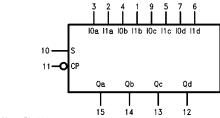


October 1988 Revised March 2000

DM74LS298 Quad 2-Port Register Multiplexer with Storage

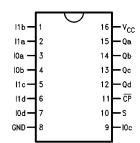
General Description

The DM74LS298 is a guad 2-port register. It is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input.


Features

- Select from two data sources
- Fully edge-triggered operation
- Typical power dissipation of 65 mW

Ordering Code:


Order Number	Package Number	Package Description
DM74LS298N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Logic Symbol

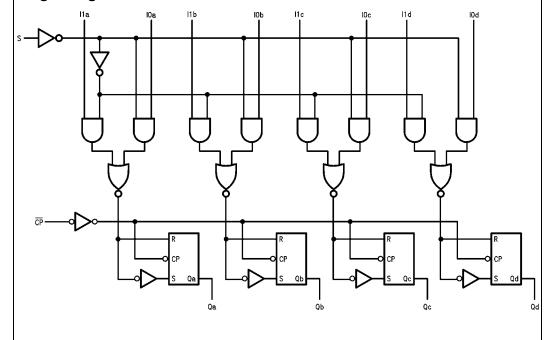
 $V_{CC} = Pin 16$ GND = Pin 8

Connection Diagram

Pin Descriptions

Pin Names	Description
S	Common Select Inputs
CP	Clock Pulse Input (Active Falling Edge)
10 _a , 10 _d	Source 0 Data Inputs
10 _a , 10 _d 11 _a , 11 _d	Source 1 Data Inputs
	Flip-Flip Outputs

Truth Table


Inputs			Output
S	10 _x	I1 _x	Q _x
I	I	Х	L
1	h	X	Н
h	X	1	L
h	Χ	h	Н

- I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock
- $h = HIGH\ Voltage\ Level\ one\ setup\ time\ prior\ to\ the\ HIGH-to-LOW\ clock$ transition.
 H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial

Functional Description

This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input $\overline{(CP)}$. The 4-bit output register is fully edge-triggered. The Data inputs (I_{nx}) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable operation.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range 0°C to +70°C
Storage Temperature Range -65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage	2			V	
V _{IL}	LOW Level Input Voltage			0.8	V	
I _{OH}	HIGH Level Output Current			-0.4	mA	
I _{OL}	LOW Level Output Current			8	mA	
T _A	Free Air Operating Temperature	0		70	°C	
t _S (H)	Setup Time HIGH or LOW	25			no	
t _S (L)	S to CP	25			ns	
t _H (H)	Hold Time HIGH or LOW	0			ns	
t _H (L)	S to CP	0				
t _S (H)	Setup Time HIGH or LOW	15			no	
t _S (L)	I0 _x or I1 _x to $\overline{\text{CP}}$	15			ns	
t _H (H)	Hold Time HIGH or LOW	5.0			no	
t _H (L)	I0 _x or I1 _x to $\overline{\text{CP}}$	5.0			ns	
t _W (H)	CP Pulse Width HIGH or LOW	20				
t _W (L)		20			ns	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4	Ĭ
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max$, $V_I = 7V$, $V_I = 10V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
Icc	Supply Current	$V_{CC} = Max, I0_n, I1_n,$ $S = GND, \overline{CP} = $			21	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = +5V$ and $T_A = +25^{\circ}C$

Symbol	Parameter	$R_L = 2 \text{ k}\Omega, C_L = 15 \text{ pF}$		Units
	Farameter	Min	Max	Units
t _{PLH}	Propagation Delay Time			
	LOW-to-HIGH Level Output		25	ns
	CP to Q _n			
t _{PHL}	Propagation Delay Time			
	HIGH-to-LOW Level Output		25	ns
	CP to Q _n			

Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.740 - 0.780}{(18.80 - 19.81)}$ (2.286) 14 13 12 11 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 1 2 3 4 5 6 7 8 **IDENT** OPTION 01 OPTION 02 0.065 $\frac{0.130 \pm 0.005}{(3.302 \pm 0.127)}$ $\frac{0.060}{(1.524)}$ 4° TYP OPTIONAL 0.300 - 0.320 (1.651)(7.620 - 8.128) $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 95° ± 5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 90° ± 4° TYP 0.020 $\frac{0.280}{(7.112)}$ (0.508)0.125 - 0.150 (3.175 - 3.810) 0.030 ± 0.015 (0.762 ± 0.381) MIN 0.014 - 0.023 0.100 ± 0.010 (0.325 +0.040

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

0.050 ± 0.010

 (1.270 ± 0.254)

(2.540 **±** 0.254) TYP

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

(0.356 - 0.584) TYP

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

N16E (REV F)

(8.255 +1.016 -0.381