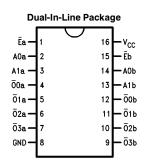
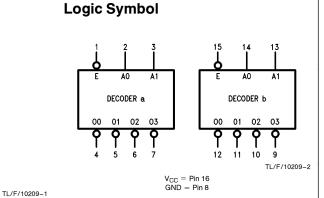


9321/DM9321 Dual 1-of-4 Decoder


General Description


The 9321 consists of two independent multipurpose decoders, each designed to accept two inputs and provide four mutually exclusive outputs. In addition an active LOW enable input, which gives demultiplexing capability, is provided for each decoder.

Features

- Multifunction capability
- Mutually exclusive outputs
- Demultiplexing capability
- Active low enable for each decoder

Connection Diagram

Order Number 9321DMQB, 9321FMQB or DM9321N See NS Package Number J16A, N16E or W16A

Pin Names	Description
Ēa, Ēb	Enable Inputs (Active LOW)
A0a, A1a, A0b, A1b	Address Inputs
00a-03a 00b-03b	Decoder Outputs (Active LOW)

© 1995 National Semiconductor Corporation TL/F/10209

RRD-B30M105/Printed in U. S. A.

9321/DM9321 Dual 1-of-4 Decoder

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
MIL	-55°C to +125°C
COMM	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			v
V _{IL}	Low Level Input Voltage			0.8			0.8	V
I _{OH}	High Level Output Current			-0.8			-0.8	mA
I _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	- 55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -10 \text{ mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OH} = \text{Max,} \\ V_{IL} &= \text{Max, V}_{IH} = \text{Min} \end{split}$		2.4			V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min}, \text{V}_{IL} = \text{Max} \end{split}$				0.4	V
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$				40	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-1.6	mA
I _{OS}	Short Circuit	V _{CC} = Max	MIL	-20		-70	mA
	Output Current	(Note 2)	СОМ	-1.3		-3.7	ΠD
ICC	Supply Current	V _{CC} = Max (Note 3)				50	mA

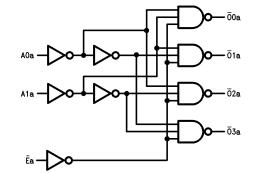
Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

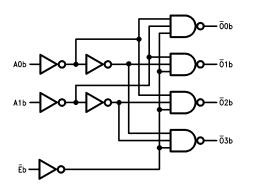
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

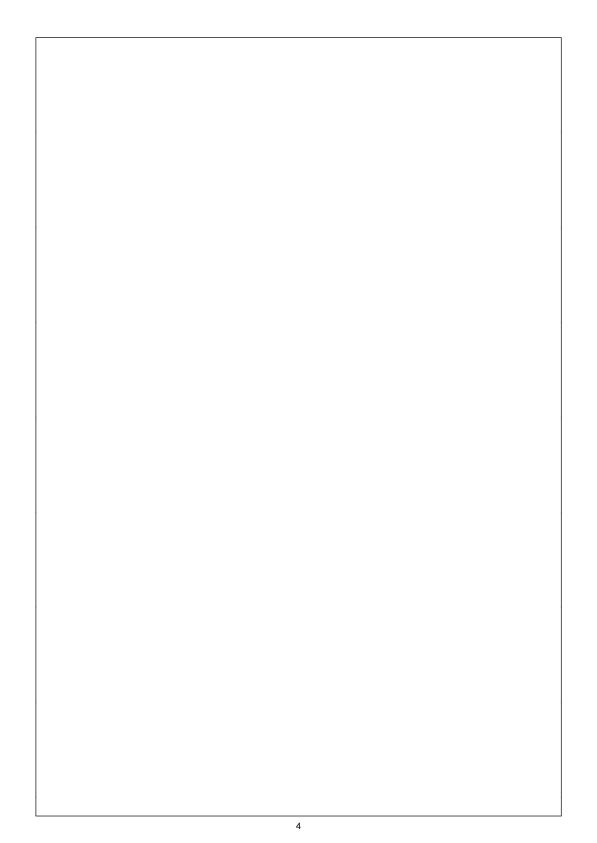
Symbol	Parameter	C _L =	Units	
	i di difettori	Min	Мах	Units
t _{PLH} t _{PHL}	Propagation Delay, An to On		20 21	ns
t _{PLH} t _{PHL}	Propagation Delay, E to On		14 18	ns

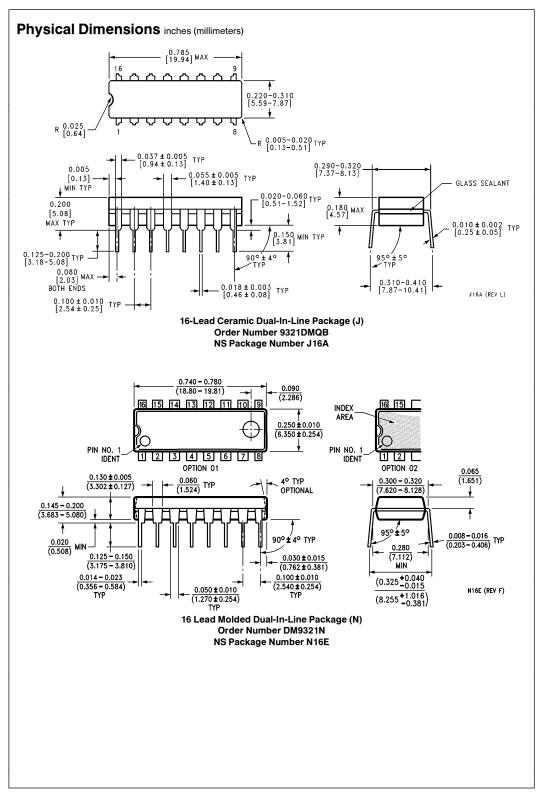
Functional Description

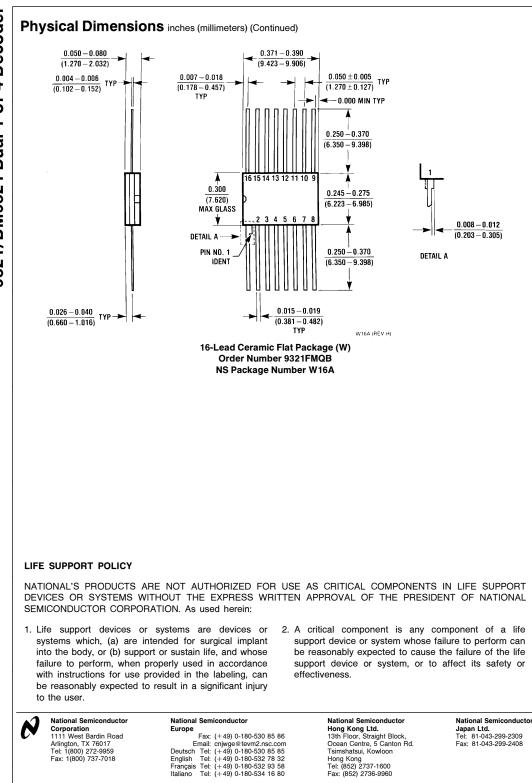

The 9321 consists of two separate decoders each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs as shown in the logic symbol. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.


Truth Table (Each Decoder)

Inputs			Outputs			
Ē	A0	A1	0 0	01	<u>0</u> 2	0 3
L	L	L	L	н	н	н
L	н	L	н	L	н	н
L	L	н	н	н	L	н
L	н	н	н	н	н	L
Н	Х	Х	н	Н	Н	Н


$\begin{array}{l} \mathsf{H} = \mathsf{HIGH} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{X} = \mathsf{Immaterial} \end{array}$


Logic Diagram



TL/F/10209-3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications