INTEGRATED CIRCUITS

DATA SHEET

74F620

Octal bus transceiver, inverting (3tate) **74F623**

Octal bus transceiver, non-inverting (3tate)

Product specification

1989 Apr 06

IC15 Data Handbook

Transceivers 74F620/74F623

74F620 Octal Bus Transceiver, Inverting (3-State) 74F623 Octal Bus Transceiver, Non-Inverting (3-State)

FEATURES

- High-impedance NPN base inputs for reduced loading (70μA in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Octal bidirectional bus interface
- 3-State buffer outputs sink 64mA and source 15mA
- 74F620, inverting
- 74F623, non-inverting

DESCRIPTION

The 74F620 is an octal transceiver featuring inverting 3-State bus-compatible outputs in both send and receive directions. The outputs are capable of sinking 64mA and sourcing up to 15mA, providing very good capacitive drive characteristics. The 74F623 is a non-inverting version of the 74F620.

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

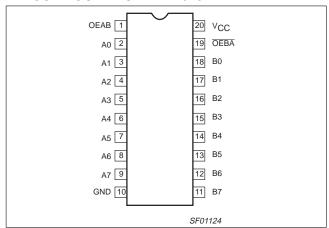
These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the

Enable inputs (OEBA and OEAB). The Enable inputs can be used to disable the device so that the buses are effectively isolated.

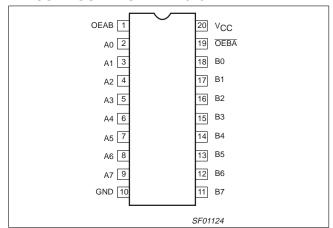
The dual-enable configuration gives the 74F620 and 74F623 the capability to store data by the simultaneous enabling of $\overline{\text{OEBA}}$ and OEAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high impedance, both sets of bus lines (16 in all) will remain in their last states.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F620	3.5ns	80mA
74F623	4.5ns	105mA

ORDERING INFORMATION

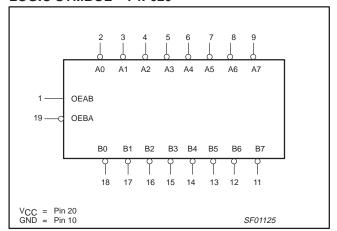

DESCRIPTION		PKG DWG #
20-pin plastic DIP	N74F620N, N74623N	SOT146-1
20-pin plastic SOL	N74F620D, N74623D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

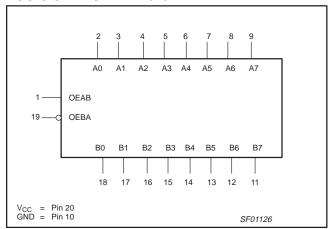

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7, B0 - B7	Data inputs	3.5/1.16	70μΑ/70μΑ
OEBA, OEAB	Output Enable inputs	1.0/0.033	20μΑ/20μΑ
A0 - A7	Data outputs	150/40	3mA/24mA
B0 - B7	Data outputs	750/106.7	15mA/64mA

NOTE: One (1.0) FAST unit load is defined as: 20µA in the High state and 0.6mA in the Low state.

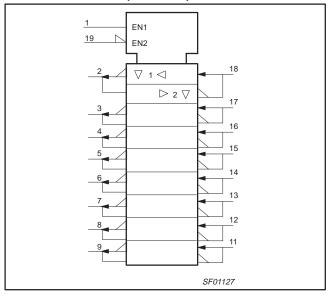
PIN CONFIGURATION - 74F620

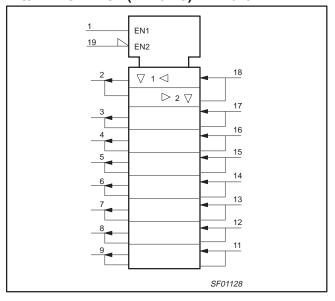


PIN CONFIGURATION - 74F623

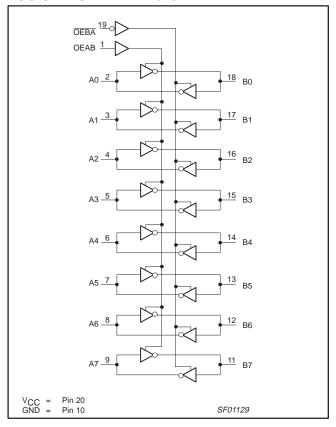


Transceivers 74F620/74F623

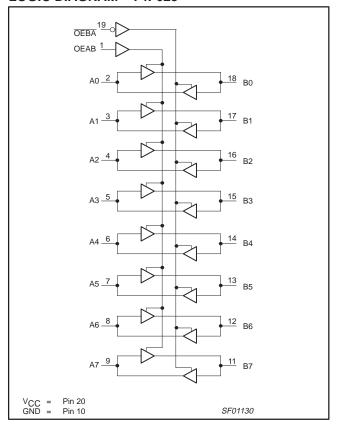

LOGIC SYMBOL - 74F620


LOGIC SYMBOL - 74F623

IEC/IEEE SYMBOL (IEEE/IEC) - 74F620



IEC/IEEE SYMBOL (IEEE/IEC) - 74F623



Transceivers 74F620/74F623

LOGIC DIAGRAM - 74F620

LOGIC DIAGRAM - 74F623

FUNCTION TABLE

INPL	JTS	OPERATING MODES					
OEBA	OEAB	74F620	74F623				
L	L	B data to A bus	B data to A bus				
Н	Н	A data to B bus	A data to B bus				
Н	L	Z	Z				
	Н	B data to A bus	B data to A bus				
		A data to B bus	A data to B bus				

H = High voltage level
L = Low voltage level
X = Don't care
Z = High impedance "off" state

Transceivers 74F620/74F623

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING UNI		
V _{CC}	Supply voltage		−0.5 to +7.0	V	
V _{IN}	Input voltage		-0.5 to +7.0	V	
I _{IN}	Input current		-30 to +5	mA	
V _{OUT}	Voltage applied to output in High output state	–0.5 to +V _{CC}	V		
	Command and lind to a side of in Land authority of the	A0-A7	48	mA	
IOUT	Current applied to output in Low output state	B0-B7	128	mA	
T _{amb}	Operating free-air temperature range		0 to +70	°C	
T _{stg}	Storage temperature range		-65 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

CVMDOL	DADAA	ACTED			LINUT		
SYMBOL	PARAM	METER	MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		4.5	5.0	5.5	V	
V _{IH}	High-level input voltage		2.0			V	
V _{IL}	Low-level input voltage				0.8	V	
I _{IK}	Input clamp current			-18	mA		
	Llieb lovel output ourrent	A0–A7			-3	mA	
IOH	nigh-lever output current	High-level output current B0-B7				mA	
	Laurelaurelauren	A0–A7			24	mA	
loL	Low-level output current	B0-B7			64	mA	
T _{amb}	Operating free-air temperature range	÷	0		70	°C	

1990 Apr 6 5

Transceivers 74F620/74F623

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

								LIMITS		
SYMBOL	PARA	METER		TEST	TEST CONDITIONS ^{NO TAG}				MAX	UNIT
			A0-A7)	±10%V _{CC}	2.4			V
V	High-level output voltage		B0-B7	$V_{CC} = MIN,$ $V_{IL} = MAX,$	$I_{OH} = -3mA$	±5%V _{CC}	2.7	3.3		V
V _{OH}	nigh-level output vi	Jilage	B0-B7	$V_{IH} = MIN$	I _{OH} = -15mA	±10%V _{CC}	2.0			V
			D0-D1		10H = -13111A	±5%V _{CC}	2.0			V
			A0–A7		I _{OL} = 24mA	±10%V _{CC}		0.35	0.50	V
V_{OL}	Low-level output vo	oltage	AO AI	$V_{CC} = MIN,$ $V_{IL} = MAX,$	10L = 24111A	±5%V _{CC}		0.35	0.50	V
VOL	Low level output ve	ладо	B0-B7	$V_{IH} = MIN,$	$I_{OL} = 48mA$	±10%V _{CC}		0.38	0.55	V
		DU-D1			$I_{OL} = 64mA$	±5%V _{CC}		0.42	0.55	V
V_{IK}	Input clamp voltage)		$V_{CC} = MIN, I_I$	= I _{IK}			-0.73	-1.2	V
l _l	Input current at ma	ximum	OEBA, OEAB	$V_{CC} = 0.0V, V$			100	μА		
	input voltage others			$V_{CC} = 5.5V, V$			1	mA		
I _{IH}	High-level input cur	rent	OEBA, OEAB	V _{CC} = MAX, \			20	μΑ		
I _{IL}	Low-level input cur	rent	only	V _{CC} = MAX, \	/ _I = 0.5V				-20	μА
I _{OZH} +I _{IH}	Off-state output cui High-level of voltag		A0–A7	V _{CC} = MAX, \	/ _I = 2.7V				70	μΑ
I _{OZL} +I _{IL}	Off-state output cui		B0–B7	V _{CC} = MAX, \	/ _I = 0.5V				-70	μА
laa	Short-circuit output	cur-	A0-A7	V _{CC} = MAX			-60		-150	mA
los	rent ^{NO TAG}		B0-B7	ACC = INIXX			-100		-225	mA
			Іссн		OEBA=OEAB=4.5V; A0-A7=GND			70	92	mA
		74F620	I _{CCL}	$V_{CC} = MAX$	OEBA=OEAB= A0-A7=4.5V	=4.5V;		84	110	mA
1	Supply current		I _{CCZ}		OEAB=GND; OEBA=A0-A7	OEAB=GND; OEBA=A0-A7=4.5V		84	110	mA
Icc	(total)		Іссн		OEBA=OEAB=4.5V; A0-A7=4.5V			110	140	mA
		74F623	I _{CCL}	V _{CC} = MAX	OEBA=OEAB=4.5V; A0-A7=GND			110	140	mA
			I _{CCZ}	1	OEAB=GND; OEBA=A0-A7=4.5V			99	130	mA

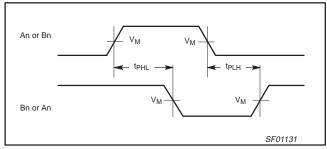
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
 All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Transceivers 74F620/74F623

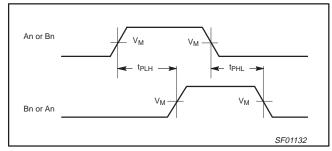
AC ELECTRICAL CHARACTERISTICS - 74F620

SYMBOL	PARAMETER	TEST CONDITION	V_{CC} = +5V T_{amb} = +25°C C_L = 50pF, R_L = 500 Ω			V _{CC} = +5 T _{amb} = 0°C C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay An to Bn	Waveform 2	2.5 1.0	4.5 2.5	6.5 4.5	2.0 1.0	7.5 5.0	ns
t _{PLH} t _{PHL}	Propagation delay Bn to An	Waveform 2	2.5 1.0	4.5 2.5	6.5 4.5	2.0 1.0	7.5 5.0	ns
t _{PZH}	Output Enable time to High or Low level, OEBA to An	Waveform 3 Waveform 4	3.0 4.0	7.5 7.5	10.5 10.5	2.5 3.5	11.5 11.5	ns
t _{PHZ}	Output Disable time to High or Low level, OEBA to An	Waveform 3 Waveform 4	2.5 2.0	4.5 4.5	7.5 7.0	2.0 1.5	8.0 7.5	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level, OEAB to Bn	Waveform 3 Waveform 4	4.5 4.5	7.5 7.5	10.5 10.0	4.0 4.0	11.5 11.0	ns
t _{PHZ}	Output Disable time to High or Low level, OEAB to Bn	Waveform 3 Waveform 4	3.0 4.0	6.5 6.5	9.5 9.5	2.5 3.5	10.5 10.5	ns

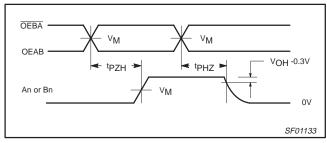
AC ELECTRICAL CHARACTERISTICS – 74F623


					UNIT			
SYMBOL	PARAMETER	TEST CONDITION	V_{CC} = +5V T_{amb} = +25°C C_L = 50pF, R_L = 500 Ω			V _{CC} = +5 T _{amb} = 0°C C _L = 50pF,		
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay An to Bn	Waveform 1	2.0 3.0	4.0 5.0	5.5 7.0	2.0 2.5	6.5 7.5	ns
t _{PLH} t _{PHL}	Propagation delay Bn to An	Waveform 1	2.0 2.5	4.0 4.5	5.5 6.5	2.0 2.5	6.5 7.5	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level, OEBA to An	Waveform 3 Waveform 4	5.0 5.0	8.5 7.5	10.5 9.5	5.0 5.0	12.0 10.0	ns
t _{PHZ} t _{PLZ}	Output Disable time to High or Low level, OEBA to An	Waveform 3 Waveform 4	2.5 2.5	4.5 4.5	6.5 6.5	2.5 2.5	7.5 7.0	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level, OEAB to Bn	Waveform 3 Waveform 4	5.0 4.5	8.0 7.0	10.0 9.0	5.0 4.5	11.5 9.5	ns
t _{PHZ}	Output Disable time to High or Low level, OEAB to Bn	Waveform 3 Waveform 4	3.0 4.0	6.0 7.0	8.5 9.0	3.0 4.0	10.0 10.0	ns

1990 Apr 6 7

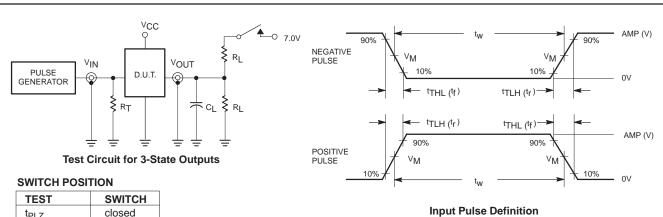

Transceivers 74F620/74F623

AC WAVEFORMS


For all waveforms, $V_M = 1.5V$.

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs



Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS:

R_L = Load resistor;

see AC electrical characteristics for value.

C_L = Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

family	INP	INPUT PULSE REQUIREMENTS										
ranniny	amplitude	V_{M}	rep. rate	t _w	t _{TLH}	t _{THL}						
74F	3.0V	1.5V	1MHz	500ns	2.5ns	2.5ns						


SF00777

1990 Apr 6 8

Transceivers 74F620, 74F623

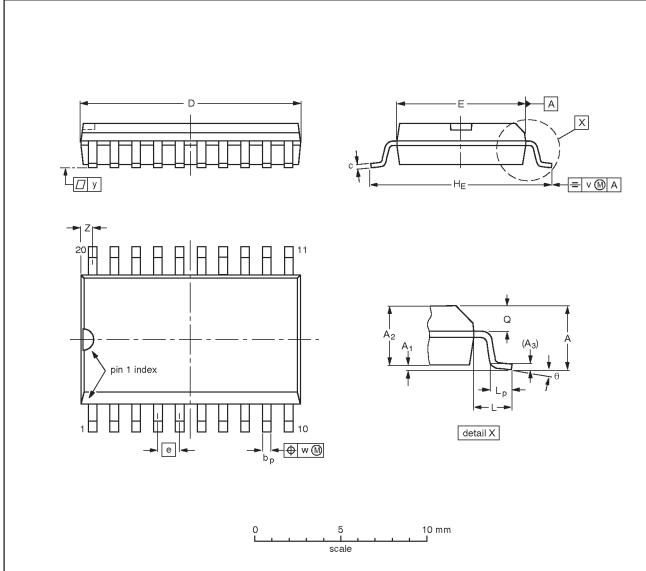
DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
	SOT146-1			SC603		92-11-17 95-05-24

Transceivers 74F620, 74F623

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	Ьp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

	OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
	SOT163-1	075E04	MS-013AC			-95-01-24 97-05-22	

1990 Apr 06 10

Transceivers 74F620, 74F623

NOTES

1990 Apr 06 11

Transceivers 74F620, 74F623

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05146

Let's make things better.

Philips Semiconductors

