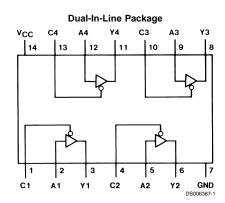
March 1998

FAIRCHILD

DM74LS125A Quad 3-STATE Buffers

General Description


This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a signifi-

cant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

■ Alternate Military/Aerospace device (54LS125) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS125ADMQB, 54LS125AFMQB, 54LS125ALMQB, DM54LS125AJ, DM54LS125AW, DM74LS125AM or DM74LS125AN See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Inp	uts	Output			
Α	С	Y			
L	L	L			
н	L	н			
Х	н	Hi-Z			

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level Hi-Z = 3-STATE (Outputs are disabled)

© 1998 Fairchild Semiconductor Corporation DS006387

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS125A			DM74LS125A			Units
		Min	Nom	Max	Min	Nom	Max]
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-1			-2.6	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

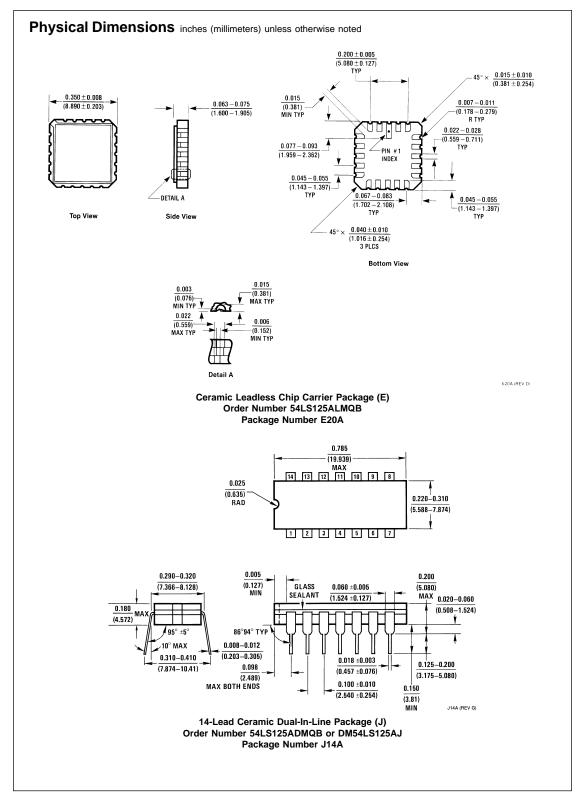
7V

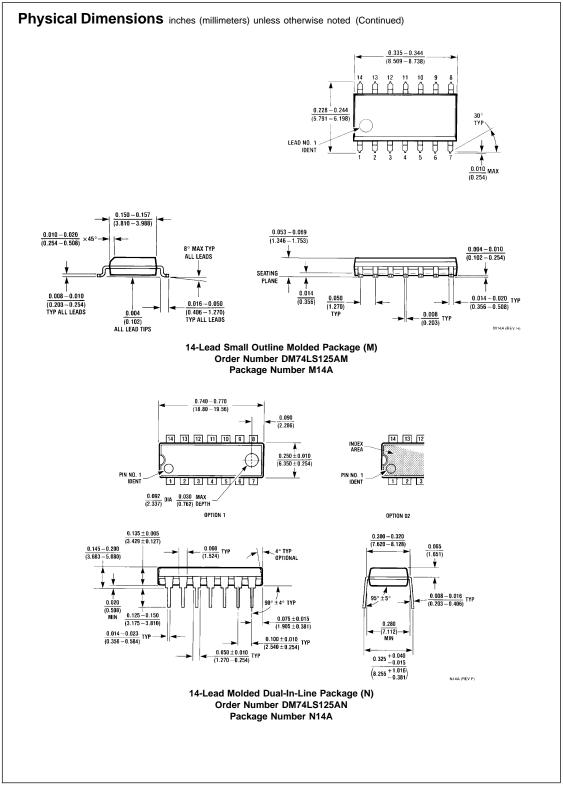
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

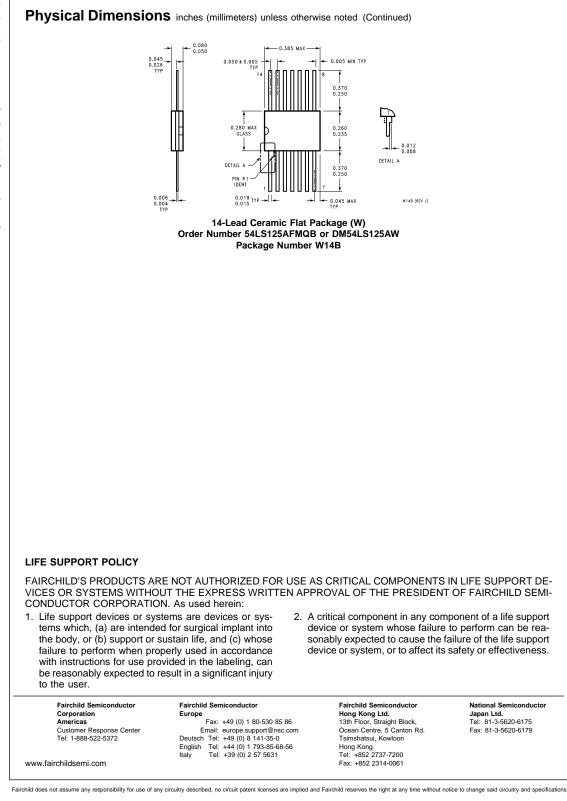
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter Conditions			Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V_{CC} = Min, I_{OH} = Max		2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
l _{iH}	High Level Input	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
	Current						
I _{IL}	Low Level Input	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
	Current						
I _{ozh}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.4V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μA
	Voltage Applied						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			11	20	mA


Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 4: I_{CC} is measured with the data control (C) inputs at 4.5V and the data inputs grounded.

	Parameter					
Symbol		C _L = 50 pF		C _L = 1	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low		15		21	ns
	to High Level Output					
t _{PHL}	Propagation Delay Time High		18		22	ns
	to Low Level Output					
t _{PZH}	Output Enable Time to		25		35	ns
	High Level Output					
t _{PZL}	Output Enable Time to		25		40	ns
	Low Level Output					
t _{PHZ}	Output Disable Time from		20			ns
	High Level Output (Note 5)					
t _{PLZ}	Output Disable Time from		20			ns
	Low Level Output (Note 5)					

Note 5: $C_{L} = 5pF$.

