywhere, which also establishes the analogous claims for
types II1, II∞. To do this we shall use the measurable selection Theorem (Theorem
4.1.33) about (1000)! times. We first start with a few simple results.

Proposition 3.2.1. Let µ be a Radon measure on a second countable locally com-
pact Hausdorff space Y, and let My be a measurable field of von Neumann algebras

over Y, and let M =
∫ ⊕

Y
My dµ(y).

(i) Two projections p, q are equivalent if and only if, for almost every y we have
p(y) is equivalent to q(y).

(ii) M is finite if and only if My is finite for almost every y.

8For existence of such an A, note that since M∗ is separable we can find an ∈ M such that for
all φ ∈ M∗ we have φ(an) 6= 0 for some n. Then by the Hahn-Banach theorem, the linear span of

an is weak∗ dense. Now let A = C∗({an : n ∈ N},1).
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Proof. (i) Suppose v ∈ M and v∗v = p, vv∗ = q, v ∈ M it the follows that
v(y)∗v(y) = p(y), v(y)v(y)∗ = q(y) for almost every y. Thus p(y) is equivalent
to q(y) for almost every y. For the converse, by applying Theorem 2.1.9 and work-
ing on each direct summand, we may assume that My is represented on a fixed
separable Hilbert space H for each y. Modifying p, q on null sets we may assume
that y → p(y), q(y) are strongly∗ Borel and that p(y), q(y) are projections for every
y. Let

X = {(y, v) ∈ Y × B(H) : v ∈ My, v
∗v = p(y), vv∗ = q(y)}

since v∗v = p(y), vv∗ = q(y) implies that ‖v‖ ≤ 1, and x → x∗x is a Borel map
on {x : ‖x‖ ≤ 1} we see by Proposition 3.1.2 that X is a Borel set. If π1 is the
projection onto the first coordinate we have that π1(X) is analytic and conull by
assumption. By the measurable selection theorem we can find universally measur-
able map v : π1(X) → {T ∈ B(H) : ‖T‖ ≤ 1} such that (y, v(y)) ∈ X for all y.
Then v ∈ M and implements the equivalence between p(y) and q(y) for almost
every y.

(ii) If My is finite almost everywhere, it is easy to see from (i) that M is finite.
Conversely, suppose that M is finite, then since Y is second countable we have that∫
Y
Hy dµ(y) is separable we have that M∗ is separable. Because M∗ is separable

and M is finite, we can find a faithful finite normal trace

τ : M → C.

By Theorem 3.1.5 we can write τ =
∫ ⊕

Y
τy dµ(y). Let an(y) be a weak∗ dense

sequence of measurable fields of operators in M. If E ⊆ Y is measurable we have
that∫

E

τy(an(y)am(y)) dµ(y) = τ (χEanam) = τ (amanχE) =

∫

E

τy(am(y)an(y)) dµ(y)

thus τy(an(y)am(y)) = τy(am(y)an(y)) for almost every y. Taking a countable
intersection of conull sets we see that we may assume that τy(an(y)am(y)) =
τy(am(y)an(y)) for every y and every n,m. By the weak∗ density of an(y), am(y)
and the normality of τy we see that τy is a trace for every y. It is also faithful for
almost every y, by Theorem 3.1.6. Thus for almost every y, we have that τy is a
faithful finite normal trace, and thus My is finite.

�

Corollary 3.2.2. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let My be a measurable field of von Neumann algebras over

Y, and let M =
∫⊕

Y
My dµ(y). Then M is properly infinite if and only if My is

properly infinite for almost every y.

Proof. Suppose My is properly infinite for almost every y. Let z ∈ M be a central
projection such that zM is finite. Then by the above proposition we have that z(y)
is finite for almost every y. Since My is properly infinite for almost every y, this
implies that z(y) = 0 for almost every y, i.e. that z = 0 and M is properly infinite.

Conversely, suppose that M is properly infinite. Working on direct summands,
we may assume that each My is represented on a fixed separable Hilbert space
H and that y → My is Borel. Note that My is not properly infinite if and only
if there exists z ∈ Z(My) and τ : zMy → C a nonzero trace. Indeed if τ, z as
above exists, then {x ∈ My : τ (x∗x) = 0} is a weak∗ closed two-sided ideal in
zMy, so equals zoMy for z0 ≤ z, z0 ∈ Z(M). Thus 1 − z0 is a nonzero central
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finite projection, and thus My is not properly infinite. Thus let X be the set of all
(y, z, φ) ∈ Y ×B(H) × B(H)∗ such that

z ∈ Z(My), z a projection

φ
∣∣
zMy

is a tracial state.

We claim that X is Borel, since the set of projections in B(H) is a Borel subset of
{T ∈ B(H) : ‖T‖ ≤ 1}, and the proof in Proposition 3.1.2 establishes that

{(y, q, φ) : q a projectionφ
∣∣
qMyq

is a trace }

is Borel, we only need to show that {(y, z) : z ∈ Z(My)} is Borel, and that the set
of all

{(y, q, φ) : q a projection φ
∣∣
qMyq

is a state

are Borel. If bn(y) are strongly∗ Borel, closed under multiplication, addition, ad-

joints and scaling by elements in Q[i], are such that My = {bn(y) : n ∈ N}
SOT

, then
the two sets in question are

{(y, z) : z ∈ Z(My)} =

∞⋂

n=1

{(y, z) : zbn(y) = bn(y)z}

∞⋂

n=1

{(y, q, φ) : q is a projection , φ(qbn(y)∗qbn(y)q) ≥ 0, φ(q) = 1}

and are thus Borel. So X is Borel, if π1 : X → Y is the projection onto the first
axis, then

π1(X) = {y : My is not properly infinite}

is thus analytic.
Thus by the measurable selection theorem, we can find universally measurable

z : Y → B(H), τ : Y → B(H)∗ such that (y, z(y), τ (y)) ∈ X for all y ∈ π1(X). If
we let f ∈ L1(Y, µ) with f(y) > 0 for all y, then τf gives a faithful trace on zM.
Thus z = 0, i.e. z(y) = 0 almost everywhere so π1(X) is null and this completes
the proof.

�

Theorem 3.2.3. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let My be a measurable field of von Neumann algebras over

Y, and let M =
∫ ⊕

Y
My dµ(y). Then M is semifinite if and only if My is semifinite

for almost every y.

Proof. Suppose that M is semifinite, since M is semifinite and has seperable pre-
dual, we can find pn ∈ M such that pn ↗ 1, and pnMpn is finite. Then pn(y) is
increasing for almost every y, and it easy to see that for almost every y,

1 = (sup pn)(y) = sup(pn(y))

so that pn(y) ↗ 1 for almost every y. By the above proposition we have that
pn(y)Mypn(y) is finite for almost every y. Since pn(y) ↗ 1 for almost every y, this
implies that My is finite for almost every y.

Conversely, suppose that My is semifinite for almost every y. Applying Theorem
2.1.9 we see that we may assume that My is each represented on a fixed separable
Hilbert space H, and we may also assume that y → My is Borel. Note that a von
Neumann algebra N is semifinite if and only if for every projection p ∈ N, we have
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that there is a projection q ≤ p and a nonzero normal trace τ : qNq → C. Indeed
if J = {x ∈ qNq : τ (x∗x) = 0}, then J is weak∗ closed two-sided ideal in qNq so
is of the form zN for some z ∈ Z(qNq), and 1 − z is a finite projection under q,
and therefore under p. So fix p ∈ M, and represent p by a strongly∗ Borel map
y → p(y). Let X be the set of all (y, q, φ) ∈ Y × B(H) ×B(H)∗ such that

(a) q ∈My, q ≤ p(y), q is a projection
(b) φ

∣∣
qMyq

is a positive trace, φ(q) = 1, we claim that X is Borel. Since the

set of projections in B(H) is a Borel subset of {T ∈ B(H) : ‖T‖ ≤ 1}, and by
Proposition 3.1.2 {(y, q) : q ∈ My} is Borel, and the proof in Proposition 3.1.2

establishes that {(y, q, φ) : φ
∣∣
qMyq

is a trace } is Borel, it remains to establish that

{(y, q) : q ≤ p(y)} is Borel. But {(y, q) : q ≤ p(y)} is the inverse image of B(H)+
under the Borel map (y, q) → p(y)− q, so is Borel. Thus X is Borel. If π1 : X → Y
is the projection onto the first coordinate, then π1(X) ⊇ {y : My is semifinite}
is conull and analytic, and the measurable cross section theorem says we can find
universally measurable maps

q : Y → B(H) \ {0}, τ : Y → B(H)∗

such that (y, q(y), τ (y)) ∈ B(H)∗ for every y ∈ π1(X). Thus q ≤ p is a projection
in M, and if f ∈ L1(Y, µ) with f(y) > 0 for every y, then fτ is a nonzero trace on
qMq. Therefore our earlier remark implies that M is semifinite.

�

Corollary 3.2.4. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let My be a measurable field of von Neumann algebras over

Y, and let M =
∫⊕

Y My dµ(y). Then M is type III if and only if My is type III for
almost every y.

Proof. If M is not type III, then we can z ∈ Z(M)\{0} such that zM is semifinite.
As

zM =

∫ ⊕

Y

z(y)My dµ(y)

the previous theorem implies that z(y)My is semifinite for almost every y. Since
z 6= 0, we have that z(y) 6= 0 for a positive measure set of y, but then we can find
some y such that My is type III and z(y) 6= 0, which is a contradiction.

Conversely, suppose M is type III. As before, we may assume that My is rep-
resented on a fixed separable Hilbert space H and that y → My is Borel. Sup-
pose that it is not the case that My is type III for almost every y. As in the
above theorem, let X be the set of all (y, p, φ) ∈ Y × B(H) × B(H)∗ such that
p is a projection in My, and φ

∣∣
pMyp

is a positive trace and φ(p) = 1. As in

the last theorem π1(X) = {y : My is not type III} is analytic, and we can find
p : π1(X) → B(H) \ {0}, τ : π1(X) → B(H)∗ such that (y, p(y), τ (y)) ∈ X. By as-
sumption µ(π1(X)) > 0, and arguing as in the above theorem we see that we can
find a nonzero trace on pMp. This contradicts the assumption that M is type III.

�

Theorem 3.2.5. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let My be a measurable field of von Neumann algebras over

Y, and let M =
∫ ⊕

Y
My dµ(y). Then M is type II if and only if My is type II for

almost every y.



DIRECT INTEGRALS OF HILBERT SPACES AND VON NEUMANN ALGEBRAS 41

Proof. Suppose first that My is type II for almost every y. Let p ∈M be an abelian
projection. Then we have that

∫ ⊕

Y

p(y)Myp(y) dµ(y) = pMp ⊆ (pMp)′ = pM ′p =

∫ ⊕

Y

p(y)M ′p(y) dµ(y).

Thus by Theorem 3.1.5 we have that p(y)Myp(y) ⊆ p(y)M ′p(y) almost everywhere,
i.e. p(y) is abelian for almost every y. Since My is type II almost everywhere, this
implies that p(y) = 0 for almost every y.

Conversely, suppose that M is type II. As usual by working on direct summands
we may assume that My is represented on a fixed separable Hilbert space H and
that y →My is Borel. Let

X = {(y, p) ∈ Y × B(H) : p ∈My, p is a projection and pMyp is abelian}

we claim that X is a Borel. Since we have already seen (see Proposition 3.1.2) that

{(y, p) ∈ Y × (B(H) \ {0}) : p ∈My, p is projection }

it remains to show that

{(y, p) : pMyp is abelian }

is Borel. But if an(y) are strongly∗ Borel maps such thatMy = Span{an(y) : n ∈ N}
SOT

for every y, then

{(y, p) : pMyp is abelian } =
⋂

n,m

{(y, p) : pan(y)pam(y)p = pam(y)pan(y)p}

and is Borel, since (y, p) → p, (y, p) → an(y) are Borel. If π1 is projection to the
first coordinate, then

π1(X) = {y : My is not type II}

is analytic, and the measurable selection theorem implies that we can find p : Y →
B(H) \ {0} universally measurable such that (y, p(y)) ∈ X for every y. Thus
χπ1(X)p ∈ M is an abelian projection, and we must have that p = 0, i.e. that
p(y) = 0 almost everywhere. Since p(y) 6= 0 for all y ∈ π1(X) this is only possibly
when µ(π1(X)) = 0. Therefore My is type II almost everywhere.

�

Theorem 3.2.6. Let M be a von Neumann algebra with seperable predual and by
Theorem 3.1.12 write

M =

∫

Y

My dµ(y)

with My factors, and Y a second countable locally compact Hausdorff space and µ
a finite measure on Y which is nonzero on all nonempty open sets. Then

EI = {y : My is type I}

EII = {y : My is type II}

EIII = {y : My is type III}

are measurable sets and

zI = χEI

zII = χEII

zIII = χEIII
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are such that

zIM is type I

zIIM is type II

zIIIM is type III.

A similar remark applies to EII1 = {y : My is type II1 }, EI∞ = {y : My is type II∞}.
In particular, every von Neumann algebra with separable predual of type I (resp.
I∞, II1 , II∞, III), is a direct integral of factors of type I,( resp. I∞, II1, II∞,
III).

Proof. We know that we can find some zI , zII , zIII central projections such that

1 = zI + zII + zIII

and

zIM, zIIM, zIIIM are of types I, II, III respectively.

Since zI , zII, zIII are central they must be in
∫⊕

Y
C dµ(y), and so must be char-

acteristic functions of sets, say FI , FII, FIII. All we have to argue is that zII =
χEII

, zIII = χEIII
almost everywhere. By Corollary 3.2.4 and Theorem 3.2.5 we

have that for almost every y ∈ FIII (resp. FII) we have that My is type III (resp.
II). Moreover by Theorem 3.2.3 we have that for almost every y ∈ FII∪FI that My

is semifinite, i.e. not of type III, so µ(EIII∩(FI∪FII)) = 0 and µ(FIII\(EIII) = 0.
Thus FIII = EIII almost everywhere. Similarly, by Theorem 3.2.5 we have that
µ(FI ∪FIII ∩EII) = 0, and we already saw that µ(FII \EII) = 0. Thus FII = EII

almost everywhere, this completes the proof. �

Corollary 3.2.7. Let M be a type I von Neumann algebra with separable predual,
then

M ∼= L∞(X0 , µ0)⊗B(l2(N)) ⊕∞
n=1 L

∞(Xn, µn)⊗Mn(C),

with µ0 a Radon probability measure on X0 which is positive on all nonempty open
sets.

Proof. Write

M =

∫ ⊕

Y

My dµ(y)

withMy factors and the usual assumptions on Y. Then E = {y : My is isomorphic to B(l2(N))}
is measurable by the above proposition and

M ∼=

∫ ⊕

E

My dµ(y) ⊕

∫ ⊕

Ec

My dµ(y) ∼=

L∞(E, µ)⊗B(l2(N)) ⊕

∫ ⊕

Ec

My dµ(y).

Being an abelian von Neumann algebra with separable predual, we may write
L∞(E, µ) ∼= L∞(X0, µ0) with X0, µ0 as in the statement of the proposition. By
similar logic, it suffices to show that

{y : dimMy = n2}

is measurable for n ∈ N. First note that if τy is the unique tracial state on N = My

for y ∈ Ec, then y → τy(a(y)) is measurable for all a ∈
∫ ⊕

Ec My dµ(y). Indeed,
since N is finite by Proposition 3.2.1, it has a faithful normal tracial state. By
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Theorem 3.1.6, we may find a measurable field of faithful tracial states φy such

that τ =
∫ ⊕

Y
φy dµ(y), in particular φy(1) > 0 almost everywhere. By uniqueness,

τy =
φy

φy(1)

and this establishes the measurability of τy. Using the elements of M (and regarding
My = L2(My, τy) by finite dimensionality) as sections, we have that L2(My, τy) is
a measurable field of Hilbert spaces over Ec. By what we know about measurable
fields of Hilbert spaces,

dimL2(My, τy) = dimMy

is a measurable function. �

Theorem 3.2.8. Let µ be a Radon measure on a second countable locally compact
Hausdorff space Y, and let My be a measurable field of von Neumann algebras over

Y, and let M =
∫ ⊕

Y
My dµ(y). Then M is type I if and only if My is type I for

almost every y.

Proof. Suppose thatMy is type II1 for almost every y.Working on direct summands
as before, we may assume that My is represented on a fixed separable Hilbert space
H for each y, and that y → My is Borel. Let z′ ∈ M be a central projection, and
choose a measure zero modification z(y) such that y → z(y) is Borel and z(y) is a
projection for every y. If bn(y) are Borel fields which generate My for every y, and
such that bn(y) = bn(y)∗, then

{y : z(y) ∈ Z(My)} =

∞⋂

n=1

{y : z(y)bn(y) = bn(y)z(y)}

and is thus Borel. So we may insist that z(y) ∈ Z(My) for every y.

X = {(y, p) ∈ Y×B(H)\{0} : p is a projection, p ≤ z(y), p ∈My, pMyp is abelian }

as in the previous theorem, we have that X is Borel. If π1 is the projection onto the
first axis, then π1(X) ⊇ {y : My is type I} is conull and analytic. The measurable
selection theorem implies we can find p : π1(X) → M such that (y, p(y)) ∈ X for
all y. Then p ∈ M is a nonzero abelian projection under z, and thus M is type I.

Conversely, suppose M is type I. Because M is type I and with separable pred-
ual, we may assume by the previous corollary that

M = L∞(X0, µ0)⊗Mn(C)

∞⊕

n=1

L∞(Xn, µn)⊗Mn(C)

with Xn a compact metric space and µn a Borel probability measure on Xn

which is positive on all nonempty open sets. If we let zn be such that znM =
L∞(Xn, µn)⊗Mn(C), (withM∞(C) = B(l2(N))), then it suffices to show that znMy

is type I for almost every y. Thus we may assume that

M = L∞(X, ν)⊗Mn(C)

where X is a compact metric space and ν is a Borel probability measure on X
which is positive on nonempty open sets. Write

1 ⊗ ei =

∫ ⊕

Y

pi(y) dµ(y).
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Then Proposition 3.2.1 implies that for almost every y, pi(y) ∼ pj(y) for all i, j.
Also, as in the last Theorem we have that pi(y) is abelian for almost every y. Thus
for almost every y we can write

1 =
∑

i

pi(y), pi(y) ∼ pj(y) and pi(y) is abelian.

This last equation implies that

My
∼= p1Mp1⊗Mn(C)

and since p1Mp1 is abelian for almost every y, this last equation implies that My

is type I for almost every y.
�

4. Appendix: Polish Spaces and Measurable Selection

In the study of Direct Integrals, we frequently have to appeal to “measurable
selection” theorems. A typical example is that of direct integrals of representations,
if πy, ρy are measurable fields of representations of a C∗-algebra such that πy

∼= ρy

for almost every y, we would like to assert that
∫ ⊕

πy
∼=
∫⊕

ρy . This is indeed true
(if the C∗-algebra is separable), but in order to prove one cannot arbitrarily choose
a unitary equivalence for each point, one needs to know that we can measurable
choose a unitarily equivalence at each point. Similarly if have a direct integral of

Von Neumann algebra M =
∫ ⊕

Y My dµ(y), and two projections p, q ∈ M such that
py is Murray-von Neumann equivalent to qy for almost every y, we would like to
assert that p is equivalent to q. Similar remarks apply if we know that almost every
My has a faithful trace, or is type I, II, III, etc. In this section we develop the
necessary machinery to prove such a measurable selection theorem. This theorem
belongs more to the field of descriptive set theory than to operator algebras, so
we will have to develop some theory about Polish spaces, standard Borel spaces,
analytic sets and so on. This may seem somewhat separated from our goal of
studying direct integrals of Hilbert spaces and von Neumann algebras, but it will
get us the theorem that we need.

Definition 4.1.9. A topological space X is called a Polish space if it is separable
and there is a metric d on X, which gives the topology of X and such that (X, d)
is a complete metric space

Definition 4.1.10. A measurable space is a set X equipped with a σ-algebra M.
A measurable space is said to be a standard Borel spaceif there is a Polish topology
on X such that M is the set of Borel subsets of X with respect to this topology

Definition 4.1.11. A measure space (X,Mµ) is called a standard measure space
if there is null set N ⊆ X and a σ-algebra M0 on X such that (X \ N,M0

∣∣
X\N

)

is a standard Borel space and M0 ⊆ M ⊆ M0. Here M0 is the completion of M0

with respect to µ.

One might wonder why we make this definition a Polish space, and not just
declare a Polish space to be a separable complete metric space. There are two main
reasons, one is that we do not want to think about properties that depend on the
metric in question, but will only be concerend with properties that depend upon the
topology in questions. Indeed, we are going to be mainly concerned with properties
that only depend upon the Borel sets in question. So we will primarily work with
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Borel set, Borel functions, etc. and not so much with continuous functions, open
set, closed sets and so on. The second reason, is that the notion of a Polish space
abstracts the notion of a complete metric space and this becomes important when
talking about subspaces. For example, we will show that a subset of a Polish space
is a Polish space if and only if it is a Gδ set, whereas a subset of a complete metric
space is a complete metric space if and only if it is a closed set. For example, this
implies that the irrationals are a Polish space, whereas no one would claim that the
irrationals are a complete metric space.

We first prove a theorem which gives the most important examples of Polish
spaces, one which can surject onto every Polish space, and one in which every Polish
space embeds. Note that if (Xn, dn) are metric spaces with then so isX =

∏∞
n=1Xn

with metric

d((xn), (yn)) =

∞∑

n=1

1

2n

dn(xn, yn)

1 + d(xn, yn)

it is a standard exercise to show that d gives the product topology and is com-
plete/separable if each (Xn, dn) is complete/separable. In particular, countable
products of Polish spaces are Polish. For later use, we also note that we can give
the disjoint union

∞∐

n=1

Xn

the metric

d(x, y) =

{
dn(x,y)

1+dn(x,y) if x, y ∈ Xn

1otherwise
.

In this case
∐∞

n=1Xn is complete and separable if each (Xn, dn) is. So disjoint
unions of Polish spaces are Polish spaces.

Theorem 4.1.12. Every Polish space has a homeomorphic embedding into [0, 1]N,
and is the image of a continuous map from NN.

Proof. Let X be a Polish space with compatible complete metric d. Let xn be a
dense sequence in X and define

φ : X → [0, 1]N

by φ(x) =
(

d(xn,x
1+d(xn,x)

)∞
n=1

, note that φ is continuous, since each of its coordinates

functions is. We claim that φ is injective and a homeomorphism onto is image. If
x 6= y in X, then sinc {xn}

∞
n=1 is dense, we can find an n such that d(xn, x) 6=

d(xn, y). Since x → x
1+x

is injective (if you don’t believe me, take a derivative)

we find have that (φ(x))n 6= (φ(y)))n , and φ is injective. To show that φ is a

homeomorphism onto its image, suppose that φ(x(n)) → φ(y), then (φ(x(n)))k →
(φ(y))k for each k, i.e.

d(xk, x
(n))

1 + d(xk, x(n))
→n→∞

d(xk, y)

1 + d(xk, y)

for each k. Since x → x/1 + x is a homeomorphism on [0,∞) this implies that
d(xk, x

(n)) →n→∞ d(xk, y) for all k. Fix ε > 0 and choose k such that d(xk, y) < ε,
then for all n large we have d(xk, x

(n)) < ε and thus d(x(n), y) < 2ε by the triangle

inequality. Thus x(n) → y and we have that φ is a homeomorphism onto its image.
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For the other part, we set up some notation. If σ = (a1, . . . , ak) is a finite
sequence of positive integers we let |σ| = k, and σl = (a1, . . . , ak, l). For each finite
sequence σ of positive integers we will construct non-empty open sets Uσ with
satisfy the following properties:

(i) diam(Uσ) = sup{d(x, y) : x, y ∈ Uσ} ≤ 1
|σ|
,

(ii) Uσ =
⋃∞

n=1 Uσn.
(iii)U∅ = X, i.e. we requrie that

⋃∞
n=1Un = X.

Set U∅ = X. Suppose we have constructed Uσ for |σ| ≤ k satsifying (i) and
satisfying (ii) when |σ| < k. For each σ, and x ∈ Uσ we can find a ball of radius
ε(x), which we may assume to have ε(x) < 1

2|σ| such that B(x, ε(x)) ⊆ Uσ . Since

X is a separable metric space, and is thus second countable, we have that Uσ is
second countable, so the cover {B(x, ε(x))} of Uσ has a countable subcover. Thus
we can find (xn)∞n=1 such that B(xn, ε(xn)) cover Uσ . Setting Uσn = B(xn, ε(xn))
completes the inductive step.

If σ = (a1, a2, . . .) ∈ NN we denote σ
∣∣
n

= (a1, . . . , an). Since (X, d) is complete

and diam(U
σ
∣∣

n

) → 0 we can define f : NN → X by saying that f(σ) is the unique

point in

∞⋂

n=1

U
σ
∣∣

n

.

If x ∈ X, then we can find n1 ∈ N such that x ∈ Un1 , then since x ∈ Un1 we
can find n2 such that x ∈ Un2 . Continuing inductively we find σ = (n1, n2, . . .)
with x ∈ U

σ
∣∣

k

for all k and f(σ) = x, thus f is surjective. To see that f is

continuous, let σ ∈ NN, and ε > 0 be given, and choose n such that 1/n < ε.
Let U = {σ′ ∈ NN : σ

∣∣
n

= σ
∣∣
n
}, then U is open by definition of the product

topology. If σ′ ∈ U then since diam(U
σ
∣∣

n

) ≤ 1
n and f(σ), f(σ′) ∈ U

σ
∣∣

n

we have

that d(f(σ), f(σ′)) ≤ 1/n < ε. Thus f is continuous, and the proof is complete.
�

Because of this theorem, we can often reduce question about Polish spaces to
questions about NN, or [0, 1]N. We next characterize when a subset of a Polish space
is Polish.

Theorem 4.1.13. A subset of a Polish space is Polish if and only if it is a Gδ set.

Proof. Let X be a Polish space with compatible complete metric d. Suppose E =⋃∞
n=1 Un with Un open in X, and Un+1 ⊆ Un. Define fn : E → (0,∞) by fn(x) =
1

d(x,Uc
n) . Define φ : E → X × (0,∞)N by φ(x) = (x, f1(x), f2(x), . . .). Note that

(0,∞) is a Polish space, begin homeomorphic to R. All we have to show is that φ is
a homeomorphism onto its image and that φ(E) is closed. It will then follow that E
is homeomorphic to a closed subset of a Polish space, and is thus a Polish space. It
is clear that φ(E) is injective, and that φ is continuous since each of its coordinate
functions is, as φ−1 on φ(E) is just projection onto the first coordinate restricted
to φ(E) it follows that φ−1 is continuous on φ(E). Thus it remains to show that
φ(E) is closed. Suppose φ(x(k)) → y = (y1, t2, t3, . . .) then x(k) → y1, and if we

show that y1 ∈ E, then it follows by continuity of fn that fn(x(k)) → fn(y1) so
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y = φ(y1). So we have to show that y1 ∈ Un for each n. Fix such an n, we have that

1

d(x(k), U c
n)

→k→∞ tn > 0

by assumption. As

d(xk, U
c
n) → d(y, U c

n)

we have that d(y, U c
n) > 0 so y ∈ Un. This proves that E is a Polish space.

Conversely, suppose that E ⊆ X is Polish, and let d0 be a complete compatible
metric on E. Let En be the set of x ∈ E such that there exists an open neighborhoud
U of x with diamd0 (U ∩ E) ≤ 1/n, where diamd0 means the diameter measured
with respect to d0. By definition En is a neighborhood of each of its points and is
thus open, we have that

⋂∞
n=1En ⊇ Y. Suppose x ∈

⋂∞
n=1 En, choose an open set

Un such that Un is a neighborhood of X and diamd0 (Un ∩ E) ≤ 1/n. Replacing
Un with

⋂n
j=1 Uj , we may assume that Un is decreasing. Since E is dense in

E, we have that E ∩ Un 6= ∅ for all n. Thus Un ∩ E are a decreasing sequence
of sets in E whose d0-diameter tends to 0, so by completeness of d0, we have⋂∞

n=1 Un ∩ E = {y} with y ∈ E. But x ∈
⋂∞

n=1Un ∩ E, so x = y ∈ E. Thus⋂∞
n=1 En = {x}. Since eachEn is open inE we can find Vn open so thatEn = Vn∩E,

setting Wm = {x ∈ X : d(x, E) < 1/n} we have that

E =

∞⋂

n=1

Vn ∩E =

∞⋂

n=1

∞⋂

m=1

Vn ∩Wm

and is thus a Gδ set. �

Corollary 4.1.14. A topological space is Polish if and only if it is homeomorphic
to a Gδ subset of [0, 1]N.

Proof. Combine Theorems 4.1.12 and 4.1.13. �

Definition 4.1.15. Let X be a separable metrizable topological space. A set
E ⊆ X is analytic if there exists a Polish space and a continuous f : Y → X such
that f(Y ) = E. A set is coanalytic if its complement is analytic.

By taking a completion, we may as well assume that X is Polish. So we will
often assume that our analytic sets are subsets of Polish spaces. We shall later see
that an analytic set is measurable with respect to any measure on X. It turns out
that not every analytic set is Borel.

Theorem 4.1.16. Let X be a separable space. If (Xn)n∈N are a disjoint family of
analytic sets in X, then there is a disjoint family (Bn)n∈N of Borel subsets of X
such that Xn ⊆ Bn.

Proof. Note that if (An)n∈N, (A
′
n)n∈N are subsets of X such that for all n,m there

is a Borel Bn,m with Bn,m ⊆ An and Bn,m ∩ A′
n = ∅, then there is a Borel B

such that B ⊇
⋂∞

n=1 An and B ∩ (
⋃∞

m=1 A
′
m) = ∅. Indeed, we can set B =⋃∞

n=1 (
⋂∞

m=1 Bnm) .
We first handle the case when (Xn) consists of two sets X1, X2 which are disjoint.

By definition of analytic and Theorem 4.1.12 we can find f : NN → X1, g : NN → X2

which are continuous and surjective. For a finite sequence σ = (n1, . . . , nk) of
integers set

Bσ = {σ′ ∈ NN : σ′
∣∣
k

= σ},
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with the notation as in Theorem 4.1.12. Then, agian using the notation in Theorem
4.1.12, we have

Bσ =

∞⋃

n=1

Bσn .

Set
Aσ = f(Bσ)

A′
σ = g(Bσ).

Assume the claim is false, so that there is no Borel B ⊇ X1 such that B ∩X2 = ∅.
Then by the first paragraph we can find n1, m1 ∈ N so that there is no Borel
B ⊇ An1 such that B ∩ A′

m1
= ∅. By the same logic we can find n2, m2 such

that for all Borel B ⊇ An1,n2 we have B ∩ A′
m1m2

6= ∅. Inductively we construct

σ, σ′ ∈ NN such that for all k we have that if B ⊇ A
σ
∣∣

k

then B ∩ A′

σ′

∣∣
k

6= ∅. Let

x = f(σ) ∈ X1, x
′ = f(σ′) ∈ X2. Since x 6= x′, we can find disjoint open sets

V,W ⊆ X such that x ∈ V, x′ ∈W. Thus f−1(V ), f−1(W ) are open neighborhoods
of σ, σ′ respectively. This implies that we can find k such that

B
σ
∣∣

k

⊆ f−1(V ), B
σ′

∣∣
k

⊆ f−1(W ).

But then
A

σ
∣∣

k

⊆ V, A′

σ′

∣∣
k

⊆W

so that A
σ
∣∣

k

, A′

σ′

∣∣k are seperated by V, which is contrary to our construction. Thus

we can find a Borel B such that X1 ⊆ B and X2 ∩B′ = ∅.
By the above argument, for each n,m we can find a Borel Bnm so thatXn ⊆ Bnm

and Xm ∩Bnm = ∅. Define B1 =
⋂∞

m=2 and define Bn inducitvely by

Bn =

(
∞⋂

m=n+1

Bn,m

)
\




n−1⋃

j=1

Bj


 .

Then Bn is a disjoint sequence of Borel sets such that Xn ⊆ Bn. �

Corollary 4.1.17. If X is a separable metric space, then an analytic set is Borel
if its complement is analytic.

Proof. Suppose A,Ac are analytic. Then by the above we can find disjoint Borel
sets B1, B2 in X such that A ⊆ B1, A

c ⊆ B2 . Since X = A ∪ Ac this implies that
B1 = A,B2 = Ac, thus A is Borel. �

We would like to prove the converse to this corollary, but first we will need a few
lemmas.

Lemma 4.1.18. Let X be a Polish space. There is a Polish space P, with a
countable basis of open and closed sets and a bijective continuous map f : P → X.9

Proof. We do this in the following steps.
(i) If (Xn)n∈N are disjoint Polish subsets of X, and the Lemma is true for Xn,

it is true for
⋃∞

n=1Xn.
10

9Note that we are not asserting that f is a homeomorphism.
10Here, of course

S

∞

n=1
Xn is not necesseraily Polish. So by “the lemma is true for

S

∞

n=1
Xn,”

we simply mean that there is a Polish space, having a countable basis of open and closed sets
which continuously bijects onto

S

∞

n=1
Xn.
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(ii) If the Lemma is true for Polish spaces (Xn)n∈N then it is true for
∏∞

n=1Xn.
(iii) If X is Polish and the Lemma is true forXn ⊆ X, then it is true for

⋂∞
n=1Xn.

(iv) If X is Polish and the Lemma is true for X, then it is true for any open
subset of X.

(v) The Lemma is true for X = [0, 1].
Note that once (ii)− (v) have been established the lemma is proven by Theorem

4.1.12. To prove (i), let Pn be a Polish space with a countable basis of open and
closed sets and φn : Pn → Xn, a continuous bijection. Set P =

∐∞
n=1 Pn and

define φ : P →
⋃∞

n=1Xn by φ
∣∣
Pn

= φn, then P is a Polish space having the desired

property and φ bijects continuously onto
⋃∞

n=1Xn. The proof for (ii) is identical.
To prove (iii) again let Pn be Polish spaces with a countable basis of open and
closed sets and let φn : Pn → P be a continuous bijection. Let P ′ =

∏∞
n=1 Pn and

set

P = {y ∈ P : f1(y1) = f2(y2) = · · · }

then P is a Polish space having the desired property and φ : P →
⋂∞

n=1Xn given
by φ(y) = φ1(y1) is a continuous bijection. For (iv), suppose P is a Polish space
with a countable basis of open and closed sets, and let φ : P → X be a continuous
bijection. If U ⊆ X is open, then P ′ = φ−1(U) ⊆ P is open, hence Polish, and
being open it too has a countable basis of open and closed sets. Further φ

∣∣
P ′

is a
continuous bijection onto U.

Finally we establish (v). Let A be the set of irrationals in [0, 1]. Then A ∩ (r, s)
with r < s rational, is a countable basis of open and closed sets in A. Further [0, 1]
is the union of A and the Q∩ [0, 1] which is a countable disjoint union of one point
sets, so (i) completes the proof. �

We are now ready to prove the converse of Corollary 4.1.17.

Theorem 4.1.19. Let X be a Polish space and B a Borel subset of X. Then there
is a Polish space P, with a countable basis of open and closed sets and a continuous
bijective map f : P → B. In particular a Borel set is analytic (and coanalytic).

Proof. Let F be the set of all sets E ⊂ X for which there is a Polish space with a
countable basis of open and closed sets and a continuous bijective map f : P → E,
and such that Ec has the same property. As in the proof of the above Lemma, we
have that if En ∈ F then

⋂∞
n=1 En is the image of a bijection from a Polish space

with a countable basis of open and closed sets. If we set Bn = En ∩
(⋂n−1

k=1 A
c
k

)

then as in the preceeding lemma, we can find a bijection from a Polsih space onto
Bn for each n, and since Bn is disjoint and

∞⋃

n=1

Bn =

∞⋃

n=1

An

it follows that
⋃∞

n=1 An has the same property. Thus F is a σ-algebra and since
every open or closed subset of X is Polish, the preceeding lemma implies that F
contains all open sets. Thus F contains all Borel set, as desired.

�

Corollary 4.1.20. If A is an analytic set in a Polish space X, and B ⊆ A is Borel
(regarding A as a topological space), then B is analytic.
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Proof. Let Y be a Polish space and f : Y → A a continuous surjective map. Then
f−1(B) is a Borel subset of Y, hence by the above theorem we can find a Polish
space P and a bijective continous map φ : P → f−1(B). Then f ◦φ is a continuous
map from P onto B. �

Lemma 4.1.21. Let X and Y be seperable metric spaces, and let f : X → Y be a
Borel map. Then the graph of f is a Borel subset of X × Y.

Proof. Let Un be a countable basis for the topology of Y. Then for y ∈ Y, x ∈ X we
have that y 6= f(x) if and only if there is some n such that y ∈ Un and f(x) /∈ Un.
Thus

{(x, y) : y 6= f(x)} =

∞⋂

n=1

X \ f−1(Un) × Un

and since f is a Borel this is a Borel set in X×Y. The above set is the complement
of the graph of f, so we are done. �

Corollary 4.1.22. Let A be an analytic set and let Y be a Polish space. If f : X →
Y is Borel, then f(X) is an analytic set in Y. If, in addition, f is injective, then
f(X) is Boerl and f is a Borel isomorphism from X to f(X).

Proof. By the above lemma, the graph of f is a Borel subset of X × Y, and since
X×Y is analytic, it follows that the graph Γ of f is analytic by Corollary 4.1.20. Let
π2 : X×Y → Y be the projection onto the second coordinate. Then π2(Γ) = f(X),
since π2 is continuous it follows that f(X) is analytic. Suppose now that f is
injective. If B ⊆ Y is Borel, then the above implies that f(B), f(Bc) are analytic
and since f is injective,

f(Bc) = f(X) \ f(B).

Thus f(B) is a Borel subset of f(X) (regarding f(X) as a topological space) by
Corollary ??. This implies that f is a Borel isomorphism from X onto f(X). �

Corollary 4.1.23. Let X be a Polish space and let B be a Borel subset of X.
Give B the σ-algebra of Borel subsets of B (using the topology of B). Then B is a
standard Borel space.

Proof. By Theorem 4.1.19 there is a Polish space P and a continuous bijective map
φ : P → B, the above corollary shows that φ is a Borel isomorphism, and the proof
is complete. �

Lemma 4.1.24. Let X be a Polish space with a countable basis of open and closed
sets. Then there is collection C of finite sequence of positive integers, such that
σ
∣∣
k
∈ C, for all σ ∈ C and k < |σ| and a continuous bijection from T = {σ ∈ NN :

σ
∣∣
k
∈ C for all k} onto X.

11

Proof. Let d be a compatible complete metric on X. We construct a collection C of
finite integer sequences, such that for each σ ∈ C there is Nσ ∈ N ∪ {∞} and Uσ a
non-empty closed and open set in X such that:

(i) ∅ ∈ C, U∅ = X

(ii) If σ ∈ C, then σ1, . . . , σNσ ∈ C and Uσ =
⋃Nσ

j=1Uσj

11The attentive reader will notice that C has the structure of an infinite tree, and we are

showing that there is a continuous bijection from the set of infinite branches of this tree and X.
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(iii) diam(Uσ) ≤ 1
|σ| .

(iv) If j 6= k and 1 ≤ j, k ≤ Nσ then Uσj ∩ Uσk = ∅

(v) If σ ∈ C, then σ
∣∣
k
∈ C for all k < |σ|.

We construct C inductively, by first construct Ck all of its elements of length at
most k. It is clear how to construct C0. Suppose that Ck has been constructed so
that (i), (iii), (v) are satisfied for all σ ∈ Ck and (ii), (iv) are satisfied for all σ ∈ Ck

with |σ| < k. For each σ ∈ Ck of length k, because X has a countable basis of closed
and open sets, we can find a countable cover Vσn of closed and open sets contained
in Uσ such that diam(Vσn) ≤ 1

k+1 . For all n. Let

Wσ1 = Vσ1,Wσj = Vσj \

(
j−1⋃

i=1

Vσi

)

then Wσ1 are now disjoint open and closed subsets of Uσ , which cover Uσ . Set Nσ

to be the number of j such that Wσj is not empty. Let Uσ1, Uσ2, . . . , UσNj
be an

ordering of the Wσj when Wσj is not empty. Set

Ck+1 = Ck ∪
⋃

σ∈Ck ,|σ|=k,1≤j≤Nσ

{Uσj}.

It is easy to see that Ck+1 satisfies (i) − (v). Having define Ck for all k, set C =⋃∞
k=1 Ck. Now let F = {σ ∈ NN : σ

∣∣
n
∈ C for all n}, it is clear that F is closed. By

completeness of X, we have a well-defined map φ : F → X by saying that

φ(σ) ∈

∞⋂

n=1

U
σ
∣∣

n

.

As in Theorem 4.1.12 we have that φ is continuous and surjective, and (iv) guar-
antees that φ is injective.

�

Theorem 4.1.25. Let X,Y be Polish spaces and B ⊆ X a Borel set. Let f : X → Y
be an injective Borel map. Then f(B) is Borel.

Proof. Replacing X by X × Y, B by the graph Γ of f, and f by π2

∣∣
Γ

12, we may
assume that f is continuous. By Lemma 4.1.24 and Theorem 4.1.19 we may assume
that X = NN and that B is a closed set. For each finite sequence of positive integers
σ we will construct a Borel subset Bσ of Y such that

(i) f
(
{σ′ ∈ B : σ′

∣∣
|σ|

= σ} ∩B
)
⊆ Bσ ⊆ {σ′ ∈ B : σ′

∣∣
|σ|

= σ} ∩B.

(ii) Bσ|k ⊆ Bσ if k < |σ|.
(iii) If |σ| = |σ′|, and σ 6= σ′ then Bσ ∩Bσ′ = ∅.
Suppose we have constructed such a collection of Borel sets. Set

C =

∞⋂

n=1

⋃

|σ|=n

Bσ.

Then C is Borel, and we claim that f(C) = B. Let σ ∈ B, then by (i) we have that
f(σ) ∈ B

σ
∣∣

k

, and so f(A) ⊆ C. Conversely, suppose y ∈ C, because of (ii) and (iii)

we can find σ ∈ NN such that y ∈ B
σ
∣∣

n

for every n. Because of (i), we can find for

12Here π2 is projection onto the second coordinate
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each n, a σn ∈ {σ′ ∈ B : σ′
∣∣
n

= σ} ∩ B such that d(σn, σ) < 2−n. Since σn → σ

and B is closed, we have that σ ∈ B. Thus y ∈ f(B).

To show that such a collection Bσ exists, let B∅ = f(B). Suppose Bσ has been
defined for all |σ| ≤ k. Let σ be a sequence of positive integers of length k, set

An = {τ ∈ B : τ
∣∣
k

= σ, τk+1 = n}.

Since f is injetive and continuous, the f(An) are pairwise disjoint analytic sets, thus
by Theorem 4.1.16 we can find disjiont Borel sets B′

σn such that f(An) ⊆ Bσn′ for
all n. Setting

Bσn = Bσ ∩

∞⋂

n=1

B′
σn ∩

∞⋂

n=1

f(An)

to see that Bσn has the desired properties. �

We are closed to the proof of our measurable selection theorem, and the measur-
ablitiy of analytic sets. Next we will show the uniqueness of uncountable standard
Borel spaces, this will be crucial in the proof of our measurable selection theorem.
But first we need a lemma.

Lemma 4.1.26. Let X, Y be standard Borel spaces and suppose that f : X →
Y, g : Y → X are Borel injections. Then there is a Borel isomorphism h : X → Y.

Proof. (From [2] Theorem 1.2.3.) If the reader has read the proof of the Cantor-
Schroder Bernstein theorem, we are just going to copy it down. If not, then read
on.

We claim that there is a Borel set E ⊆ X such that

g−1(X \ E) = Y \ f(E).

Assuming that E exists, we can define h : X → Y by h(x) = f(x) for x ∈ E
and h(x) = g−1(x) otherwise. Then Corollary 4.1.22 implies that h is a Borel
isomorphism from X to Y.

For A ⊆ X, define H(A) = X \ g(Y \ f(X)), then A ⊆ B implies H(A) ⊆ H(B).
Further we have

H

(
∞⋃

n=1

An

)
=

∞⋃

n=1

H(An).

Indeed, by what we just claim we have

H

(
∞⋃

n=1

An

)
⊇

∞⋃

n=1

H(An)

and on the other hand, if

x ∈ H

(
∞⋃

n=1

An

)

then x /∈ g (Y \ f (
⋃∞

n=1 An)) , thus for each n we have that x /∈ g(Y \ f(An)).
Define Bn inductively by B0 = ∅, and Bn+1 = H(Bn). Inducitvely, we have that
Bn ⊆ Bn+1, and each Bn is Borel by the proceeding Theorem. Set

E =

∞⋃

n=1

Bn,
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then E is a Borel set, and

H(E) =

∞⋃

n=1

H(Bn) =

∞⋃

n=2

Bn = E

since Bn ⊆ Bn+1. But H(E) = E precisely entails that

g−1(X \ E) = Y \ f(E),

and this completes the proof.
�

Lemma 4.1.27. Let C be a collection of finite sequences of positive integers, such
that if σ ∈ C, then σ

∣∣
k
∈ C for all k < |σ|, and such that T = {σ ∈ NN : σ

∣∣
k
∈

C for all k}, then T is uncountable. Then we can find l ∈ N and σ1, σ2 ∈ C both of
length l such that {σ ∈ T : σ

∣∣
l
= σi} is uncountable for each i.

Proof. Since

T =
∞⋃

n=1

{σ ∈ T : σ1 = n},

and T is uncountable, we can find n1 such that T1 = {σ ∈ T : σ1 = n1} is
uncountable. If we can find n 6= n1 such that{σ ∈ T : σ1 = n} is uncountable, we
are done. Else for all n 6= n1 we have that {σ ∈ T : σ1 = n} is countable. Because

T1 =

∞⋃

n=1

{σ ∈ T1 : σ2 = n},

we can find n2 such that {σ ∈ T1 : σ2 = n2} is uncountable. If there is n 6= n2 such
that

{σ ∈ T1 : σ2 = n}

is uncountable we are done. If not, then for all n 6= n1, we have that {σ ∈ T1 :
σ2 = n2} is countable. If the lemma is false, then we see that we can continue
inductively to find a τ ∈ T, such that for all k,

{σ ∈ T : σ
∣∣
k

= τ
∣∣
k
, σ
∣∣
k+1

6= τ
∣∣
k+1

}

is countable. As

T = {τ} ∪
⋃

k∈N∪{0},σ′∈C,σ′

∣∣
k
=τ
∣∣

k
,σ′ 6=τ,|σ′|=k+1

{σ ∈ T : σ
∣∣
k+1

= σ′}

and C is countable, we see that T is countable as well. This is a contradiction.
�

Lemma 4.1.28. If X is a uncountable standard Borel space, then we can find a
Borel injection φ : {0, 1}N → X.

Proof. By Theorem 4.1.19 and Lemma 4.1.24 and Corollary 4.1.22 we may assume
that there is a collection C of finite sequences of positive integers, such that σ

∣∣
k
∈ C

for all k < |σ| and σ ∈ C, such that X = {σ ∈ NN : σ
∣∣
k
∈ C for all k}. We construct,

for each finite binary sequence σ, a sequence τσ ∈ C, such that
(i)|τσ0| = |τσ1| and τσ0 6= τσ1.
(ii)τσ0

∣∣
|τσ |

= τσ

(iii) {τ ∈ X : τ
∣∣
|τσ|

= τσ} is uncountable.
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Set τ∅ = ∅. Suppose we have constructed τσ for |σ| ≤ k, satisfying (i) and (iii)
and satsisfying (ii) for |σ| < k. Fix a binary sequence σ of length k, and let

Cσ = {τ ∈ C : τ
∣∣
k

= τσ
∣∣
k
, for all k < min(|τ |, |τσ|)}.

Then Cσ also has the property that σ
∣∣
k
∈ Cσ if σ ∈ Cσ and

Tσ = {τ ∈ NN : τ
∣∣
k
∈ Cσ for all k} = {τ ∈ X : τ

∣∣
|τσ |

= τσ},

so Tσ is uncountable. The above lemma implies that we can find l ∈ N and τσ0, τσ1 ∈
Cσ, both of length l, such that τσ0 6= τσ1 and

{τ ∈ X : τ
∣∣
l
= τσj}

is uncountable for each j. Then τσj satisfy (i)-(iii) by construction. This completes
the inductive step of the construction.

Having constructed τσ for each σ, we have a well defined map

φ : {0, 1}N → X

given by

φ(σ)
∣∣
|τ

σ

∣∣
k

|
= τ

σ
∣∣

k

.

As in Theorem 4.1.12, we see that φ is injective and continuous. This completes
the proof. �

Corollary 4.1.29. Any two uncountable standard Borel spaces are Borel isomor-
phic.

Proof. By the above lemma, we see that {0, 1}N Borel injects into any uncountable
standard Borel space. By Lemma 4.1.26, if we can show any standard Borel space
has a Borel injection into {0, 1}N we will be done. But any standard Borel space
injects into [0, 1]N by Theorem 4.1.12. Suppose we can show that [0, 1] Borel injects
into {0, 1}N. It will then follow that [0, 1]N Borel injects into {0, 1}N×N, which is
homeomorphic to {0, 1}N. This will show that any standard Borel space injects into
{0, 1}N. Thus, it suffices to show that [0, 1] has a Borel injection into {0, 1}N. We
shall in fact show that there are Borel isomorphic.

Let D be the set of all dyadic rationals in [0, 1] and let A ⊆ {0, 1}N be the set of
sequences which are eventually constant. Let φ : {0, 1}N → [0, 1] \D be given by

φ(σ) =

∞∑

n=1

σn

2n
.

As is well known, φ is a homeomorphism. As A and D are countable, we have a
Borel bijection ψ : A → D. Then if we define f = φ on [0, 1] \ A and ψ on A, it is
easy to see that f is a Borel isomorphism between {0, 1}N and [0, 1].

�

We can now show that every analytic set in a standard measure space is mea-
surable. We shall in fact show that this is true in a very strong sense.

Definition 4.1.30. Let (X,M) be a standard Borel space. The σ-algebra of
universally measurable sets is defined to be



DIRECT INTEGRALS OF HILBERT SPACES AND VON NEUMANN ALGEBRAS 55

⋂

µ a σ-finite measure on X

Mµ

where Mµ is the completion of M with respect to µ. Elements in this σ-algebra are
called universally measurable. A function f : X → Y, where Y is a measurable space
is called universally measurable, if it is measurable with respect to the σ-algebra of
universally measurable sets.

Theorem 4.1.31. Let X be a standard Borel space, then every analytic set in X
is universally measurable.

Proof. By the above theorem we may assume that X = [0, 1], let A be an analytic
set in [0, 1] and µ a σ-finite measure on X. Then we can find a measure ν on [0, 1]
which is finite and has the same measure zero sets. Thus we may assume that µ
is finite. Let P be a Polish space and g : P → A a continuous surjective map, by
Theorem 4.1.12, we may assume that P is a subset of [0, 1]N. Let Γ be the graph
of g in P × [0, 1], this is a closed subset of P × [0, 1] and is thus a Polish space.
Let Y = [0, 1]N × [0, 1], then Γ is a subset of Y. Let π : Y → [0, 1] be given by
π((tn)n∈N, x) = x, then π(Γ) = A. Since Γ is a Polish subset of Y, it is Gδ by
Theorem 4.1.13, so we can find (Un) decreasing and open in Y such that

B =

∞⋂

n=1

Un.

Since each Un is open in Y, and Y is compact metric, for each n we can find an
increasing sequence compact sets Kn,m such that

Un =

∞⋃

m=1

Kn,m,

and set K00 = X. Let µ∗ be the outer measure on [0, 1] associated to the finite
measure µ, i.e.

µ∗(E) = inf{µ(U) : U ⊇ E, Uopen}.

We shall show that

(1) µ∗(A) = sup{µ(K) : K ⊆ A compact }.

Suppose that (1) is shown. Then we can find Kn ⊆ A compact such that µ(Kn) →
µ∗(A). Set F =

⋃∞
n=1Kn, by standard measure theory there is a Gδ ⊇ A such that

µ(G) = µ∗(A). Thus F ⊆ A ⊆ G and µ∗(G \ F ) = 0, so A is µ-measurable. So it
suffices to show that 1 holds.

Fix α < µ∗(A). We inductively define integers j0j1, . . . , jn, . . . such that with

Cn = Γ ∩

n⋂

i=1

Ki,ji
,

we have µ∗(f(Cn) > α. Set j0 = 0, since K00 = X this clearly satisfies the con-
struction.Suppose we have constructed j0, . . . , jn with this property. Then, since
Cn ⊆ Γ ⊆ Un+1, we have

Cn =

∞⋃

j=1

Cn ∩Kn+1,j,
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because Kn,j ⊆ Kn,j+1. Note that ifAj are increasing sets in [0, 1], then µ∗
(⋃

j Aj

)
=

limj µ
∗(Aj), indeed we can find Bj Gδ sets such that Bj ⊇ Aj and µ(Bj) = µ∗(Aj).

Replacing Bj with
⋂∞

k=j Bk we may assume that Bk is increasing, finally if we show

B a Gδ set such that B ⊇
⋃

j Aj and µ(B) = µ∗
(⋃

j Aj

)
and replacing Bj with

B ∩Bj we may assume that µ
(⋃

j Bj

)
= µ∗

(⋃
j Aj

)
. Then

µ∗


⋃

j

Aj


 = lim

j→∞
µ(Bj) = lim

j→∞
µ∗(Aj).

Applying to our current situation, we have that

lim
j
µ∗(f(Cn ∩Kn+1,j) = µ∗(f(Cn)) > α

so we can find jn such that µ∗(f(Cn∩Kn+1,j) > α and this completes the inductive
step.

Now define C =
⋂∞

n=1Cn. Since

∞⋂

n=1

Kn,jn
⊆

∞⋂

n=1

Un = Γ

we have

C =

∞⋂

n=1

Kn,jn
∩ Γ =

∞⋂

n=1

Kn,jn

and C is compact. We have that

µ(f(C)) = lim
n
µ

(
f

(
n⋂

k=1

Kk,jk

))
≥ lim

n
µ∗(f(Cn)) ≥ α.

As f(C) is compact, and α is arbitrary, this verifies (1) and the proof is complete.
�

Corollary 4.1.32. Let A be an analytic set and µ a σ-fintie measure on A. Then
(A, µ) is a standard measure space.

Proof. By assumption A is an analytic set in a Polish space X. The above Theorem
tells us we can find a Borel B ⊆ A such that µ(A \B) = 0. Since a Borel subset of
a Polish space is a standard Borel space by Corollary 4.1.23, we have that B is a
Borel space and we are done. �

Finally we prove our measurable selection theorem.

Theorem 4.1.33. Let X and Y be analytic sets, and let f : X → Y be a surjective
Borel map. Then there is a universally measurable φ : Y → X (in the sense that
φ−1(B) is universally measurable for all B ⊆ X Borel 13) such that f ◦ φ = Id .

Proof. Let Γ be the graph of f in X × Y, which is a Borel set in the analytic
space X × Y by Lemma 4.1.21. Thus by Theorem 4.1.12, we can find a surjective
g : NN → Γ, let h = π2 ◦ g, where π2 is projection onto the second coordinate, then
h is continuous. Thus for each y ∈ Y we have that h−1({y}) is a closed set. Let
≺ denote lexicographic order on NN. Note that if F ⊆ NN is closed, then F has a

13Borel for the topology of X.
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least element for ≺ . Indeed, if we define n1 to be the least first coordinate among
elements of F, and having define n1, . . . , nk−1 we define nk to be the smallest kth

coordinate among σ ∈ F such that σ
∣∣
k−1

= (n1, . . . , nk−1), then since F is closed

we have that n = (n1, n2, . . .) ∈ F. So define ψ(y) to be the smallest element in
h−1({y}) for each y ∈ Y, and let φ = π1 ◦ g ◦ ψ. Then f ◦ φ− Id, and we only have
to show that φ is universally measurable. Since g and π1 are continuous, it suffices
to show that ψ is universally measurable. A finite sequence σ of positive integers,
let Nσ = {τ ∈ NN : τ

∣∣
k

= σ}. Then if σ = (n1, . . . , nk) we have

Nσ = {τ ∈ NN : (n1, . . . , nk, 1, 1, . . .) � τ ≺ (n1, . . . , nk−1, nk + 1, 1, 1, . . .)}.

But for any σ′ ∈ NN we have that

ψ−1({τ ∈ NN : τ ≺ σ′}) = h({τ ∈ NN : τ ≺ σ′}),

and similarly for � . Thus ψ−1(Nσ) is an intersection of two analytic sets and is
thus universally measurable by Theorem 4.1.31. Since Nσ clearly generates the
topology on NN, it generates the Borel structure of NN, and thus ψ is universally
measurable.

�
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