- Four Modes of Operation:

Hold (Store)
Shift Right
Shift Left
Load Data

- Operates With Outputs Enabled or at High Impedance
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- Direct Overriding Clear
- Applications:

Stacked or Push-Down Registers
Buffer Storage
Accumulator Registers

- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These 8-bit universal shift/storage registers feature multiplexed I/O ports to achieve full 8-bit data handling in a single 20 -pin package. Two function-select (S0, S1) inputs and two output-enable ($\overline{\mathrm{OE} 1,} \overline{\mathrm{OE} 2}$) inputs can be used to choose the modes of operation listed in the function table.
Synchronous parallel loading is accomplished by taking both S 0 and S 1 high. This places the 3 -state outputs in a high-impedance state and permits data that is applied on the I/O ports to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. Clearing occurs when the clear ($\overline{\mathrm{CLR}}$) input is low. Taking either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$ high disables the outputs but has no effect on clearing, shifting, or storage of data.
The SN54F299 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F299 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

WITH 3-STATE OUTPUTS

SDFS071A - MARCH 1987 - REVISED OCTOBER 1993
FUNCTION TABLE

MODE	INPUTS								I/O PORTS								OUTPUTS	
	$\overline{C L R}$	S1	S0	$\overline{\mathrm{OE}} \dagger$	$\overline{\mathrm{OE} 2} \dagger$	CLK	SL	SR	$\mathbf{A} / \mathbf{Q}_{\mathbf{A}}$	B / Q_{B}	C/QC	D / Q_{D}	E / Q_{E}	F/Q $\mathrm{Q}_{\text {F }}$	$\mathrm{G} / \mathbf{Q}_{\mathrm{G}}$	H/Q Q_{H}	$Q_{A^{\prime}}$	$Q_{H}{ }^{\prime}$
Clear	L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	L	X	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	H	H	X	X	X	X	X	X	X	X	X	X	X	X	X	L	L
Hold	H	L	L	L	L	X	X	X	QA0	QB0	$Q_{\text {C0 }}$	QD0	$Q_{E 0}$	QF0	QG0	QH0	QA0	Q HO
	H	X	X	L	L	L	X	X	QA0	QB0	Q ${ }_{\text {C0 }}$	Q ${ }_{\text {D }}$	QE0	QF0	QG0	QH0	QA0	QH0
Shift	H	L	H	L	L	\uparrow	X	H	H	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$	QDn	QEn	$Q_{\text {Fn }}$	$Q_{G n}$	H	$Q_{G n}$
Right	H	L	H	L	L	\uparrow	X	L	L	$Q_{\text {An }}$	QBn	$Q_{C n}$	QDn	QEn	$Q_{\text {Fn }}$	$Q_{G n}$	L	$Q_{G n}$
Shift	H	H	L	L	L	\uparrow	H	X	Q ${ }_{\text {Bn }}$	$Q_{C n}$	QDn	QEn	$Q_{\text {Fn }}$	$Q_{G n}$	Q_{Hn}	H	$Q_{B n}$	H
Left	H	H	L	L	L	\uparrow	L	X	QBn	$Q_{C n}$	QDn	QEn	QFn	$Q_{G n}$	QHn	L	QBn	L
Load	H	H	H	X	X	\uparrow	X	X	a	b	c	d	e	f	g	h	a	h

NOTE: a . . . $\mathrm{h}=$ the level of the steady-state input at inputs A through H , respectively. This data is loaded into the flip-flops while the flip-flop outputs are isolated from the I/O terminals.
\dagger When one or both output-enable inputs are high the eight I/O terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

logic symbol \ddagger

\ddagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

$\dagger I / O$ ports not shown: $B / Q_{B}(13), C / Q_{C}(6), D / Q_{D}(14), E / Q_{E}(5), F / Q_{F}(15)$, and $G / Q_{G}(4)$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{I} (see Note 1) .. -1.2 V to 7 V
Input current range ... -30 mA to 5 mA
Voltage range applied to any output in the disabled or power-off state $\ldots \ldots$.
Voltage range applied to any output in the high state $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

SN54F299 (Q_{A} thru Q_{H}) .. 40 mA
SN74F299 (Q_{A} thru $\left.Q_{H}\right)$.. 48 mA
Operating free-air temperature range: SN54F299 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74F299 .. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range ... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.

recommended operating conditions

				54F29			N74F29		
			MIN	NOM	MAX	MIN	NOM	MAX	UNT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
V_{IL}	Low-level input voltage				0.8			0.8	V
IIK	Input clamp current				-18			-18	mA
	High-level output current	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$			-1			-1	mA
Ion	High-levelouput current	Q_{A} thru Q_{H}			-3			-3	
1 L	Low-level output current	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$			20			20	mA
OL	Low-level oupur curent	$Q_{\text {A }}$ thru Q_{H}			20			24	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54F299		SN74F299			UNIT		
		MIN	TYP† MAX	MIN	TYP \dagger	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$		-1.2			-1.2	V
V OH	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4	2.5	3.4		V		
	Q_{A} thru Q_{H}		$\mathrm{IOH}=-1 \mathrm{~mA}$	2.5	3.4	2.5	3.4				
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3	2.4	3.3				
	Any output	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$ to -3 mA			2.7					
VOL	$\mathrm{Q}_{A^{\prime}}$ or QH^{\prime}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=20 \mathrm{~mA}$		0.30 .5		0.3	0.5	V		
	Q_{A} thru Q_{H}		$\mathrm{IOL}=20 \mathrm{~mA}$		0.30 .5						
			$\mathrm{I} \mathrm{OL}=24 \mathrm{~mA}$				0.35	0.5			
1	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		1			1	mA		
	Any other		$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$		0.1			0.1			
${ }_{1 / 4}{ }^{\ddagger}$	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$		70			70	$\mu \mathrm{A}$		
	Any other				20			20			
${ }_{1 / 2}{ }^{\ddagger}$	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$		-0.65			-0.65	mA		
	S0 or S1				-1.2			-1.2			
	Any other				-0.6			-0.6			
los§		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-60	-150	-60		-150	mA		
IcC		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	See Note 2		$68 \quad 95$		68	95	mA		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For $I^{\prime} \mathrm{O}$ ports (Q_{A} thru Q_{H}), the parameters I_{IH} and I_{IL} include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 2: ICC is measured with $\overline{\mathrm{OE}}, \overline{\mathrm{OE} 2}$, and CLK at 4.5 V .
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

\dagger Inactive-state setup time is also referred to as recovery time.
switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \ddagger \end{aligned}$				UNIT
			'F299			SN54F299		SN74F299		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			70	100		65		70		MHz
tPLH	CLK	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$	3.2	6.6	9	2.7	10.5	3.2	10	ns
tPHL			2.7	6.1	8.5	2.2	10	2.7	9.5	ns
tPLH	CLK	Q_{A} thru Q_{H}	3.2	6.6	9	2.7	11	3.2	10	
tPHL			4.2	8.1	11	3.7	12.5	4.2	12	ns
tPHL	$\overline{\text { CLR }}$	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$	3.7	7.1	9.5	3.2	11.5	3.7	10.5	ns
		Q_{A} thru Q_{H}	5.7	10.6	14	5	15.5	5.7	15	
tPZH	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$	Q_{A} thru Q_{H}	2.7	5.6	8	2.2	10.5	2.7	9	ns
tPZL			3.2	6.6	10	2.7	12	3.2	11	
tPHZ	$\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$	Q_{A} thru Q_{H}	1.7	4.1	6	1.7	9	1.7	7	ns
tplZ			1.2	3.6	5.5	1.2	7.5	1.2	6.5	

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 3: Load circuits and waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

