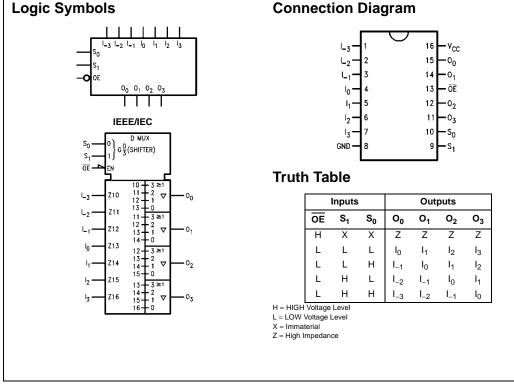
April 1988 Revised August 1999

74F350 4-Bit Shifter with 3-STATE Outputs

General Description

FAIRCHILD

SEMICONDUCTOR


The 74F350 is a specialized multiplexer that accepts a 4-bit word and shifts it 0, 1, 2 or 3 places, as determined by two Select $(S_0,\,S_1)$ inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8-bit word, four packages a 16-bit word, etc. Shifting by more than three places is accomplished by paralleling the 3-STATE outputs of different packages and using the Output Enable (\overline{OE}) inputs as a third Select level. With appropriate interconnections, the 74F350 can perform zero-backfill, sign-extend or end-around (barrel) shift functions.

Features

- Linking inputs for word expansion
- 3-STATE outputs for extending shift range

Ordering Code:

Order Number	Package Number	Package Description					
74F350SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow					
74F350SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F350PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
		/ by appending the suffix letter "X" to the ordering code					

© 1999 Fairchild Semiconductor Corporation DS009518

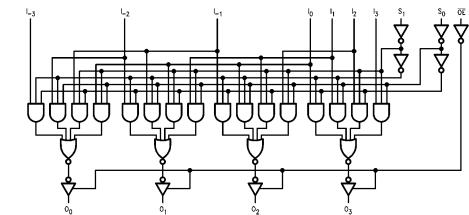
74F350

Unit Loading/Fan Out

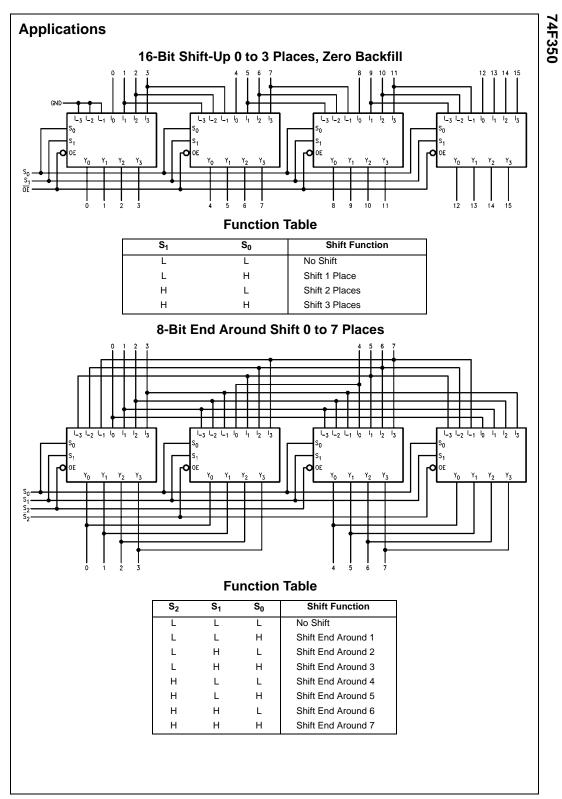
Din Namaa	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
S ₀ , S ₁	Select Inputs	1.0/2.0	20 μA/–1.2 mA		
I_3–I3	Data Inputs	1.0/2.0	20 μA/–1.2 mA		
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
O ₀ O ₃	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

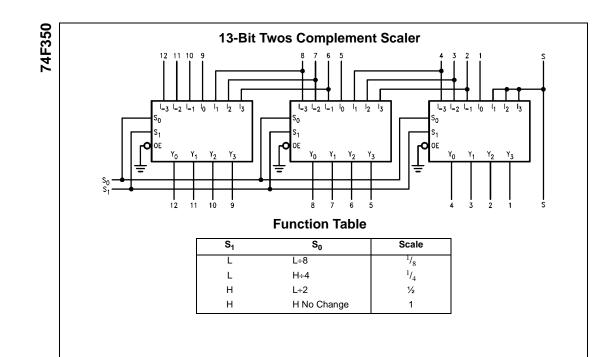
Functional Description

The 74F350 is operationally equivalent to a 4-input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of 0, 1, 2 or 3 places on words of any length.


A 4-bit data word is introduced at the I_n inputs and is shifted according to the code applied to the select inputs S₀, S₁. Outputs O₀-O₃ are 3-STATE, controlled by an active LOW output enable (\overline{OE}). When \overline{OE} is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or to a common bus. The shift function can be

Logic Diagram


logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.


Logic Equations

 $\begin{array}{l} O_0 = \overline{S}_0\overline{S}_1I_0 + S_0\overline{S}_1I_{-1} + \overline{S}_0S_1I_{-2} + S_0S_1I_{-3}\\ O_1 = \overline{S}_0\overline{S}_1I_1 + S_0\overline{S}_1I_0 + \overline{S}_0S_1I_{-1} + S_0S_1I_{-2}\\ O_2 = \overline{S}_0\overline{S}_1I_2 + S_0\overline{S}_1I_1 + \overline{S}_0S_1I_0 + S_0S_1I_{-1}\\ O_3 = \overline{S}_0\overline{S}_1I_3 + S_0\overline{S}_1I_2 + \overline{S}_0S_1I_1 + S_0S_1I_0 \end{array}$

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with V_{CC} = 0V) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

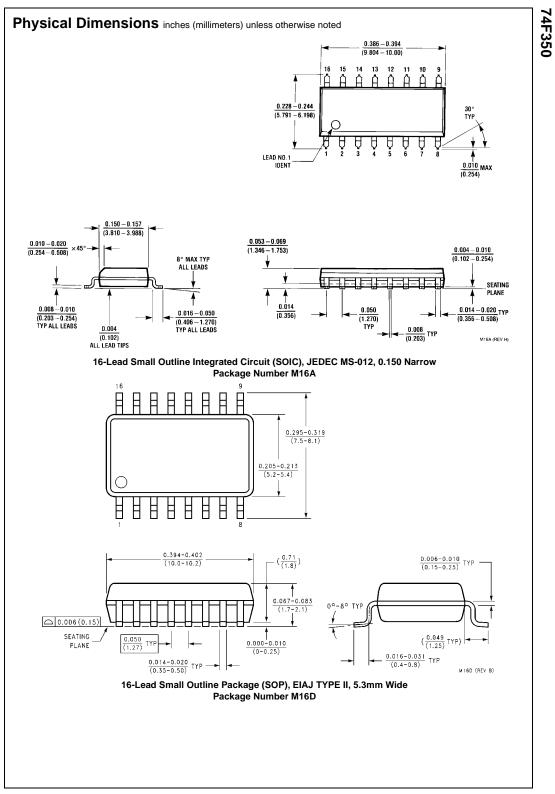
0°C to +70°C

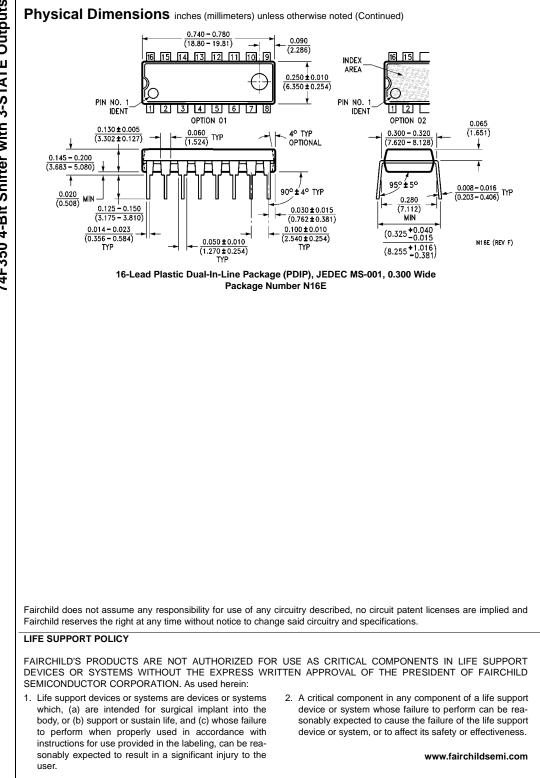
+4.5V to +5.5V

74F350

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


Symbol	Parameter		Min	Тур	Мах	Units	v _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$
		10% V _{CC}	2.7					I _{OH} = -3 mA
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
I _{IH}	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΑ	IVIAX	$v_{IN} = 7.0v$
I _{CEX}	Output HIGH				50	A	Max	V V
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage			3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-1.2	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
ICCH	Power Supply Current			34	42	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			40	57	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			40	57	mA	Max	V _O = HIGH Z


DC Electrical Characteristics

74F350

AC Electrical Characteristics

	Parameter		$\textbf{T}_{\textbf{A}}=+\textbf{25}^{\circ}\textbf{C}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Units	
Symbol			V _{CC} = +5.0V	,				
		$C_L = 50 \text{ pF}$			$C_L = 50 \ pF$		Units	
		Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.0	4.5	6.0	3.0	7.0	ns	
t _{PHL}	I _n to O _n	2.5	4.0	5.5	2.5	6.5		
t _{PLH}	Propagation Delay	4.0	7.8	10.0	4.0	13.5	ns	
t _{PHL}	S _n to O _n	3.0	6.5	8.5	3.0	9.5	115	
t _{PZH}	Output Enable Time	2.5	5.0	7.0	2.5	8.0		
t _{PZL}		4.0	7.0	9.0	4.0	10.0	ns	
t _{PHZ}	Output Disable Time	2.0	3.9	5.5	2.0	6.5	113	
t _{PLZ}		2.0	4.0	5.5	2.0	7.5		

74F350 4-Bit Shifter with 3-STATE Outputs