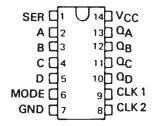
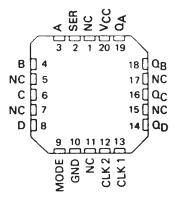
TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
′95A	36 MHz	195 mW
'LS95B	36 MHz	65 mW


description

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:


Parallel (broadside) load Shift right (the direction Q_{Δ} toward Q_{D}) Shift left (the direction QD toward QA)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected. SN5495A, SN54LS95B . . . J OR W PACKAGE SN7495A . . . N PACKAGE SN74LS95B . . . D OR N PACKAGE (TOP VIEW)

SN54LS95B . . . FK PACKAGE (TOP VIEW)

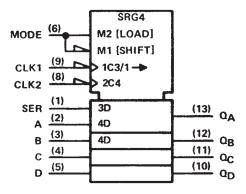
NC - No internal connection

FUNCTION TABLE

			INPUTS						OUT	PUTS	
MODE	CLO	CKS	CERIAL		PAR	ALLEL			0.0	α _C	α_{D}
CONTROL	2 (L)	1 (R)	SERIAL	Α	В	С	D	Q _A	ΩB	<u> </u>	ω _D
Н	н	Х	Х	Х	Х	Х	х	QAO	Q_{BO}	σ_{C0}	σ^{DO}
н	1	X	x	a	ь	С	d	а	b	С	d
H	1 +	X	×	QBt	Q _C †	QDt	d	Q _{Bn}	a_{Cn}	a_{Dn}	d
L	L	н	×	×	X	X	X	QAO	α_{BO}	σ_{CO}	σ_{DO}
L	×	‡	н	x	Х	X	X	н	Q_{An}	QBn	σ_{Cu}
L	×	1	L	х	X	X	X	L	Q_{An}	QBn	a_{Cn}
†	L	L	×	X	Х	X	X	QAO	Q_{BO}	a_{co}	Q_{DO}
4	L	L	×	х	X	X	X	QAO	Q_{BO}	a_{C0}	a_{DO}
4	L	н	×	x	X	×	X	QAO	Q _{BO}	a_{C0}	σ_{DO}
†	н	L	×	x	X	×	×	QAO	Q_{BO}	a_{C0}	σ_{DO}
†	Н	н	×	x	Х	X	X	QAO	QBO	a_{C0}	σ_{DO}

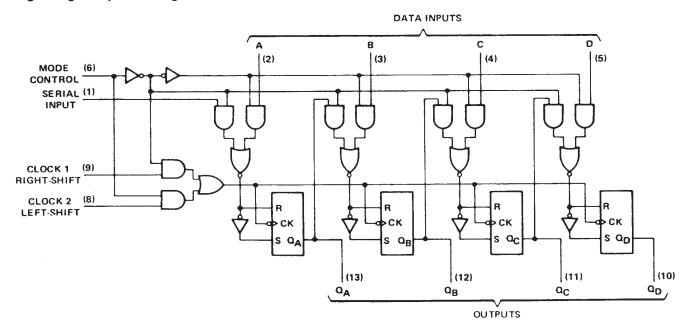
†Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D. H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_{A} , Q_{B} , Q_{C} , or Q_{D} , respectively, before the most-recent \downarrow transition of the clock.

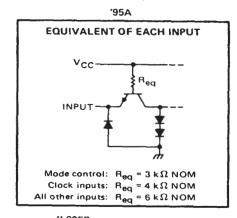


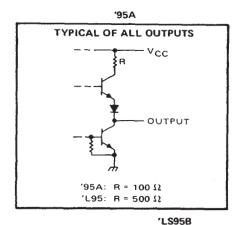
^{1 =} transition from high to low level, 1 = transition from low to high level

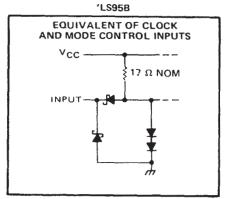
a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

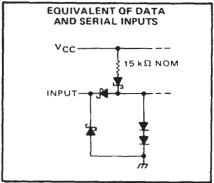

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_{A} , Q_{B} , Q_{C} , or Q_{D} , respectively, before the indicated steady-state input conditions were established.

logic symbol†

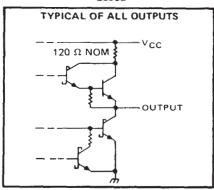

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.


logic diagram (positive logic)





schematics of inputs and outputs



'LS95B

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54'	SN54LS'	SN74'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	- 55 to 125		to 70	°C
Storge temperature range	-65 to 150		- 65	to 150	°C

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies between the clock-2 input and the mode control input of the '95A.

recommended operating conditions

		SN5495A			UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-800			-800	μΑ
Low-level output current, IOL			16			16	mA
Clock frequency, f _{clock}	0		25	0		25	MHz
Width of clock pulse, tw(clock) (See Figure 1)	20			20			กร
Setup time, high-level or low-level data, t _{SU} (See Figure 1)	15			15			ns
Hold time, high-level or low-level data, th (See Figure 1)	0			0			ns
Time to enable clock 1, tenable 1 (See Figure 2)	15			15			ns
Time to enable clock 2 (See Figure 2)	15			15			กร
Time to inhibit clock 1, tinhibit 1 (See Figure 2)	5			5			ns
Time to inhibit clock 2, tinhibit 2 (See Figure 2)	5			5			ns
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN5495A							
PARAMETER			TEST CONDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input volta	ige		2			2			V
VIL	Low-level input volta	ge				0.8			0.8	٧
VIK	Input clamp voltage		V _{CC} = MIN, I _I = -12 mA	<u> </u>		-1.5			-1.5	V
Voн	High-level output voltage		V _{CC} = MIN, V _{IH} = 2 V,	2.4	3.4		2.4	3.4		V
			$V_{1L} = 0.8 \text{ V}, I_{OH} = -800 \mu\text{A}$	2.4	3.4		2.4	3.4		ľ
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V,			0.4		0.2	0.4	v
			V _{1L} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	
l _l	Input current at maximum input volta	age	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
hн	High-level	Serial, A, B, C, D, Clock 1 or 2	V _{CC} = MAX, V ₁ = 2.4 V			40		-	40	μА
111	input current	Mode control	90			80			80	1
1	Low-level	Serial, A, B, C, D, Clock 1 or 2	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
IIL.	input current	Mode control	VCC - MAA, VI - 0.4 V	-		-3.2	<u> </u>		-3.2	-
los	Short-circuit output current §		V _{CC} = MAX	-18		-57	-18		-57	mA
Icc	Supply current		V _{CC} = MAX, See Note 3		39	63		39	63	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V, then ground, applied to both clock inputs.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	$C_1 = 15 \text{pF}, R_1 = 400 \Omega,$	25	36		MHz
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1		18	27	ns
tPHL Propagation delay time, high-to-low-level output from clock	See Figure 1		21	32	ns

 $^{^{\}ddagger}$ All typical values are at VCC = 5 V, TA = 25 °C.

 $[\]S$ Not more than one output should be shorted at a time.

recommended operating conditions

	SI	V54LS9	5B	SI	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			4			8	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock pulse, tw(clock) (see Figure 1)	20			20			ns
Setup time, high-level or low-level data, t _{su} (see Figure 1)	20			20			ns
Hold time, high-level or low-level data, th (see Figure 1)	20			10			ns
Time to enable clock 1, tenable 1 (see Figure 2)	20			20			ns
Time to enable clock 2, tenable 2 (see Figure 2)	20			20			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2)	20			20			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	20			20			ns
Operating free-air temperature, TA	-55		125	0		70	°C

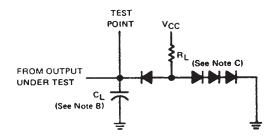
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				Sf	154LS9	58	SN74LS95			UNIT
PARAMETER		TEST CO	NDITIONS [†]	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	ONT
ViH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.7			8.0	٧
VIK	Input clamp voltage	V _{CC} = MIN,	$I_1 = -18 \text{ mA}$			-1.5			-1.5	V
	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		V
	Low-level output voltage	V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	,
VOL		V _{IH} = 2 V, V _{IL} = V _{IL} max	1 _{OL} = 8 mA					0.35	0.5	<u> </u>
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V			0.1			0.1	mA
ЧН	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μА
ΊL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current \$	V _{CC} = MAX		-20		-100	-20		-100	mA
¹cc	Supply current	V _{CC} = MAX,	See Note 3		13	21	<u> </u>	13	21	mA

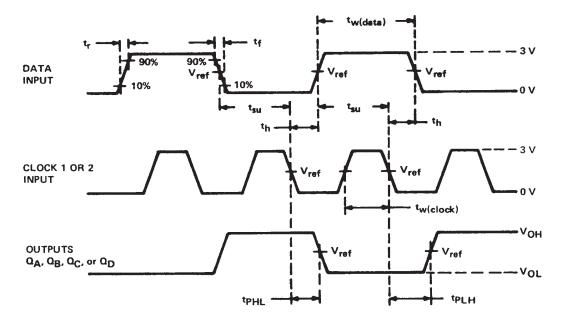
[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

Propagation delay time, low-to-high-level output from clock	TEST CONDITIONS		TYP	MAX	UNIT
f _{max} Maximum clock frequency	C ₁ = 15 pF, R ₁ = 2 kΩ,	25	36		MHz
	See Figure 1		18	27	ns
tpHL Propagation delay time, high-to-low-level output from clock			21	32	ns



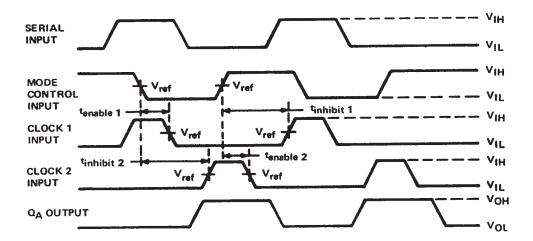
[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.


[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V, then ground, applied to both clock inputs.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT



- NOTES: A. Input pulses are supplied by a generator having the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, and $Z_{out} \approx 50 \Omega$. For the data pulse generator, PRR = 500 kHz; for the clock pulse generator, PRR = 1 MHz. When testing f_{max} , vary PRR. For '95A, $t_{w(data)} \ge 20$ ns, $t_{w(clock)} \ge 15$ ns. For 'LS95B, $t_{w(data)} \ge 20$ ns, $t_{w(clock)} \ge 15$ ns.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 equivalent.
 - D. For '95A, $V_{ref} = 1.5 \text{ V}$; for 'LS95B, $V_{ref} = 1.3 \text{ V}$.

VOLTAGE WAVEFORMS
FIGURE 1-SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input is at a low level.

B. For '95A, $V_{ref} = 1.5 \text{ V}$; for 'LS958, $V_{ref} = 1.3 \text{ V}$.

VOLTAGE WAVEFORMS
FIGURE 2-CLOCK ENABLE/INHIBIT TIMES

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated