QUAD 2-PORT REGISTER

The MC54/74F398 is the logical equivalent of a quad 2-input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flipflops on the rising edge of the clock.

- Select Inputs from Two Data Sources
- Fully Positive Edge-Triggered Operation
- Both True and Complement Outputs

CONNECTION DIAGRAM (TOP VIEW)

NOTES:
This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MC54/74F398

QUAD 2-PORT REGISTER

FASTTM ${ }^{\text {T }}$ SCHOTTKY TTL

MC54/74F398

FUNCTIONAL DESCRIPTION

The MC54/74F398 is a high-speed quad 2-port register. It will select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-
type output register is fully edge-triggered. The Data inputs ($\mathrm{I}_{\mathrm{ox}}, \mathrm{I}_{1 \mathrm{x}}$) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The MC54/74F398 has both Q and \bar{Q} outputs.

FUNCTION TABLE

Inputs		Outputs		
S	I_{0}	I_{1}	Q	$\overline{\mathrm{Q}}$
I	I	X	L	H
I	h	X	H	L
h	X	I	L	H
h	X	h	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{h}=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
I = LOW Voltage Level; one setup time prior to the LOW-to-HIGH clock transition
X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54,74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
I_{OH}	Output Current - High	54,74			-1.0	mA
I_{OL}	Output Current - Low	54,74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	2.5	3.4		V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		2.7	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage		0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }^{\text {IH }}$	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	$V_{C C}=\mathrm{MAX}$
				100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current			-0.6	mA	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	$V_{C C}=$ MAX
los	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$
ICC	Power Supply Current		25	38	mA	$V_{C C}=$ MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{GND} \\ & \mathrm{CP}=\Gamma \end{aligned}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter	54/74F			54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	140		80		100		MHz
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Q or $\overline{\mathrm{Q}}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	3.0 3.0	$\begin{gathered} \hline 8.5 \\ 10.0 \end{gathered}$	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter	54/74F			54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW I_{n} to CP	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW I_{n} to CP	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW S to CP	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{th}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW S to CP	0			0		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \hline 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns

