
Erlang/OTP System Documentation
Copyright © 1997-2014 Ericsson AB. All Rights Reserved.

Erlang/OTP System Documentation 6.3
December 9, 2014



Copyright © 1997-2014 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

December 9, 2014



Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1



1.1  Installing the Binary Release

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1    Installation Guide

How to install Erlang/OTP on UNIX or Windows.

1.1  Installing the Binary Release
1.1.1  Windows
Introduction
The system is delivered as a Windows Installer executable. Get it from our download page.

Installation
The installation procedure is is automated. Double-click the .exe file icon and follow the instructions.

Verification
• Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.

Expect a command line window to pop up with an output looking something like this:

  Erlang/OTP 17 [erts-6.0] [64-bit] [smp:2:2]

  Eshell V6.0  (abort with ^G)
  1>

• Exit by entering the command halt(),

  2> halt().

which will close the Erlang/OTP shell.

1.2  Building and Installing Erlang/OTP
1.2.1  Introduction
This document describes how to build and install Erlang/OTP-17. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. You are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

• http://www.erlang.org

• https://github.com/erlang/otp

1.2.2  Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

href
href
href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

Warning:
Please have a look at the Known platform issues chapter before you start.

Unpacking
• GNU unzip, or a modern uncompress.

• A TAR program that understands the GNU TAR format for long filenames.

Building
• GNU make

• Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, clang.

• Perl 5

• GNU m4 -- If HiPE (native code) support is enabled. HiPE can be disabled using --disable-hipe

• ncurses, termcap, or termlib -- The development headers and libraries are needed, often known as
ncurses-devel. Use --without-termcap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

• sed -- Stream Editor for basic text transformation.

Building in Git

• GNU autoconf of at least version 2.59. Note that autoconf is not needed when building an unmodified
version of the released source.

Building on OS X

• Xcode -- Download and install via the Mac App Store. Read about Building on a Mac before proceeding.

Installing
• An install program that can take multiple file names.

1.2.3  Optional Utilities
Some applications are automatically skipped if the dependencies aren't met. Here is a list of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building
• OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building

the application crypto. Further, ssl and ssh require a working crypto application and will also be skipped if
OpenSSL is missing. The public_key application will available without crypto, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl. At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

• Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface and parts of ic and orber. At least version 1.5.0 of the JDK is required.

Download from http://www.oracle.com/technetwork/java/javase/downloads. We have also tested with IBM's
JDK 1.5.0.

• X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

• flex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

href
href
href


1.2  Building and Installing Erlang/OTP

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgets is required.

Download from http://sourceforge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation
• xsltproc -- A command line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSLT/
xsltproc2.html.

• fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

1.2.4  How to Build and Install Erlang/OTP
The following instructions are for building the released source tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take a look at the Building in Git section below before proceeding.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp_src_17.4.tar.gz    # Assuming bash/sh

Now change directory into the base directory and set the $ERL_TOP variable.

$ cd otp_src_17.4
$ export ERL_TOP=`pwd`    # Assuming bash/sh

Configuring
Run the following commands to configure the build:

$ ./configure [ options ]

Note:
If you are building Erlang/OTP from git you will need to run ./otp_build autoconf to generate the
configure scripts.

By default, Erlang/OTP release will be installed in /usr/local/{bin,lib/erlang}. If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in /opt/erlang/17.4/{bin,lib/erlang}, use the --prefix=/opt/erlang/17.4 option.

href
href
href
href
href
href
href
href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C   # Assuming bash/sh

Building
Build the Erlang/OTP release.

$ make

Testing
Before installation you should test whether your build is working properly by running our smoke test. The smoke test
is a subset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release_tests

This creates an additional folder in $ERL_TOP/release called tests. Now, it's time to start the smoke test.

$ cd release/tests/test_server
$ $ERL_TOP/bin/erl -s ts install -s ts smoke_test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/release/tests/test_server/index.html
in your web browser and make sure that there are zero failed test cases.

Note:
On builds without crypto, ssl and ssh there is a failed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Installing
You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running
You should now have a working release of Erlang/OTP! Jump to System Principles for instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.



1.2  Building and Installing Erlang/OTP

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran configure and do not need to
do this again; otherwise, run configure.

$ ./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-17.4 system in the $PATH.

$ export PATH=$ERL_TOP/bin:$PATH     # Assuming bash/sh

Build the documentation.

$ make docs

Build Issues

We have sometimes experienced problems with Oracle's java running out of memory when running fop. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at

• http://xmlgraphics.apache.org/fop/0.95/running.html#memory.

How to Install the Documentation
The documentation can be installed either using the install-docs target, or using the release_docs target.

• If you have installed Erlang/OTP using the install target, install the documentation using the install-
docs target. Install locations determined by configure will be used. $DESTDIR can be used the same way
as when doing make install.

$ make install-docs

• If you have installed Erlang/OTP using the release target, install the documentation using the release_docs
target. You typically want to use the same RELEASE_ROOT as when invoking make release.

$ make release_docs RELEASE_ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

• Reading man pages. Make sure that erl is referring to the installed version. For example /usr/local/bin/
erl. Try viewing at the man page for Mnesia

href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

$ erl -man mnesia

• Browsing the html pages by loading the page /usr/local/lib/erlang/doc/erlang/index.html or
<BaseDir>/lib/erlang/doc/erlang/index.html if the prefix option has been used.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded from

• http://www.erlang.org/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html_17.4.tar.gz

For erl -man <page> to work the Unix manual pages have to be installed in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp_man_17.4.tar.gz

Where <ReleaseDir> is

• <PrefixDir>/lib/erlang if you have installed Erlang/OTP using make install.

• $DESTDIR<PrefixDir>/lib/erlang if you have installed Erlang/OTP using make install
DESTDIR=<TmpInstallDir>.

• RELEASE_ROOT if you have installed using make release RELEASE_ROOT=<ReleaseDir>.

1.2.5  Advanced configuration and build of Erlang/OTP
If you want to tailor your Erlang/OTP build and installation, please read on for detailed information about the individual
steps.

make and $ERL_TOP
All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The configure script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_TOP variable before you run make.

For example, assume your GNU make program is called make and you want to rebuild the application STDLIB, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make

where <Dir> would be what you find ERL_TOP is set to in the top level Makefile.

otp_build vs configure/make
Building Erlang/OTP can be done either by using the $ERL_TOP/otp_build script, or by invoking $ERL_TOP/
configure and make directly. Building using otp_build is easier since it involves fewer steps, but the

href
href
href


1.2  Building and Installing Erlang/OTP

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

otp_build build procedure is not as flexible as the configure/make build procedure. The binary releases for
Windows that we deliver are built using otp_build.

Configuring
The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
a number of makefiles.

The configure script allows you to customize a number of parameters; type ./configure --help or ./
configure --help=recursive for details. ./configure --help=recursive will give help for all
configure scripts in all applications.

One of the things you can specify is where Erlang/OTP should be installed. By default Erlang/OTP will be installed in
/usr/local/{bin,lib/erlang}. To keep the same structure but install in a different place, <Dir> say, use
the --prefix argument like this: ./configure --prefix=<Dir>.

Some of the available configure options are:

• --prefix=PATH - Specify installation prefix.

• --{enable,disable}-threads - Thread support. This is enabled by default if possible.

• --{enable,disable}-smp-support - SMP support (enabled by default if a usable POSIX thread library
or native Windows threads is found)

• --{enable,disable}-kernel-poll - Kernel poll support (enabled by default if possible)

• --{enable,disable}-hipe - HiPE support (enabled by default on supported platforms)

• --{enable,disable}-fp-exceptions - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling this
you might get a seemingly working system that sometimes fail on floating point operations.

• --enable-darwin-universal - Build universal binaries on darwin i386.

• --enable-darwin-64bit - Build 64-bit binaries on darwin

• --enable-m64-build - Build 64-bit binaries using the -m64 flag to (g)cc

• --enable-m32-build - Build 32-bit binaries using the -m32 flag to (g)cc

• --with-assumed-cache-line-size=SIZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to try to
avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false sharing.

• --{with,without}-termcap - termcap (without implies that only the old Erlang shell can be used)

• --with-javac=JAVAC - Specify Java compiler to use

• --{with,without}-javac - Java compiler (without implies that the jinterface application won't be
built)

• --{enable,disable}-dynamic-ssl-lib - Dynamic OpenSSL libraries

• --{enable,disable}-builtin-zlib - Use the built-in source for zlib.

• --with-ssl=PATH - Specify location of OpenSSL include and lib

• --{with,without}-ssl - OpenSSL (without implies that the crypto, ssh, and ssl won't be built)

• --with-libatomic_ops=PATH - Use the libatomic_ops library for atomic memory accesses. If
configure should inform you about no native atomic implementation available, you typically want to try using
the libatomic_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

• --disable-smp-require-native-atomics - By default configure will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If this happens,
you are encouraged to find a native atomic implementation that can be used, e.g., using libatomic_ops, but
by passing --disable-smp-require-native-atomics you can build using a fallback implementation
based on mutexes or spinlocks. Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.

href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

• --enable-static-{nifs,drivers} - To allow usage of nifs and drivers on OSs that do not support
dynamic linking of libraries it is possible to statically link nifs and drivers with the main Erlang VM binary.
This is done by passing a comma separated list to the archives that you want to statically link. e.g. --enable-
static-nifs=/home/$USER/my_nif.a. The path has to be absolute and the name of the archive has to
be the same as the module, i.e. my_nif in the example above. This is also true for drivers, but then it is the driver
name that has to be the same as the filename. You also have to define STATIC_ERLANG_{NIF,DRIVER}
when compiling the .o files for the nif/driver. If your nif/driver depends on some other dynamic library, you now
have to link that to the Erlang VM binary. This is easily achived by passing LIBS=-llibname to configure.

• --without-$app - By default all applications in Erlang/OTP will be included in a release. If this is not wanted
it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. --without-
wx. There is no automatic dependency handling between applications. If you disable an application that another
application depends on, you also have to disable the dependant application.

• --enable-dirty-schedulers - Enable the experimental dirty schedulers functionality. Note that the
dirty schedulers functionality is experimental, and not supported. This functionality will be subject to backward
incompatible changes. Note that you should not enable the dirty scheduler functionality on production systems.
It is only provided for testing.

If you or your system has special requirements please read the Makefile for additional configuration information.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler on 32-bit and 64-bit x86, 32-bit and 64-bit SPARC V9, and 32-bit PowerPC. When
compiling with a gcc compatible compiler on other architectures, the VM may be able to make use of native atomic
operations using the __sync_* primitives, but this should only be used as a last resort since this wont give you
optimal performance. When compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory
operations are provided by Windows APIs.

You are recommended to use the native atomic implementation provided by Erlang/OTP, or the API provided
by Windows. If these do not provide native atomics on your platform, you are recommended to build and
install libatomic_ops before building Erlang/OTP. The libatomic_ops library provides native atomic memory
operations for a variety of platforms and compilers. When building Erlang/OTP you need to inform the build system
of where the libatomic_ops library is installed using the --with-libatomic_ops=PATH configure switch.

Building
Building Erlang/OTP on a relatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the -j<num_jobs> option.

$ export MAKEFLAGS=-j8    # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing a make clean.

Within Git

When building in a Git working directory you also have to have a GNU autoconf of at least version 2.59 on your
system, because you need to generate the configure scripts before you can start building.

The configure scripts are generated by invoking ./otp_build autoconf in the $ERL_TOP directory. The
configure scripts also have to be regenerated when a configure.in or aclocal.m4 file has been modified.

href


1.2  Building and Installing Erlang/OTP

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Note that when checking out a branch a configure.in or aclocal.m4 file may change content, and you may
therefore have to regenerate the configure scripts when checking out a branch. Regenerated configure scripts
imply that you have to run configure and build again.

Note:
Running ./otp_build autoconf is not needed when building an unmodified version of the released source.

Other useful information can be found at our GitHub wiki:

• http://wiki.github.com/erlang/otp

OS X (Darwin)

Make sure that the command hostname returns a valid fully qualified host name (this is configured in /etc/
hostconfig). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags -bundle -
flat_namespace -undefined suppress. You also include -fno-common in CFLAGS when compiling.
Use .so as the library suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" via the Downloads preference
pane in Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (wxWidgets-3.0.0.tar.bz2 from
http://sourceforge.net/projects/wxwindows/files/3.0.0/) or get it from github with bug fixes:

$ git clone --branch WX_3_0_branch git@github.com:wxWidgets/wxWidgets.git

Be aware that the wxWidgets-3.0 is a new release of wxWidgets, it is not as mature as the old releases and the OS
X port still lags behind the other ports.

Configure and build wxWidgets (on Mavericks - 10.9):

$ ./configure --with-cocoa --prefix=/usr/local
or without support for old versions and with static libs
$ ./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make
$ sudo make install
$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full

Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL_TOP
$ ./configure

href
href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

$ make
$ sudo make install

Pre-built Source Release

The source release is delivered with a lot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke ./otp_build remove_prebuilt_files from the $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:
Doing make clean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing ./otp_build save_bootstrap from the $ERL_TOP directory before doing make clean will
ensure that it will be possible to build after doing make clean. ./otp_build save_bootstrap will
be invoked automatically when make is invoked from $ERL_TOP with either the clean target, or the default
target. It is also automatically invoked if ./otp_build remove_prebuilt_files is invoked.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/erts/emulator.

In this directory execute:

$ make debug FLAVOR=$FLAVOR

where $FLAVOR is either plain or smp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. The files are installed along side with the normal (opt) versions beam.smp and beam.

To start the debug enabled runtime system execute:

$ $ERL_TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checks to help
a developer ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt, gcov, gprof, debug, valgrind, or lcnt. These different beam types are useful for
debugging and profiling purposes.

Installing
• Staged install using DESTDIR. You can perform the install phase in a temporary directory and later move the

installation into its correct location by use of the DESTDIR variable:

href


1.2  Building and Installing Erlang/OTP

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDIR. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDIR have not been set but
INSTALL_PREFIX has been set, DESTDIR will be set to INSTALL_PREFIX. Note that INSTALL_PREFIX
in pre R13B04 was buggy and behaved as EXTRA_PREFIX (see below). There are lots of areas of use for an
installation procedure using DESTDIR, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under /opt/local:

$ ./configure --prefix=/opt/local
$ make
$ make DESTDIR=/tmp/erlang-build install
$ cd /tmp/erlang-build/opt/local
$     # gnu-tar is used in this example
$ tar -zcf /home/me/my-erlang-build.tgz *
$ su -
Password: *****
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

• Install using the release target. Instead of doing make install you can create the installation in whatever
directory you like using the release target and run the Install script yourself. RELEASE_ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local/lib/erlang if you do the install using make install. All installation paths provided in the
configure phase are ignored, as well as DESTDIR, and INSTALL_PREFIX. If you want links from a specific
bin directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at /home/me/OTP:

$ ./configure
$ make
$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/OTP
$ ./Install -minimal /home/me/OTP
$ mkdir -p /home/me/bin
$ cd /home/me/bin
$ ln -s /home/me/OTP/bin/erl erl
$ ln -s /home/me/OTP/bin/erlc erlc
$ ln -s /home/me/OTP/bin/escript escript
...

The Install script should currently be invoked as follows in the directory where it resides (the top directory):

$ ./Install [-cross] [-minimal|-sasl] <ERL_ROOT>

where:

• -minimal Creates an installation that starts up a minimal amount of applications, i.e., only kernel and
stdlib are started. The minimal system is normally enough, and is what make install uses.

• -sasl Creates an installation that also starts up the sasl application.

• -cross For cross compilation. Informs the install script that it is run on the build machine.



1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

• <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. This is often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither -minimal, nor -sasl is passed as argument you will be prompted.

• Test install using EXTRA_PREFIX. The content of the EXTRA_PREFIX variable will prefix all installation paths
when doing make install. Note that EXTRA_PREFIX is similar to DESTDIR, but it does not have the same
effect as DESTDIR. The installation can and have to be run from the location specified by EXTRA_PREFIX.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA_PREFIX.

Symbolic Links in --bindir

When doing make install and the default installation prefix is used, relative symbolic links will be created from
/usr/local/bin to all public Erlang/OTP executables in /usr/local/lib/erlang/bin. The installation
phase will try to create relative symbolic links as long as --bindir and the Erlang bin directory, located under --
libdir, both have --exec-prefix as prefix. Where --exec-prefix defaults to --prefix. --prefix,
--exec-prefix, --bindir, and --libdir are all arguments that can be passed to configure. One can force
relative, or absolute links by passing BINDIR_SYMLINKS=relative|absolute as arguments to make during
the install phase. Note that such a request might cause a failure if the request cannot be satisfied.

Running
Using HiPE

HiPE supports the following system configurations:

• x86: All 32-bit and 64-bit mode processors should work.

• Linux: Fedora Core is supported. Both 32-bit and 64-bit modes are supported.

NPTL glibc is strongly preferred, or a LinuxThreads glibc configured for "floating stacks". Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

• Solaris: Solaris 10 (32-bit and 64-bit) and 9 (32-bit) are supported. The build requires a version of the GNU C
compiler (gcc) that has been configured to use the GNU assembler (gas). Sun's x86 assembler is emphatically
not supported.

• FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.

• OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

• PowerPC: All 32-bit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWER5
processors should work.

• Linux (Yellow Dog) and OS X 10.4 are supported.

• SPARC: All UltraSPARC processors running 32-bit user code should work.

• Solaris 9 is supported. The build requires a gcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

• Linux (Aurora) is supported.

• ARM: ARMv5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

• Linux is supported.

HiPE is automatically enabled on the following systems:

• x86 in 32-bit mode: Linux, Solaris, FreeBSD

• x86 in 64-bit mode: Linux, Solaris, FreeBSD

• PowerPC: Linux, Mac OSX

• SPARC: Linux



1.2  Building and Installing Erlang/OTP

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).

or

1> c(Module, [native|OtherOptions]).

Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is loaded.

To add hipe options, write like this from the Erlang shell:

1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).

Use hipe:help_options/0 to print out the available options.

1> hipe:help_options().

Running with GS

The gs application requires the GUI toolkit Tcl/Tk to run. At least version 8.4 is required.

1.2.6  Known platform issues
• Suse linux 9.1 is shipped with a patched GCC version 3.3.3, having the rpm named gcc-3.3.3-41. That version

has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) has gcc-3.3.3-43 and
is not affected.

• gcc-4.3.0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
is supposed to be fixed in gcc-4.3.1.

• FreeBSD had a bug which caused kqueue/poll/select to fail to detect that a writev() on a pipe has been
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

• http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/sys_pipe.c

• http://lists.freebsd.org/pipermail/freebsd-arch/2007-September/006790.html

• getcwd() on Solaris 9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of erl(1). Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-

href
href


1.2  Building and Installing Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

threads the only workaround available is to enable async-threads and increase the stack size of the async-threads.
Oracle has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd

More information can be found at:

• https://getupdates.oracle.com/readme/112874-40

• https://getupdates.oracle.com/readme/114432-29

• sed on Solaris seem to have some problems. For example on Solaris 8, the BSD sed and XPG4 sed should be
avoided. Make sure /bin/sed or /usr/bin/sed is used on the Solaris platform.

1.2.7  Daily Build and Test
• Solaris 8, 9

• Sparc32

• Sparc64

• Solaris 10

• Sparc32

• Sparc64

• x86

• SuSE Linux/GNU 9.4, 10.1

• x86

• SuSE Linux/GNU 10.0, 10.1, 11.0

• x86

• x86_64

• openSuSE 11.4 (Celadon)

• x86_64 (valgrind)

• Fedora 7

• PowerPC

• Fedora 16

• x86_64

• Gentoo Linux/GNU 1.12.11.1

• x86

• Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.04, 12.04

• x86_64

• MontaVista Linux/GNU 4.0.1

• PowerPC

• FreeBSD 10.0

• x86

• OpenBSD 5.4

• x86_64

• OS X 10.5.8 (Leopard), 10.7.5 (Lion), 10.9.1 (Mavericks)

• x86

• Windows XP SP3, 2003, Vista, 7

• x86

• Windows 7

href
href


1.3  Cross Compiling Erlang/OTP

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• x86_64

We also have the following "Daily Cross Builds":

• SuSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64

• SuSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests":

• SuSE Linux/GNU 10.1 x86_64

1.2.8  Authors
Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/lib/*/AUTHORS and
$ERL_TOP/erts/AUTHORS, not in the individual source files.

1.2.9  Copyright and License
Copyright Ericsson AB 1998-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. You should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License.

1.3  Cross Compiling Erlang/OTP
Table of Contents

• Introduction

• otp_build Versus configure/make

• Cross Configuration

• What can be Cross Compiled?

• Compatibility

• Patches

• Build and Install Procedure

• Building With configure/make Directly

• Building a Bootstrap System

• Cross Building the System

• Installing

• Installing Using Paths Determined by configure

• Installing Manually

• Building With the otp_build Script

• Building and Installing the Documentation

• Testing the cross compiled system

• Currently Used Configuration Variables

• Variables for otp_build Only

• Cross Compiler and Other Tools

• Dynamic Erlang Driver Linking

• Large File Support



1.3  Cross Compiling Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

• Other Tools

• Cross System Root Locations

• Optional Feature, and Bug Tests

• Copyright and License

1.3.1  Introduction
This document describes how to cross compile Erlang/OTP-17. You are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP is the
top directory in the source tree.

otp_build Versus configure/make
Building Erlang/OTP can be done either by using the $ERL_TOP/otp_build script, or by invoking $ERL_TOP/
configure and make directly. Building using otp_build is easier since it involves fewer steps, but the
otp_build build procedure is not as flexible as the configure/make build procedure. Note that otp_build
configure will produce a default configuration that differs from what configure will produce by default. For
example, currently --disable-dynamic-ssl-lib is added to the configure command line arguments unless
--enable-dynamic-ssl-lib has been explicitly passed. The binary releases that we deliver are built using
otp_build. The defaults used by otp_build configure may change at any time without prior notice.

Cross Configuration
The $ERL_TOP/xcomp/erl-xcomp.conf.template file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/xcomp/erl-xcomp-TileraMDE2.0-tilepro.conf file and the $ERL_TOP/xcomp/erl-
xcomp-x86_64-saf-linux-gnu.conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the configure script will issue a warning when a default value is used. When
a variable has been set, no warning will be issued.

A cross configuration file can be passed to otp_build configure using the --xcomp-conf command line
argument. Note that configure does not accept this command line argument. When using the configure script
directly, pass the configuration variables as arguments to configure using a <VARIABLE>=<VALUE> syntax.
Variables can also be passed as environment variables to configure. However, if you pass the configuration in the
environment, make sure to unset all of these environment variables before invoking make; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?
All Erlang/OTP applications except the wx application can be cross compiled. The build of the wx driver will currently
be automatically disabled when cross compiling.

Compatibility
The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks example file is highly
dependent on our environment and is here more or less only for internal use.

Patches
Please submit any patches for cross compiling in a way consistent with this system. All input is welcome as we have
a very limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to



1.3  Cross Compiling Erlang/OTP

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

$ERL_TOP/xcomp/erl-xcomp.conf.template, and use it in configure.in. Other files that might need
to be updated are:

• $ERL_TOP/xcomp/erl-xcomp-vars.sh

• $ERL_TOP/erl-build-tool-vars.sh

• $ERL_TOP/erts/aclocal.m4

• $ERL_TOP/xcomp/README.md

• $ERL_TOP/xcomp/erl-xcomp-*.conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2  Build and Install Procedure
If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the configure/make build procedure which people probably are most familiar with.

Building With configure/make Directly
(1)

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, a small Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).

Building a Bootstrap System

(2)

$ ./configure --enable-bootstrap-only
$ make

The --enable-bootstrap-only argument to configure isn't strictly necessary, but will speed things up. It
will only run configure in applications necessary for the bootstrap, and will disable a lot of things not needed by
the bootstrap system. If you run configure without --enable-boostrap-only you also have to run make as
make bootstrap; otherwise, the whole system will be built.

Cross Building the System

(3)

$ ./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

href
href


1.3  Cross Compiling Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

<HOST> is the host/target system that you build for. It does not have to be a full CPU-VENDOR-OS triplet, but can
be. The full CPU-VENDOR-OS triplet will be created by executing $ERL_TOP/erts/autoconf/config.sub
<HOST>. If config.sub fails, you need to be more specific.

<BUILD> should equal the CPU-VENDOR-OS triplet of the system that you build on. If you execute $ERL_TOP/
erts/autoconf/config.guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line arguments to configure using a <VARIABLE>=<VALUE>
syntax.

Note:
You can not pass a configuration file using the --xcomp-conf argument when you invoke configure
directly. The --xcomp-conf argument can only be passed to otp_build configure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this: make
ERL_XCOMP_FORCE_DIFFERENT_OTP=yes.

Warning:
Invoking make ERL_XCOMP_FORCE_DIFFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing

You can either install using the installation paths determined by configure (4), or install manually using (5).

Installing Using Paths Determined by configure

(4)

$ make install DESTDIR=<TEMPORARY_PREFIX>

make install will install at a location specified when doing configure. configure arguments specifying
where the installation should reside are for example: --prefix, --exec-prefix, --libdir, --bindir, etc.
By default it will install under /usr/local. You typically do not want to install your cross build under /usr/
local on your build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDIR. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make install has finished, change directory into $DESTDIR, package the system, move it to the target
machine, and unpack it. Note that the installation will only be working on the target machine at the location determined
by configure.

Installing Manually

(5)

href


1.3  Cross Compiling Erlang/OTP

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

$ make release RELEASE_ROOT=<RELEASE_DIR>

make release will copy what you have built for the target machine to <RELEASE_DIR>. The Install script
will not be run. The content of <RELEASE_DIR> is what by default ends up in /usr/local/lib/erlang.

The Install script used when installing Erlang/OTP requires common Unix tools such as sed to be present in your
$PATH. If your target system does not have such tools, you need to run the Install script on your build machine
before packaging Erlang/OTP. The Install script should currently be invoked as follows in the directory where
it resides (the top directory):

$ ./Install [-cross] [-minimal|-sasl] <ERL_ROOT>

where:

• -minimal Creates an installation that starts up a minimal amount of applications, i.e., only kernel and
stdlib are started. The minimal system is normally enough, and is what make install uses.

• -sasl Creates an installation that also starts up the sasl application.

• -cross For cross compilation. Informs the install script that it is run on the build machine.

• <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. This is often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither -minimal, nor -sasl is passed as argument you will be prompted.

You can now either do:

(6)

• Decide where the installation should be located on the target machine, run the Install script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE_DIR>
$ ./Install -cross [-minimal|-sasl] <ABSOLUTE_INSTALL_DIR_ON_TARGET>

or:

(7)

• Package the installation in <RELEASE_DIR>, place it wherever you want on your target machine, and run the
Install script on your target machine:

$ cd <ABSOLUTE_INSTALL_DIR_ON_TARGET>
$ ./Install [-minimal|-sasl] <ABSOLUTE_INSTALL_DIR_ON_TARGET>

Building With the otp_build Script
(8)

$ cd $ERL_TOP

(9)



1.3  Cross Compiling Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

$ ./otp_build configure --xcomp-conf=<FILE> [Other Config Args]

alternatively:

$ ./otp_build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in a file, pass it using the --xcomp-conf=<FILE> command
line argument. If not, pass --host=<HOST>, --build=<BUILD>, and the configuration variables using a
<VARIABLE>=<VALUE> syntax on the command line (same as in (3)). Note that <HOST> and <BUILD> have to be
passed one way or the other; either by using erl_xcomp_host=<HOST> and erl_xcomp_build=<BUILD>
in the configuration file, or by using the --host=<HOST>, and --build=<BUILD> command line arguments.

otp_build configure will configure both for the boostrap system on the build machine and the cross host system.

(10)

$ ./otp_build boot -a

otp_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$ ./otp_build release -a <RELEASE_DIR>

otp_build release -a will do the same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3  Building and Installing the Documentation
After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $ERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4  Testing the cross compiled system

$ make release_tests

or

$ ./otp_build tests

The tests will be released into $ERL_TOP/release/tests. After releasing the tests you have to install the tests
on the build machine. You supply the same xcomp file as to ./otp_build in (9).

$ cd $ERL_TOP/release/tests/test_server/



1.3  Cross Compiling Erlang/OTP

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile_testcases -s init stop

You should get a lot of printouts as the testcases are compiled. Once done you should copy the entire $ERL_TOP/
release/tests folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was $ERL_TOP/release/tests/test_server and issue the following command.

$ erl -s ts install -s ts run all_tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run erl
-s ts help -s init stop

1.3.5  Currently Used Configuration Variables
Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of all configure scripts. Other variables needs to
be defined as arguments to configure or exported in the environment.

Variables for otp_build Only
Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:
These variables currently have no effect if you configure using the configure script directly.

• erl_xcomp_build - The build system used. This value will be passed as --build=$erl_xcomp_build
argument to the configure script. It does not have to be a full CPU-VENDOR-OS triplet, but can
be. The full CPU-VENDOR-OS triplet will be created by $ERL_TOP/erts/autoconf/config.sub
$erl_xcomp_build. If set to guess, the build system will be guessed using $ERL_TOP/erts/
autoconf/config.guess.

• erl_xcomp_host - Cross host/target system to build for. This value will be passed as --host=
$erl_xcomp_host argument to the configure script. It does not have to be a full CPU-VENDOR-OS
triplet, but can be. The full CPU-VENDOR-OS triplet will be created by $ERL_TOP/erts/autoconf/
config.sub $erl_xcomp_host.

• erl_xcomp_configure_flags - Extra configure flags to pass to the configure script.

Cross Compiler and Other Tools
If the cross compilation tools are prefixed by <HOST>- you probably do not need to set these variables (where <HOST>
is what has been passed as --host=<HOST> argument to configure).

All variables in this section can also be used when native compiling.

• CC - C compiler.

• CFLAGS - C compiler flags.

• STATIC_CFLAGS - Static C compiler flags.

• CFLAG_RUNTIME_LIBRARY_PATH - This flag should set runtime library search path for the shared libraries.
Note that this actually is a linker flag, but it needs to be passed via the compiler.



1.3  Cross Compiling Erlang/OTP

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

• CPP - C pre-processor.

• CPPFLAGS - C pre-processor flags.

• CXX - C++ compiler.

• CXXFLAGS - C++ compiler flags.

• LD - Linker.

• LDFLAGS - Linker flags.

• LIBS - Libraries.

Dynamic Erlang Driver Linking

Note:
Either set all or none of the DED_LD* variables.

• DED_LD - Linker for Dynamically loaded Erlang Drivers.

• DED_LDFLAGS - Linker flags to use with DED_LD.

• DED_LD_FLAG_RUNTIME_LIBRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Note:
Either set all or none of the LFS_* variables.

• LFS_CFLAGS - Large file support C compiler flags.

• LFS_LDFLAGS - Large file support linker flags.

• LFS_LIBS - Large file support libraries.

Other Tools

• RANLIB - ranlib archive index tool.

• AR - ar archiving tool.

• GETCONF - getconf system configuration inspection tool. getconf is currently used for finding out large file
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations
• erl_xcomp_sysroot - The absolute path to the system root of the cross compilation environment. Currently,

the crypto, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, configure will fail and request you to set it.

• erl_xcomp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl_xcomp_sysroot, i.e., only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests
These tests cannot (always) be done automatically when cross compiling. You usually do not need to set these variables.



1.3  Cross Compiling Erlang/OTP

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Warning:
Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:
Some of these values will override results of tests performed by configure, and some will not be used until
configure is sure that it cannot figure the result out.

The configure script will issue a warning when a default value is used. When a variable has been set, no warning
will be issued.

• erl_xcomp_after_morecore_hook - yes|no. Defaults to no. If yes, the target system must have a
working __after_morecore_hook that can be used for tracking used malloc() implementations core
memory usage. This is currently only used by unsupported features.

• erl_xcomp_bigendian - yes|no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, configure will
fail unless this variable is set. Since no default value is used, configure will try to figure this out automatically.

• erl_xcomp_double_middle - yes|no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has "regular" endianness.

• erl_xcomp_clock_gettime_cpu_time - yes|no. Defaults to no. If yes, the target system must have
a working clock_gettime() implementation that can be used for retrieving process CPU time.

• erl_xcomp_getaddrinfo - yes|no. Defaults to no. If yes, the target system must have a working
getaddrinfo() implementation that can handle both IPv4 and IPv6.

• erl_xcomp_gethrvtime_procfs_ioctl - yes|no. Defaults to no. If yes, the target system must have
a working gethrvtime() implementation and is used with procfs ioctl().

• erl_xcomp_dlsym_brk_wrappers - yes|no. Defaults to no. If yes, the target system must have a
working dlsym(RTLD_NEXT, <S>) implementation that can be used on brk and sbrk symbols used by the
malloc() implementation in use, and by this track the malloc() implementations core memory usage. This
is currently only used by unsupported features.

• erl_xcomp_kqueue - yes|no. Defaults to no. If yes, the target system must have a working kqueue()
implementation that returns a file descriptor which can be used by poll() and/or select(). If no and the
target system has not got epoll() or /dev/poll, the kernel-poll feature will be disabled.

• erl_xcomp_linux_clock_gettime_correction - yes|no. Defaults to yes on Linux; otherwise,
no. If yes, clock_gettime(CLOCK_MONOTONIC, _) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

• erl_xcomp_linux_nptl - yes|no. Defaults to yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versions typically less than 2.6).

• erl_xcomp_linux_usable_sigaltstack - yes|no. Defaults to yes on Linux; otherwise, no. If yes,
sigaltstack() must be usable on the target system. sigaltstack() on Linux kernel versions less than
2.4 are broken.

• erl_xcomp_linux_usable_sigusrx - yes|no. Defaults to yes. If yes, the SIGUSR1 and SIGUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versions typically less than
2.2) used these signals and made them unusable by the ERTS.



1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

• erl_xcomp_poll - yes|no. Defaults to no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working poll() implementation that also can handle devices. If no, select() will be used
instead of poll().

• erl_xcomp_putenv_copy - yes|no. Defaults to no. If yes, the target system must have a putenv()
implementation that stores a copy of the key/value pair.

• erl_xcomp_reliable_fpe - yes|no. Defaults to no. If yes, the target system must have reliable floating
point exceptions.

• erl_xcomp_posix_memalign - yes|no. Defaults to yes if posix_memalign system call exists;
otherwise no. If yes, the target system must have a posix_memalign implementation that accepts larger than
page size alignment.

• erl_xcomp_ose_ldflags_pass1 - Linker flags for the OSE module (pass 1)

• erl_xcomp_ose_ldflags_pass2 - Linker flags for the OSE module (pass 2)

• erl_xcomp_ose_OSEROOT - OSE installation root directory

• erl_xcomp_ose_STRIP - Strip utility shipped with the OSE distribution

• erl_xcomp_ose_LM_POST_LINK - OSE postlink tool

• erl_xcomp_ose_LM_SET_CONF - Sets the configuration for an OSE load module

• erl_xcomp_ose_LM_ELF_SIZE - Prints the section size information for an OSE load module

• erl_xcomp_ose_LM_LCF - OSE load module linker configuration file

• erl_xcomp_ose_BEAM_LM_CONF - Beam OSE load module configuration file

• erl_xcomp_ose_EPMD_LM_CONF - EPMD OSE load module configuration file

• erl_xcomp_ose_RUN_ERL_LM_CONF - runerllm OSE load module configuration file

1.3.6  Copyright and License
Copyright Ericsson AB 2009-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. You should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License.

1.4  How to Build Erlang/OTP on Windows
Table of Contents

• Introduction

• Frequently Asked Questions

• Tools you Need and Their Environment

• The Shell Environment

• Building and Installing

• Development

• Using GIT

• Final Words

• Copyright and License



1.4  How to Build Erlang/OTP on Windows

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4.1  Introduction
This file describes how to build the Erlang emulator and the OTP libraries on Windows. The instructions apply to
versions of Windows supporting the Cygwin emulated gnuish environment for Windows or the Msys ditto. We've built
on the following platforms: Windows 2003 server, Windows XP Home/Professional, Windows Vista and Windows
7 (32 and 64 bit). You can probably build on Windows 2000, but you will not be able to install the latest Microsoft
SDK, so you have to go back to some earlier compiler. Any Windows95'ish platform will surely get you into trouble,
what I'm not sure of, but it certainly will...

The procedure described uses either Cygwin or Msys as a build environment, you run the bash shell in Cygwin/Msys
and use gnu make/configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled
with Microsoft Visual C++™, producing a native Windows binary. This is the same procedure as we use to build the
pre-built binaries. The fact that we use VC++ and not gcc is explained further in the FAQ section.

I describe the build procedure to make it possible for open source customers to build the emulator, given that they
have the needed tools. The binary Windows releases is still a preferred alternative if one does not have Microsoft's
development tools and/or don't want to install Cygwin or Msys.

To use Cygwin/Msys, one needs basic experience from a Unix environment, if one does not know how to set
environment variables, run programs etc in a Unix environment, one will be quite lost in the Cygwin os Msys ditto.
I can unfortunately not teach all the world how to use Cygwin and bash, neither how to install Cygwin nor perform
basic tasks on a computer. Please refer to other documentation on the net for help, or use the binary release instead
if you have problems using the tools.

However, if you feel comfortable with the environment and build system, and have all the necessary tools, you have
a great opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions and
patches to the appropriate mailing lists to let them find their way into the next version of Erlang. If making changes
to the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks,
so that your changes don't break other platforms. That of course goes for C-code too, system specific code resides
in the $ERL_TOP/erts/emulator/sys/win32 and $ERL_TOP/erts/etc/win32 directories mostly. The
$ERL_TOP/erts/emulator/beam directory is for common code.

Before the R9C release of Erlang/OTP, the Windows release was built partly on a Unix (Solaris) box and partly on a
Windows box, using Perl hacks to communicate and sync between the two machines. R9C was the first release ever
built solely on Windows, where no Unix machine is needed at all. Now we've used this build procedure for a couple
of releases, and it has worked fine for us. Still, there might be all sorts of troubles on different machines and with
different setups. I'll try to give hints wherever I've encountered difficulties, but please share your experiences by using
the erlang-questions mailing list. I cannot of course help everyone with all their problems, please try to solve the
problems and submit solutions/workarounds. Remember, it's all about sharing, not about demanding...

Starting with R15B, our build system runs both on Cygwin and Msys (MinGW's fork of an early cygwin version).
Msys is a smaller package to install and may on some machines run slightly faster. If Cygwin gives you trouble, try
Msys instead, and v.v. Beginning with R15B there is also a native 64bit version of Erlang for 64bit Windows 7 (only).
These instructions apply to both the 32bit VM and the 64bit ditto.

Note that even if you build a 64bit VM, most of the directories and files involved are still named win32. You can
view the name win32 as meaning any windows version not beeing 16bit. A few occurences of the name Win64 are
however present in the system, for example the installation file for a 64 bit windows version of Erlang is by default
named otp_win64_<version>.exe.

Lets go then, I'll start with a little FAQ, based on in house questions and misunderstandings.

1.4.2  Frequently Asked Questions
• Q: So, now I can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ still, a Bourne-shell script (cc.sh) wraps the Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-

href
href


1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 7.1 == Visual studio 2010).

• Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly because it's a good compiler - really! Actually it's been possible in late R11-releases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
as long as VC++ gives better performance, the commercial build will be a VC++ one.

• Q: OK, you need VC++, but now you've started to demand a very recent (and expensive) version of Visual studio,
not the old and stable VC++ 6.0 that was used in earlier versions. Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDbg) is also quite usable, it's what
I used when porting Erlang to 64bit Windows. Another reason to use the latest Microsoft compilers is DLL
compatibility. DLL's using a new version of the standard library might not load if the VM is compiled with an old
VC++ version, why we should aim to use the latest freely available SDK and compiler.

• Q: Can/will I build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as I know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. I suggest you try yourself and share your
experience. No one would be happier if a simple ./configure && make would produce a fully fledged
Cygwin binary. Ericsson does however not pay me to do a Cygwin port, so such a port would have to happen in
spare time, which is a limited resource...

• Q: Hah, I saw you, you used GCC even though you said you didn't!

A: OK, I admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam_emu.c benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC, that particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

• Q: So now there's a MS VC++ project file somewhere and I can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen, at least I will never make one. Clicking around in super-multi-tab'd dialogs to add a file or
compiler option when it's so much easier in a makefile is simply not my style.

• Q: So how does it all work then?

A: Cygwin or Msys is the environment, which closely resembles the environments found on any Unix machine.
It's almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters, then creates
makefiles that are used by the Cygwin/Msys gnu-make to built the system. Most of the actual compilers etc
are not, however, Cygwin/Msys tools, so I've written a couple of wrappers (Bourne-shell scripts), which reside
in $ERL_TOP/etc/win32/cygwin_tools and $ERL_TOP/etc/win32/msys_tools. They all do
conversion of parameters and switches common in the Unix environment to fit the native Windows tools. Most
notable is of course the paths, which in Cygwin/Msys are Unix-like paths with "forward slashes" (/) and no
drive letters, the Cygwin specific command cygpath is used for most of the path conversions in a Cygwin
environment, other tools are used (when needed) in the corresponding Msys environment. Luckily most compilers
accept forward slashes instead of backslashes as path separators, but one still have to get the drive letters etc right,
though. The wrapper scripts are not general in the sense that, for example, cc.sh would understand and translates
every possible gcc option and passes correct options to cl.exe. The principle is that the scripts are powerful enough



1.4  How to Build Erlang/OTP on Windows

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

to allow building of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the
development of Erlang, that's one of the reasons I made them into shell-scripts and not Perl-scripts, I believe they
are easier to understand and change that way. I might be wrong though, cause another reason I didn't write them
in Perl is because I've never liked Perl and my Perl code is no pleasant reading...

In $ERL_TOP, there is a script called otp_build. That script handles the hassle of giving all the right parameters
to configure/make and also helps you set up the correct environment variables to work with the Erlang source
under Cygwin.

• Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, is that really ethical?

A: No, not really, but see this as a step in the right direction. I'm aiming at GCC compiled emulators and a Cygwin
version, but I really need to do other things as well... In time, but don't hold your breath...

• Q: Can I build something that looks exactly as the commercial release?

A: Yes, we use the exactly same build procedure.

• Q: Which version of Cygwin/Msys and other tools do you use then?

A: For Cygwin and Msys alike, we try to use the latest releases available when building. What versions you use
shouldn't really matter, I try to include workarounds for the bugs I've found in different Cygwin/Msys releases,
please help me add workarounds for new Cygwin/Msys-related bugs as soon as you encounter them. Also please
do submit bug reports to the appropriate Cygwin and/or Msys developers. The GCC we used for 17 was version
4.7.0 (MinGW 64bit) and 4.3.4 (Cygwin 32bit). We used VC++ 10.0 (i.e. Visual studio 2010), Sun's JDK 1.5.0_17
(32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32 OpenSSL 0.9.8r. Please read the next section for
details on what you need.

• Q: Can you help me setup X in Cygwin?

A: No, unfortunately I haven't got time to help with Cygwin related user problems, please read Cygwin related
web sites, newsgroups and mailing lists.

• Q: Why is the instruction so long? Is it really that complicated?

A: Partly it's long because I babble too much, partly because I've described as much as I could about the installation
of the needed tools. Once the tools are installed, building is quite easy. I also have tried to make this instruction
understandable for people with limited Unix experience. Cygwin/Msys is a whole new environment to some
Windows users, why careful explanation of environment variables etc seemed to be in place. The short story, for
the experienced and impatient is:

• Get and install complete Cygwin (latest) or complete MinGW with msys

• Install Microsofts Windows SDK 7.1 (and .Net 4)

• Get and install Sun's JDK 1.5.0 or higher

• Get and install NSIS 2.01 or higher (up to 2.46 tried and working)

• Get, build and install OpenSSL 0.9.8r or higher (up to 1.0.0a tried & working) with static libs.

• Get the Erlang source distribution (from http://www.erlang.org/download.html) and unpack with Cygwin's
tar.

• Set ERL_TOP to where you unpacked the source distribution

• $ cd $ERL_TOP

• Get (from http://www.erlang.org/download/tcltk85_win32_bin.tar.gz) and unpack the prebuilt TCL/TK
binaries for windows with cygwin tar, standing in $ERL_TOP

• Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_TOP, issue the following commands:

$ eval `./otp_build env_win32`

href
href


1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

$ ./otp_build autoconf
$ ./otp_build configure
$ ./otp_build boot -a
$ ./otp_build release -a
$ ./otp_build installer_win32
$ release/win32/otp_win32_17 /S

Voila! Start->Programs->Erlang OTP 17->Erlang starts the Erlang Windows shell.

1.4.3  Tools you Need and Their Environment
You need some tools to be able to build Erlang/OTP on Windows. Most notably you'll need Cygwin or Msys and
Microsofts Windows SDK, but you also might want a Java compiler, the NSIS install system and OpenSSL. Well'
here's the list:

• Cygwin, the very latest is usually best. Get all the development tools and of course all the basic ditto. In fact getting
the complete package might be a good idea, as you'll start to love Cygwin after a while if you're accustomed to
Unix. Make sure to get jar and also make sure not to install a Cygwin'ish Java... The Cygwin jar command is used
but Sun's Java compiler and virtual machine...

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
cygwin. It's in one of the development packages.

URL: http://www.cygwin.com

Get the installer from the web site and use that to install Cygwin. Be sure to have fair privileges. If you're on a
NT domain you should consider running mkpasswd -d and mkgroup -d after the installation to get the user
databases correct. See their respective manual pages.

When you start you first bash shell, you will get an awful prompt. You might also have a PATH environment
variable that contains backslashes and such. Edit $HOME/.profile and $HOME/.bashrc to set fair prompts
and set a correct PATH. Also do a export SHELL in .profile. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that .profile is run at login time and .bashrc when
sub shells are created. You'll need to explicitly source .bashrc from .profile if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). I personally usually do like this
at the end of .profile:

ENV=$HOME/.bashrc
export ENV
. $ENV

You might also, if you're a hard core type of person at least, want to setup X-windows (XFree86), that might be
as easy as running startx from the command prompt and it might be much harder. Use Google to find help...

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
a larger screen buffer size (lines) is useful as it gets you a scrollbar so you can see whatever error messages that
might appear...

If you want to use (t)csh instead of bash you're on your own, I haven't tried and know of no one that has. I expect
that you use bash in all shell examples.

• Alternatively you download MinGW and Msys. You'll find the latest installer at:

URL: http://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/

Make sure to install everything they've got.

To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

href
href


1.4  How to Build Erlang/OTP on Windows

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

URL: http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Automated
%20Builds/

The latest version should do it. Make sure you download the mingw-w64-bin_i686-
mingw_<something>.zip, not a linux version. You unzip the package on top of your MinGW installation
(c:\MinGW) and that's it.

Setting up your environment in Msys is similar to setting it up in Cygwin.

• Microsofts Windows SDK version 7.1 (corresponding to VC++ 10.0 and Visual Studio 2010). You'll find it here:

URL: http://www.microsoft.com/download/en/details.aspx?id=8279

but before you install that, you need to have .Net 4 installed, you'll find that here:

URL: http://www.microsoft.com/download/en/details.aspx?id=17851

Use the web installer for the SDK, at least when I tried downloading the whole package as an image, I got SDK
7.0 instead, which is not what you want...

There will be a Windows command file in %PROGRAMFILES%\Mirosoft SDKs\Windows\v7.1\Bin
\SetEnv.cmd that set's the appropriate environment for a Windows command prompt. This is not appropriate
for bash, so you'll need to convert it to bash-style environments by editing your .bash_profile. In my case,
where the SDK is installed in the default directory and %PROGRAMFILES% is C:\Program Files, the
commands for setting up a 32bit build environment (on a 64bit or 32bit machine) look like this (in cygwin):

# Some common paths
C_DRV=/cygdrive/c
PRG_FLS=$C_DRV/Program\ Files

# nsis
NSIS_BIN=$PRG_FLS/NSIS
# java
JAVA_BIN=$PRG_FLS/Java/jdk1.6.0_16/bin

##
## MS SDK
##

CYGWIN=nowinsymlinks
MVS10="$PRG_FILES/Microsoft Visual Studio 10.0"
WIN_MVS10="C:\\Program Files\\Microsoft Visual Studio 10.0"
SDK10="$PRG_FILES/Microsoft SDKs/Windows/v7.1"
WIN_SDK10="C:\\Program Files\\Microsoft SDKs\\Windows\\v7.1"

PATH="$NSIS_BIN:\
$MVS10/Common7/IDE:\
$MVS10/Common7/Tools:\
$MVS10/VC/Bin:\
$MVS10/VC/Bin/VCPackages:\
$SDK10/Bin/NETFX 4.0 Tools:\
$SDK10/Bin:\
/usr/local/bin:/usr/bin:/bin:\
/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS:\
/cygdrive/c/WINDOWS/system32/Wbem:\
$JAVA_BIN"

LIBPATH="$WIN_MVS10\\VC\\LIB"

LIB="$WIN_MVS10\\VC\\LIB;$WIN_SDK10\\LIB"

INCLUDE="$WIN_MVS10\\VC\\INCLUDE;$WIN_SDK10\\INCLUDE;$WIN_SDK10\\INCLUDE\\gl"

href
href
href
href


1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

export CYGWIN PATH LIBPATH LIB INCLUDE 

If you're using Msys instead, the only thing you need to change is the C_DRV setting, which would read:

C_DRV=/c

And of course you might need to change C:\Program Files etc if you're using a non-english version of
Windows (XP). Note that in later versions of Windows, the national adoptions of the program files directories etc
are not on the file system but only in the explorer, so even if explorer says that your programs reside in e.g. C:
\Program, they might still reside in C:\Program Files in reality...

If you are building a 64 bit version of Erlang, you should set up PATHs etc a little differently. I use the following
script to make things work in both Cygwin and Msys:

 make_winpath()
 {
        P=$1
        if [ "$IN_CYGWIN" = "true" ]; then 
           cygpath -d "$P"
        else
           (cd "$P" && /bin/cmd //C "for %i in (".") do @echo %~fsi")
        fi
 }

 make_upath()
 {
        P=$1
        if [ "$IN_CYGWIN" = "true" ]; then 
           cygpath "$P"
        else
           echo "$P" | /bin/sed 's,^\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,g'
        fi
 }

 # Some common paths
 if [ -x /usr/bin/msysinfo ]; then
    # Without this the path conversion won't work
    COMSPEC='C:\Windows\SysWOW64\cmd.exe'
    MSYSTEM=MINGW32
    export MSYSTEM COMSPEC
    IN_CYGWIN=false
 else
    CYGWIN=nowinsymlinks
    export CYGWIN
    IN_CYGWIN=true
 fi

 if [ "$IN_CYGWIN" = "true" ]; then 
    PATH=/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:\
    /cygdrive/c/windows/system32:/cygdrive/c/windows:/cygdrive/c/windows/system32/Wbem
 else
    PATH=/usr/local/bin:/mingw/bin:/bin:/c/Windows/system32:/c/Windows:\
    /c/Windows/System32/Wbem
 fi

 if [ "$IN_CYGWIN" = "true" ]; then 
    C_DRV=/cygdrive/c
 else
    C_DRV=/c



1.4  How to Build Erlang/OTP on Windows

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

 fi

 PRG_FLS64=$C_DRV/Program\ Files
 PRG_FLS32=$C_DRV/Program\ Files\ \(x86\)
 VISUAL_STUDIO_ROOT32=$PRG_FLS32/Microsoft\ Visual\ Studio\ 10.0
 MS_SDK_ROOT64=$PRG_FLS64/Microsoft\ SDKs/Windows/v7.1

 # Okay, now mangle the paths and get rid of spaces by using short names
 WIN_VCROOT32=`make_winpath "$VISUAL_STUDIO_ROOT32"`
 VCROOT32=`make_upath $WIN_VCROOT32`
 WIN_SDKROOT64=`make_winpath "$MS_SDK_ROOT64"`
 SDKROOT64=`make_upath $WIN_SDKROOT64`
 WIN_PROGRAMFILES32=`make_winpath "$PRG_FLS32"`
 PROGRAMFILES32=`make_upath $WIN_PROGRAMFILES32`

 WIN_PROGRAMFILES64=`make_winpath "$PRG_FLS64"`
 PROGRAMFILES64=`make_upath $WIN_PROGRAMFILES64`

 # nsis
 NSIS_BIN=$PROGRAMFILES32/NSIS
 # java
 JAVA_BIN=$PROGRAMFILES64/Java/jdk1.7.0_01/bin

 ## The PATH variable should be Unix'ish
 VCPATH=$VCROOT32/Common7/IDE:$VCROOT32/VC/BIN/amd64:$VCROOT32/Common7/Tools:\
 $VCROOT32/VC/VCPackages:$SDKROOT64/bin/NETFX4~1.0TO/x64:$SDKROOT64/bin/x64:\
 $SDKROOT64/bin

 ## Microsoft SDK libs

 LIBPATH=$WIN_VCROOT32\\VC\\LIB\\amd64
 LIB=$WIN_VCROOT32\\VC\\LIB\\amd64\;$WIN_SDKROOT64\\LIB\\X64
 INCLUDE=$WIN_VCROOT32\\VC\\INCLUDE\;$WIN_SDKROOT64\\include\;\
 $WIN_SDKROOT64\\include\\gl

 # Put nsis, c compiler and java in path
 PATH=$NSIS_BIN:$VCPATH:$PATH:$JAVA_BIN

 # Make sure LIB and INCLUDE is available for others
 export PATH LIBPATH LIB INCLUDE

All this is derived from the SetEnv.cmd command file mentioned earlier. The bottom line is to set the PATH so
that NSIS and Microsoft SDK is found before the Msys/Cygwin tools and that Java is last in the PATH.

Make a simple hello world (maybe one that prints out sizeof(void *)) and try to compile it with the cl
command from within bash. If that does not work, your environment needs fixing. Also remember to fix up the
PATH environment, especially old Erlang installations might have inserted quoted paths that Cygwin/Msys does
not understand. Remove or correct such paths. There should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

• Sun's Java JDK 1.5.0 or higher. Our Java code (jinterface, ic) is written for JDK 1.5.0. Get it for Windows and
install it, the JRE is not enough. If you don't care about Java, you can skip this step, the result will be that jinterface
is not built.

URL: http://java.sun.com

Add javac LAST to your path environment in bash, in my case this means:

`PATH="$PATH:/cygdrive/c/Program Files/Java/jdk1.5.0_17/bin"`

href


1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

No CLASSPATH or anything is needed. Type javac at the bash prompt and you should get a list of available
Java options. Make sure by typing type java that you use the Java you installed. Note however that Cygwin's
jar.exe is used, that's why the JDK bin-directory should be added last in the PATH.

• Nullsoft NSIS installer system. You need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases as well from R9C an on.

URL: http://www.nullsoft.com/free/nsis

Install the lot, especially the modern user interface components, as it's definitely needed. Put makensis in your
path, in my case:

PATH=/cygdrive/c/Program\ Files/NSIS:$PATH

type makensis at the bash prompt and you should get a list of options if everything is OK.

• OpenSSL. This is if you want the SSL and crypto applications to compile (and run). There are prebuilt binaries
available, but I strongly recommend building this yourself. It's quite easy.

First get the source from

URL: http://openssl.org/source/

I would recommend using 0.9.8r.

Download the tar file and unpack it (using your bash prompt) into a directory of your choise.

You will need a Windowish Perl for the build. ActiveState has one:

URL: http://www.activestate.com/activeperl/downloads

Download and install that. Disable options to associate it with the .pl suffix and/or adding things to PATH, they
are not needed.

Now fire up the Microsoft Windows SDK command prompt in RELEASE mode for the architecture you are going
to build. The easiest is to copy the shortcut from the SDKs start menu item and edit the command line in the
shortcut (Right click->Properties) to end with /Release. Make sure the banner when you double click your
shortcut (the text in the resulting command window) says Targeting Windows XP x64 Release if you are
going to do a 64 bit build and Targeting Windows XP x86 Release if you are building a 32 bit version.

Now cd to where you unpacked the OpenSSL source using your Release Windows command prompt (it should
be on the same drive as where you are going to install it if everything is to work smothly).

C:\> cd <some dir>

Add ActiveState (or some other windows perl, not cygwins) to your PATH:

C:\...\> set PATH=C:\Perl\bin;%PATH%

Or if you installed the 64bit perl:

C:\...\> set PATH=C:\Perl64\bin;%PATH%

href
href
href


1.4  How to Build Erlang/OTP on Windows

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Configure OpenSSL for 32 bit:

C:\...\> perl Configure VC-WIN32 --prefix=/OpenSSL

Or for 64 bit:

C:\...\> perl Configure VC-WIN64A --prefix=/OpenSSL-Win64

Do some setup (for 32 bit):

C:\...\> ms\do_ms

The same for 64 bit:

C:\...\> ms\do_win64a

Then build static libraries and install:

C:\...\> nmake -f ms\nt.mak
C:\...\> nmake -f ms\nt.mak install

That's it - you now have your perfectly consistent static build of openssl. If you want to get rid of any possibly
patented algorithms in the lib, just read up on the OpenSSL FAQ and follow the instructions.

The installation locations chosen are where configure will look for OpenSSL, so try to keep them as is.

• Building with wxWidgets. Download wxWidgets-2.8.9 or higher patch release (2.9.* is a developer release which
currently does not work with wxErlang).

Install or unpack it to DRIVE:/PATH/cygwin/opt/local/pgm.

edit: C:\cygwin\opt\local\pgm\wxMSW-2.8.11\include\wx\msw\setup.h enable
wxUSE_GLCANVAS, wxUSE_POSTSCRIPT and wxUSE_GRAPHICS_CONTEXT

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in RELEASE mode):

C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\build\msw
C:\...\> nmake BUILD=release SHARED=0 UNICODE=1 USE_OPENGL=1 USE_GDIPLUS=1 DIR_SUFFIX_CPU= -f makefile.vc
C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\contrib\build\stc
C:\...\> nmake BUILD=release SHARED=0 UNICODE=1 USE_OPENGL=1 USE_GDIPLUS=1 DIR_SUFFIX_CPU= -f makefile.vc

Or - if building a 64bit version:

C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\build\msw
C:\...\> nmake TARGET_CPU=amd64 BUILD=release SHARED=0 UNICODE=1 USE_OPENGL=1 USE_GDIPLUS=1 DIR_SUFFIX_CPU= -f makefile.vc
C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\contrib\build\stc



1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

C:\...\> nmake TARGET_CPU=amd64 BUILD=release SHARED=0 UNICODE=1 USE_OPENGL=1 USE_GDIPLUS=1 DIR_SUFFIX_CPU= -f makefile.vc

• The Erlang source distribution (from http://www.erlang.org/download.html). The same as for Unix platforms.
Preferably use tar from within Cygwin to unpack the source tar.gz (tar zxf otp_src_17.tar.gz).

set the environment ERL_TOP to point to the root directory of the source distribution. Let's say I stood in $HOME/
src and unpacked otp_src_17.tar.gz, I then add the following to .profile:

ERL_TOP=$HOME/src/otp_src_17
export $ERL_TOP

• The TCL/TK binaries. You could compile Tcl/Tk for windows yourself, but you can get a stripped down version
from our website which is suitable to include in the final binary package. If you want to supply tcl/tk yourself,
read the instructions about how the tcl/tk tar file used in the build is constructed under $ERL_TOP/lib/gs/
tcl. The easy way is to download http://www.erlang.org/download/tcltk85_win32_bin.tar.gz and unpack it
standing in the $ERL_TOP directory. This will create the file win32.tar.gz in $ERL_TOP/lib/gs/tcl/
binaries.

One last alternative is to create a file named SKIP in the $ERL_TOP/lib/gs/ after configure is run, but that
will give you an erlang system without gs (which might be okay as you probably will use wx anyway).

Note that there is no special 64bit version of TCL/TK needed, you can use the 32bit program even for a 64bit build.

1.4.4  The Shell Environment
So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally a PATH that
let's you reach cl, makensis, javac etc from the command prompt (use which cl etc to verify from bash).

You should also have an ERL_TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script otp_build.

A final massage of the environment is needed, and that is done by the script $ERL_TOP/otp_build. Start bash
and do the following, note the "back-ticks" (`), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might do it...

$ cd $ERL_TOP
$ eval `./otp_build env_win32`

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp_build env_win32)

If you are building a 64 bit version, you supply otp_build with an architecture parameter:

$ cd $ERL_TOP
$ eval `./otp_build env_win32 x64`

This should do the final touch to the environment and building should be easy after this. You could run ./otp_build
env_win32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRIDE_TARGET, CC,

href
href


1.4  How to Build Erlang/OTP on Windows

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

CXX, AR and RANLIB are set to their respective wrappers and the directories $ERL_TOP/erts/etc/win32/
cygwin_tools/vc and $ERL_TOP/erts/etc/win32/cygwin_tool are added first in the PATH.

Try now a type erlc. That should result in the erlc wrapper script (which does not have the .sh extension, for
reasons best kept untold...). It should reside in $ERL_TOP/erts/etc/win32/cygwin_tools or $ERL_TOP/
erts/etc/win32/msys_tools. You could also try which cc.sh, which ar.sh etc.

Now you're ready to build...

1.4.5  Building and Installing
Now it's assumed that you have executed  eval `./otp_build env_win32`  or  eval `./otp_build
env_win32 x64`  for this particular shell...

Building is easiest using the otp_build script. That script takes care of running configure, bootstrapping etc on
Windows in a simple way. The otp_build script is the utility we use ourselves to build on different platforms and
it therefore contains code for all sorts of platforms. The principle is, however, that for non-Unix platforms, one uses
./otp_build env_<target> to set up environment and then the script knows how to build on the platform "by
itself". You've already run ./otp_build env_win32 in the step above, so now it's mostly like we build on any
platform. OK, here are then steps; Assuming you will want to build a full installation executable with NSIS, you can
omit <installation directory> and the release will be copied to $ERL_TOP/release/win32: and there
is where the packed self installing executable will reside too.

$ ./otp_build autoconf # Ignore the warning blob about versions of autoconf
$ ./otp_build configure <optional configure options>
$ ./otp_build boot -a
$ ./otp_build release -a <installation directory>
$ ./otp_build installer_win32 <installation directory> # optional

Now you will have a file called otp_win32_R12B.exe in the <installation directory>, i.e.
$ERL_TOP/release/win32.

Lets get into more detail:

• $ ./otp_build autoconf - This step rebuilds the configure scripts to work correctly in the cygwin
environment. In an ideal world, this would not be needed, but alas, we have encountered several incompatibilities
between our distributed configure scripts (generated on a Linux platform) and the cygwin environment over the
years. Running autoconf on cygwin ensures that the configure scripts are generated in a cygwin-compatible way
and that they will work well in the next step.

• $ ./otp_build configure - This runs the newly generated configure scripts with options making configure
behave nicely. The target machine type is plainly win32, so a lot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler be cc.sh, which wraps MSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed on
Windows, but I thought it best to run the whole configure anyway. The only configure option you might want to
supply is --with-ssl, which might be needed if you have built your own OpenSSL distribution. The Shining
Lights distribution should be found automatically by configure, if that fails, add a --with-ssl=<dir>
that specifies the root directory of your OpenSSL installation.

• $ ./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
bootstrap) to build a complete OTP system. It first builds an emulator and sets up a minimal OTP system
under $ERL_TOP/bootstrap, then starts to compile the different OTP compilers to make the $ERL_TOP/
bootstrap system potent enough to be able to compile all Erlang code in OTP. Then, all Erlang and C
code under $ERL_TOP/lib is built using the bootstrap system, giving a complete OTP system (although not
installed). When this is done, one can run Erlang from within the source tree, just type $ERL_TOP/bin/erl



1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

and you should have a prompt. If you omit the -a flag, you'll get a smaller system, that might be useful during
development. Now exit from Erlang and start making a release of the thing:

• $ ./otp_build release -a - Builds a commercial release tree from the source tree, default is to put
it in $ERL_TOP/release/win32, you can give any directory as parameter (Cygwin style), but it doesn't
really matter if you're going to build a self extracting installer too. You could of course build release to the final
directory and then run ./Install.exe standing in the directory where the release was put, that will create a
fully functional OTP installation. But let's make the nifty installer:

• $ ./otp_build installer_win32 - Create the self extracting installer executable. The executable
otp_win32_17.exe will be placed in the top directory of the release created in the previous step. If no release
directory is specified, the release is expected to have been built to $ERL_TOP/release/win32, which also
will be the place where the installer executable will be placed. If you specified some other directory for the release
(i.e. ./otp_build release -a /tmp/erl_release), you're expected to give the same parameter here,
(i.e. ./otp_build installer_win32 /tmp/erl_release). You need to have a full NSIS installation
and makensis.exe in your path for this to work of course. Once you have created the installer, you can run it
to install Erlang/OTP in the regular way, just run the executable and follow the steps in the installation wizard. To
get all default settings in the installation without any questions asked, you run the executable with the parameter
/S (capital S) like in:

$ cd $ERL_TOP
$ release/win32/otp_win32_17 /S
...

or

$ cd $ERL_TOP
$ release/win32/otp_win64_17 /S
...

and after a while Erlang/OTP-17 will have been installed in C:\Program Files\erl6.3\, with shortcuts
in the menu etc.

The necessary setup of an Erlang installation is actually done by the program Install.exe, which resides in
the release top. That program creates .ini-files and copies the correct boot scripts. If one has the correct directory
tree (like after a ./otp_build release -a), only the running of Install.exe is necessary to get a fully
functional OTP. What the self extracting installer adds is (of course) the possibility to distribute the binary easily,
together with adding shortcuts to the Windows start menu. There is also some adding of entries in the registry,
to associate .erl and .beam files with Erlang and get nifty icons, but that's not something you'll really need
to run Erlang. The registry is also used to store uninstall information, but if one has not used the self extracting
installer, one cannot (need not) do any uninstall, one just scratches the release directory and everything is gone.
Erlang/OTP does not need to put anything in the Windows registry at all, and does not if you don't use the self
extracting installer. In other words the installer is pure cosmetics.

Note:
Beginning with R9C, the Windows installer does not add Erlang to the system wide path. If one wants to have
Erlang in the path, one has to add it by hand.



1.4  How to Build Erlang/OTP on Windows

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4.6  Development
Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you also can run Erlang from within the source tree. The target local_setup, makes the program $ERL_TOP/
bin/erl.exe usable and it also uses all the OTP libraries in the source tree.

If you hack the emulator, you can then build the emulator executable by standing in $ERL_TOP/erts/emulator
and do a simple

$ make opt

Note that you need to have run (cd $ERL_TOP && eval `./otp_build env_win32`) in the particular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_TOP/
bin/erl. If you want to copy the result to a release directory (say /tmp/erl_release), you do this (still in
$ERL_TOP/erts/emulator)

$ make TESTROOT=/tmp/erl_release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam.dll (the actual runtime system) and
erlexec.dll. Do like this

$ cd $ERL_TOP
$ rm bin/win32/erlexec.dll
$ cd erts/emulator
$ make debug
$ cd ../etc
$ make debug

and sometimes

$ cd $ERL_TOP
$ make local_setup

So now when you run $ERL_TOP/erl.exe, you should have a debug compiled emulator, which you will see if
you do a:

1> erlang:system_info(system_version).

in the erlang shell. If the returned string contains [debug], you got a debug compiled emulator.

To hack the erlang libraries, you simply do a make opt in the specific "applications" directory, like:

$ cd $ERL_TOP/lib/stdlib
$ make opt

or even in the source directory...



1.4  How to Build Erlang/OTP on Windows

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected o have a fresh Erlang in your path when doing this, preferably the plain 17 you have built
in the previous steps. You could also add $ERL_TOP/bootstrap/bin to your PATH before rebuilding specific
libraries, that would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path
correctly is a little bit tricky, you still need to have $ERL_TOP/erts/etc/win32/cygwin_tools/vc and
$ERL_TOP/erts/etc/win32/cygwin_tools before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/erts/etc/win32/cygwin_tools/vc\
:$ERL_TOP/erts/etc/win32/cygwin_tools:$ERL_TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...

If you want to copy a library (an application) newly built, to a release area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang_release release

Remember that:

• Windows specific C-code goes in the $ERL_TOP/erts/emulator/sys/win32, $ERL_TOP/erts/
emulator/drivers/win32 or $ERL_TOP/erts/etc/win32.

• Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
    {win32,_} ->
        do_windows_specific();
    Other ->
        do_fallback_or_exit()
end,

That's basically all you need to get going.

1.4.7  Using GIT
You might want to check out versions of the source code from GitHUB. That is possible directly in cygwin, but not
in Msys. There is a project MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
Msys command prompt for building. Also all test suites cannot be built as MsysGIT/Msys does not handle symbolic
links. To build test suites on Windows, you will need Cygwin for now. Hopefully all symbolic links will disappear
from our repository soon and this issue will disappear.

href


1.4  How to Build Erlang/OTP on Windows

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4.8  Final Words
The first build system for Erlang using Cygwin on Windows was created by Per Bergkvist. I haven't used his build
system, but it's rumored to be good. The idea to do this came from his work, so credit is well deserved.

Of course this would have been completely impossible without the excellent Cygwin. The guys at Cygnus solutions
and Redhat deserve a huge THANKS! as well as all the other people in the free software community who have helped
in creating the magnificent software that constitutes Cygwin.

Also the people developing the alternative command prompt Msys and the MinGW compiler are worth huge THANKS!
The 64bit port would have been impossible without the 64bit MinGW compiler.

Good luck and Happy Hacking, Patrik, OTP

1.4.9  Copyright and License
Copyright Ericsson AB 2003-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. You should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License.



2.1  System Principles

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

2    System Principles

2.1  System Principles
2.1.1  Starting the System
An Erlang runtime system is started with the command erl:

% erl
Erlang/OTP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0  (abort with ^G)
1> 

erl understands a number of command line arguments, see erl(1). A number of them are also described in this
chapter.

Application programs can access the values of the command line arguments by calling one of the functions
init:get_argument(Key), or init:get_arguments(). See init(3).

2.1.2  Restarting and Stopping the System
The runtime system can be halted by calling halt/0,1. See erlang(3).

The module init contains function for restarting, rebooting and stopping the runtime system. See init(3).

init:restart()
init:reboot()
init:stop()

Also, the runtime system will terminate if the Erlang shell is terminated.

2.1.3  Boot Scripts
The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applications to start.

A boot script file has the extension .script. The runtime system uses a binary version of the script. This binary
boot script file has the extension .boot.

Which boot script to use is specified by the command line flag -boot. The extension .boot should be omitted.
Example, using the boot script start_all.boot:

% erl -boot start_all

If no boot script is specified, it defaults to ROOT/bin/start, see Default Boot Scripts below.



2.1  System Principles

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The command line flag -init_debug makes the init process write some debug information while interpreting
the boot script:

% erl -init_debug
{progress,preloaded}
{progress,kernel_load_completed}
{progress,modules_loaded}
{start,heart}
{start,error_logger}
...

See script(4) for a detailed description of the syntax and contents of the boot script.

Default Boot Scripts
Erlang/OTP comes with two boot scripts:

start_clean.boot

Loads the code for and starts the applications Kernel and STDLIB.

start_sasl.boot

Loads the code for and starts the applications Kernel, STDLIB and SASL.

no_dot_erlang.boot

Loads the code for and starts the applications Kernel and STDLIB, skips loading the .erlang file. Useful for
scripts and other tools that should be behave the same irregardless of user preferences.

Which of start_clean and start_sasl to use as default is decided by the user when installing Erlang/OTP
using Install. The user is asked "Do you want to use a minimal system startup instead of the SASL startup". If the
answer is yes, then start_clean is used, otherwise start_sasl is used. A copy of the selected boot script is
made, named start.boot and placed in the ROOT/bin directory.

User-Defined Boot Scripts
It is sometimes useful or necessary to create a user-defined boot script. This is true especially when running Erlang
in embedded mode, see Code Loading Strategy.

It is possible to write a boot script manually. The recommended way to create a boot script, however, is to generate
the boot script from a release resource file Name.rel, using the function systools:make_script/1,2. This
requires that the source code is structured as applications according to the OTP design principles. (The program does
not have to be started in terms of OTP applications but can be plain Erlang).

Read more about .rel files in OTP Design Principles and rel(4).

The binary boot script file Name.boot is generated from the boot script file Name.script using the function
systools:script2boot(File).

2.1.4  Code Loading Strategy
The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
line flag -mode.

% erl -mode embedded

Default mode is interactive.



2.2  Error Logging

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

• In embedded mode, all code is loaded during system start-up according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so).

• In interactive mode, code is dynamically loaded when first referenced. When a call to a function in a module
is made, and the module is not loaded, the code server searches the code path and loads the module into the
system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/lib,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Name[-Vsn] and the code server,
by default, chooses the directory with the highest version number among those which have the same Name. The -
Vsn suffix is optional. If an ebin directory exists under the Name[-Vsn] directory, it is this directory which is
added to the code path.

The code path can be extended by using the command line flags -pa Directories and -pz Directories.
These will add Directories to the head or end of the code path, respectively. Example

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see
code(3).

2.1.5  File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

module .erl Erlang Reference Manual

include file .hrl Erlang Reference Manual

release resource file .rel rel(4)

application resource file .app app(4)

boot script .script script(4)

binary boot script .boot -

configuration file .config config(4)

application upgrade file .appup appup(4)

release upgrade file relup relup(4)

Table 1.1:   File Types

2.2  Error Logging
2.2.1  Error Information From the Runtime System
Error information from the runtime system, that is, information about a process terminating due to an uncaught error
exception, is by default written to terminal (tty):



2.2  Error Logging

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{m,f,1},{shell,eval_loop,2}]}

The error information is handled by the error logger, a system process registered as error_logger. This process
receives all error messages from the Erlang runtime system and also from the standard behaviours and different Erlang/
OTP applications.

The exit reasons (such as badarg above) used by the runtime system are described in Errors and Error Handling
in the Erlang Reference Manual.

The process error_logger and its user interface (with the same name) are described in error_logger(3). It is
possible to configure the system so that error information is written to file instead/as well as tty. Also, it is possible
for user defined applications to send and format error information using error_logger.

2.2.2  SASL Error Logging
The standard behaviors (supervisor, gen_server, etc.) sends progress and error information to
error_logger. If the SASL application is started, this information is written to tty as well. See SASL Error Logging
in the SASL User's Guide for further information.

% erl -boot start_sasl
Erlang (BEAM) emulator version 5.4.13 [hipe] [threads:0] [kernel-poll]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.33.0>},
                       {name,alarm_handler},
                       {mfa,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.34.0>},
                       {name,overload},
                       {mfa,{overload,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
          supervisor: {local,sasl_sup}
             started: [{pid,<0.32.0>},
                       {name,sasl_safe_sup},
                       {mfa,{supervisor,
                                start_link,
                                [{local,sasl_safe_sup},sasl,safe]}},
                       {restart_type,permanent},
                       {shutdown,infinity},
                       {child_type,supervisor}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
          supervisor: {local,sasl_sup}
             started: [{pid,<0.35.0>},
                       {name,release_handler},
                       {mfa,{release_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},



2.3  Creating and Upgrading a Target System

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

                       {child_type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
         application: sasl
          started_at: nonode@nohost
Eshell V5.4.13  (abort with ^G)
1> 

2.3  Creating and Upgrading a Target System
2.3.1  Introduction
When creating a system using Erlang/OTP, the most simple way is to install Erlang/OTP somewhere, install the
application specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application specific code.

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP compliant
applications for a particular purpose, and several original Erlang/OTP applications may be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed, and a set of new applications are included. Documentation and source code is
irrelevant and is therefore not included in the new system.

This chapter is about creating such a system, which we call a target system.

In the following sections we consider creating target systems with different requirements of functionality:

• a basic target system that can be started by calling the ordinary erl script,

• a simple target system where also code replacement in run-time can be performed, and

• an embedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

In the sasl application there is an example Erlang module target_system.erl that contains functions for
creating and installing a target system. This module is used in the examples below, and the source code of the module
is listed at the end of this chapter.

2.3.2  Creating a Target System
It is assumed that you have a working Erlang/OTP system structured according to the OTP Design Principles.

Step 1. First create a .rel file (see rel(4)) that specifies the erts version and lists all applications that should be
included in the new basic target system. An example is the following mysystem.rel file:

%% mysystem.rel
{release,
 {"MYSYSTEM", "FIRST"},
 {erts, "5.10.4"},
 [{kernel, "2.16.4"},
  {stdlib, "1.19.4"},
  {sasl, "2.3.4"},
  {pea, "1.0"}]}.

The listed applications are not only original Erlang/OTP applications but possibly also new applications that you have
written yourself (here exemplified by the application pea).

Step 2. From the directory where the mysystem.rel file reside, start the Erlang/OTP system:



2.3  Creating and Upgrading a Target System

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

os> erl -pa /home/user/target_system/myapps/pea-1.0/ebin

where also the path to the pea-1.0 ebin directory is provided.

Step 3. Now create the target system:

1> target_system:create("mysystem").

The target_system:create/1 function does the following:

• Reads the mysystem.rel file, and creates a new file plain.rel which is identical to former, except that it
only lists the kernel and stdlib applications.

• From the mysystem.rel and plain.rel files creates the files mysystem.script, mysystem.boot,
plain.script, and plain.boot through a call to systools:make_script/2.

• Creates the file mysystem.tar.gz by a call to systools:make_tar/2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/        

The file releases/FIRST/start.boot is a copy of our mysystem.boot

The release resource file mysystem.rel is duplicated in the tar file. Originally, this file was only stored in
the releases directory in order to make it possible for the release_handler to extract this file separately.
After unpacking the tar file, release_handler would automatically copy the file to releases/FIRST.
However, sometimes the tar file is unpacked without involving the release_handler (e.g. when unpacking
the first target system) and therefore the file is now instead duplicated in the tar file so no manual copying is
necessary.

• Creates the temporary directory tmp and extracts the tar file mysystem.tar.gz into that directory.

• Deletes the erl and start files from tmp/erts-5.10.4/bin. These files will be created again from
source when installing the release.

• Creates the directory tmp/bin.

• Copies the previously created file plain.boot to tmp/bin/start.boot.

• Copies the files epmd, run_erl, and to_erl from the directory tmp/erts-5.10.4/bin to the directory
tmp/bin.

• Creates the directory tmp/log, which will be used if the system is started as embedded with the bin/start
script.

• Creates the file tmp/releases/start_erl.data with the contents "5.10.4 FIRST". This file is to be
passed as data file to the start_erl script.

• Recreates the file mysystem.tar.gz from the directories in the directory tmp, and removes tmp.

2.3.3  Installing a Target System
Step 4. Install the created target system in a suitable directory.



2.3  Creating and Upgrading a Target System

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2> target_system:install("mysystem", "/usr/local/erl-target").

The function target_system:install/2 does the following:

• Extracts the tar file mysystem.tar.gz into the target directory /usr/local/erl-target.

• In the target directory reads the file releases/start_erl.data in order to find the Erlang runtime
system version ("5.10.4").

• Substitutes %FINAL_ROOTDIR% and %EMU% for /usr/local/erl-target and beam, respectively, in
the files erl.src, start.src, and start_erl.src of the target erts-5.10.4/bin directory, and
puts the resulting files erl, start, and run_erl in the target bin directory.

• Finally the target releases/RELEASES file is created from data in the releases/mysystem.rel file.

2.3.4  Starting a Target System
Now we have a target system that can be started in various ways.

We start it as a basic target system by invoking

os> /usr/local/erl-target/bin/erl

where only the kernel and stdlib applications are started, i.e. the system is started as an ordinary development
system. There are only two files needed for all this to work: bin/erl file (obtained from erts-5.10.4/bin/
erl.src) and the bin/start.boot file (a copy of plain.boot).

We can also start a distributed system (requires bin/epmd).

To start all applications specified in the original mysystem.rel file, use the -boot flag as follows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start a simple target system as above. The only difference is that also the file releases/RELEASES is present
for code replacement in run-time to work.

To start an embedded target system the shell script bin/start is used. That shell script calls bin/run_erl, which
in turn calls bin/start_erl (roughly, start_erl is an embedded variant of erl).

The shell script start, which is generated from erts-5.10.4/bin/start.src during installation, is only an example. You
should edit it to suite your needs. Typically it is executed when the UNIX system boots.

run_erl is a wrapper that provides logging of output from the run-time system to file. It also provides a simple
mechanism for attaching to the Erlang shell (to_erl).

start_erl requires the root directory ("/usr/local/erl-target"), the releases directory ("/usr/
local/erl-target/releases"), and the location of the start_erl.data file. It reads the run-time system
version ("5.10.4") and release version ("FIRST") from the start_erl.data file, starts the run-time system
of the version found, and provides -boot flag specifying the boot file of the release version found ("releases/
FIRST/start.boot").

start_erl also assumes that there is sys.config in release version directory ("releases/FIRST/
sys.config"). That is the topic of the next section (see below).

The start_erl shell script should normally not be altered by the user.



2.3  Creating and Upgrading a Target System

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3.5  System Configuration Parameters
As was pointed out above start_erl requires a sys.config in the release version directory ("releases/
FIRST/sys.config"). If there is no such a file, the system start will fail. Hence such a file has to be added as well.

If you have system configuration data that are neither file location dependent nor site dependent, it may be
convenient to create the sys.config early, so that it becomes a part of the target system tar file created by
target_system:create/1. In fact, if you create, in the current directory, not only the mysystem.rel file,
but also a sys.config file, that latter file will be tacitly put in the appropriate directory.

2.3.6  Differences from the Install Script
The above install/2 procedure differs somewhat from that of the ordinary Install shell script. In fact,
create/1 makes the release package as complete as possible, and leave to the install/2 procedure to finish by
only considering location dependent files.

2.3.7  Creating the Next Version
In this example the pea application has been changed, and so are erts, kernel, stdlib and sasl.

Step 1. Create the .rel file:

%% mysystem2.rel
{release,
 {"MYSYSTEM", "SECOND"},
 {erts, "6.0"},
 [{kernel, "3.0"},
  {stdlib, "2.0"},
  {sasl, "2.4"},
  {pea, "2.0"}]}.

Step 2. Create the application upgrade file (see appup(4)) for pea, for example:

%% pea.appup
{"2.0",
 [{"1.0",[{load_module,pea_lib}]}],
 [{"1.0",[{load_module,pea_lib}]}]}.

Step 3. From the directory where the mysystem2.rel file reside, start the Erlang/OTP system:

os> erl -pa /home/user/target_system/myapps/pea-2.0/ebin

giving the path to the new version of pea.

Step 4. Create the release upgrade file (see relup(4)):

1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],[{path,["/home/user/target_system/myapps/pea-1.0/ebin","/my/old/erlang/lib/*/ebin"]}]).

where "mysystem" is the base release and "mysystem2" is the release to upgrade to.



2.3  Creating and Upgrading a Target System

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

Note that the path option is used for pointing out the old version of all applications. (The new versions are already
in the code path - assuming of course that the erlang node on which this is executed is running the correct version
of Erlang/OTP.)

Step 5. Create the new release:

2> target_system:create("mysystem2").

Given that the relup file generated in step 4 above is now located in the current directory, it will automatically be
included in the release package.

2.3.8  Upgrading the Target System
This part is done on the target node, and for this example we want the node to be running as an embedded system with
the -heart option, allowing automatic restart of the node. See Starting a Target System above for more information.

We add -heart to bin/start:

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [ -z "$RELDIR" ]
then
   RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl $ROOTDIR $RELDIR $START_ERL_DATA -heart

And we use the simplest possible sys.config, which we store in releases/FIRST:

%% sys.config
[].

Finally, in order to prepare the upgrade, we need to put the new release package in the releases directory of the
first target system:

os> cp mysystem2.tar.gz /usr/local/erl-target/releases

And assuming that the node has been started like this:

os> /usr/local/erl-target/bin/start

it can be accessed like this:

os> /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.1



2.3  Creating and Upgrading a Target System

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Also note that logs can be found in /usr/local/erl-target/log. This directory is specified as an argument
to run_erlin the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release_handler:unpack_release("mysystem2").

Step 2. Install the release:

2> release_handler:install_release(Vsn).
{continue_after_restart,"FIRST",[]}
heart: Tue Apr  1 12:15:10 2014: Erlang has closed.
heart: Tue Apr  1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating.
[End]

The above return value and output after the call to release_handler:install_release/1 means that the
release_handler has restarted the node by using heart. This will always be done when the upgrade involves
a change of erts, kernel, stdlib or sasl. See Upgrade when Erlang/OTP has Changed for more infomation
about this.

The node will be accessible via a new pipe:

os> /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

Let's see which releases we have in our system:

1> release_handler:which_releases().
[{"MYSYSTEM","SECOND",
  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
  current},
 {"MYSYSTEM","FIRST",
  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
  permanent}]

Our new release, "SECOND", is now the current release, but we can also see that our "FIRST" release is still permanent.
This means that if the node would be restarted at this point, it would come up running the "FIRST" release again.

Step 3. Make the new release permanent:

2> release_handler:make_permanent("SECOND").

Now look at the releases again:

3> release_handler:which_releases().
[{"MYSYSTEM","SECOND",
  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
  permanent},
 {"MYSYSTEM","FIRST",
  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],



2.3  Creating and Upgrading a Target System

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

  old}]

Here we see that the new release version is permanent, so it would be safe to restart the node.

2.3.9  Listing of target_system.erl
This module can also be found in the examples directory of the sasl application.

-module(target_system).
-export([create/1, create/2, install/2]).

%% Note: RelFileName below is the *stem* without trailing .rel,
%% .script etc.
%%

%% create(RelFileName)
%%
create(RelFileName) ->
    create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
    RelFile = RelFileName ++ ".rel", 
    Dir = filename:dirname(RelFileName),
    PlainRelFileName = filename:join(Dir,"plain"),
    PlainRelFile = PlainRelFileName ++ ".rel",
    io:fwrite("Reading file: ~tp ...~n", [RelFile]),
    {ok, [RelSpec]} = file:consult(RelFile),
    io:fwrite("Creating file: ~tp from ~tp ...~n",
              [PlainRelFile, RelFile]),
    {release,
     {RelName, RelVsn},
     {erts, ErtsVsn},
     AppVsns} = RelSpec,
    PlainRelSpec = {release, 
                    {RelName, RelVsn},
                    {erts, ErtsVsn},
                    lists:filter(fun({kernel, _}) -> 
                                         true;
                                    ({stdlib, _}) ->
                                         true;
                                    (_) ->
                                         false
                                 end, AppVsns)
                   },
    {ok, Fd} = file:open(PlainRelFile, [write]),
    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
    file:close(Fd),

    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
       [PlainRelFileName,PlainRelFileName]),
    make_script(PlainRelFileName,SystoolsOpts),

    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
              [RelFileName, RelFileName]),
    make_script(RelFileName,SystoolsOpts),

    TarFileName = RelFileName ++ ".tar.gz",
    io:fwrite("Creating tar file ~tp ...~n", [TarFileName]),
    make_tar(RelFileName,SystoolsOpts),

    TmpDir = filename:join(Dir,"tmp"),



2.3  Creating and Upgrading a Target System

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
    file:make_dir(TmpDir), 

    io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName,TmpDir]),
    extract_tar(TarFileName, TmpDir),

    TmpBinDir = filename:join([TmpDir, "bin"]),
    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
    io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
              [ErtsBinDir]),
    file:delete(filename:join([ErtsBinDir, "erl"])),
    file:delete(filename:join([ErtsBinDir, "start"])),

    io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
    file:make_dir(TmpBinDir),

    io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
              "~tp to ~tp ...~n",
              [ErtsBinDir, TmpBinDir]),
    copy_file(filename:join([ErtsBinDir, "epmd"]), 
              filename:join([TmpBinDir, "epmd"]), [preserve]),
    copy_file(filename:join([ErtsBinDir, "run_erl"]), 
              filename:join([TmpBinDir, "run_erl"]), [preserve]),
    copy_file(filename:join([ErtsBinDir, "to_erl"]), 
              filename:join([TmpBinDir, "to_erl"]), [preserve]),

    %% This is needed if 'start' script created from 'start.src' shall
    %% be used as it points out this directory as log dir for 'run_erl'
    TmpLogDir = filename:join([TmpDir, "log"]),
    io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
    ok = file:make_dir(TmpLogDir),

    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
    io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),
    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
    write_file(StartErlDataFile, StartErlData),
    
    io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
       [TarFileName,TmpDir]),
    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
    %% {ok, Cwd} = file:get_cwd(),
    %% file:set_cwd("tmp"),
    ErtsDir = "erts-"++ErtsVsn,
    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
    erl_tar:close(Tar),
    %% file:set_cwd(Cwd),
    io:fwrite("Removing directory ~tp ...~n",[TmpDir]),
    remove_dir_tree(TmpDir),
    ok.

install(RelFileName, RootDir) ->
    TarFile = RelFileName ++ ".tar.gz", 
    io:fwrite("Extracting ~tp ...~n", [TarFile]),
    extract_tar(TarFile, RootDir),
    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
    {ok, StartErlData} = read_txt_file(StartErlDataFile),



2.3  Creating and Upgrading a Target System

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
    BinDir = filename:join([RootDir, "bin"]),
    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
              "form erl, start and start_erl ...\n"),
    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir, 
                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
                      [preserve]),
    %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
    %%! not have correct permissions, so the above 'preserve' option did not help
    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),

    io:fwrite("Creating the RELEASES file ...\n"),
    create_RELEASES(RootDir, filename:join([RootDir, "releases",
         filename:basename(RelFileName)])).

%% LOCALS 

%% make_script(RelFileName,Opts)
%%
make_script(RelFileName,Opts) ->
    systools:make_script(RelFileName, [no_module_tests,
           {outdir,filename:dirname(RelFileName)}
           |Opts]).

%% make_tar(RelFileName,Opts)
%%
make_tar(RelFileName,Opts) ->
    RootDir = code:root_dir(),
    systools:make_tar(RelFileName, [{erts, RootDir},
        {outdir,filename:dirname(RelFileName)}
        |Opts]).

%% extract_tar(TarFile, DestDir)
%%
extract_tar(TarFile, DestDir) ->
    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create_RELEASES(DestDir, RelFileName) ->
    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").

subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) -> 
    lists:foreach(fun(Script) ->
                          subst_src_script(Script, SrcDir, DestDir, 
                                           Vars, Opts)
                  end, Scripts).

subst_src_script(Script, SrcDir, DestDir, Vars, Opts) -> 
    subst_file(filename:join([SrcDir, Script ++ ".src"]),
               filename:join([DestDir, Script]),
               Vars, Opts).

subst_file(Src, Dest, Vars, Opts) ->
    {ok, Conts} = read_txt_file(Src),
    NConts = subst(Conts, Vars),
    write_file(Dest, NConts),
    case lists:member(preserve, Opts) of
        true ->
            {ok, FileInfo} = file:read_file_info(Src),
            file:write_file_info(Dest, FileInfo);
        false ->
            ok
    end.



2.3  Creating and Upgrading a Target System

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

%% subst(Str, Vars)
%% Vars = [{Var, Val}]
%% Var = Val = string()
%% Substitute all occurrences of %Var% for Val in Str, using the list
%% of variables in Vars.
%%
subst(Str, Vars) ->
    subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
    subst_var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
    subst_var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when  C == $_ ->
    subst_var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->
    subst(Rest, Vars, [C| Result]);
subst([], _Vars, Result) ->
    lists:reverse(Result).

subst_var([$%| Rest], Vars, Result, VarAcc) ->
    Key = lists:reverse(VarAcc),
    case lists:keysearch(Key, 1, Vars) of
        {value, {Key, Value}} ->
            subst(Rest, Vars, lists:reverse(Value, Result));
        false ->
            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
    end;
subst_var([C| Rest], Vars, Result, VarAcc) ->
    subst_var(Rest, Vars, Result, [C| VarAcc]);
subst_var([], Vars, Result, VarAcc) ->
    subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
    copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
    {ok,_} = file:copy(Src, Dest),
    case lists:member(preserve, Opts) of
        true ->
            {ok, FileInfo} = file:read_file_info(Src),
            file:write_file_info(Dest, FileInfo);
        false ->
            ok
    end.
       
write_file(FName, Conts) ->
    Enc = file:native_name_encoding(),
    {ok, Fd} = file:open(FName, [write]),
    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
    file:close(Fd).

read_txt_file(File) ->
    {ok, Bin} = file:read_file(File),
    {ok, binary_to_list(Bin)}.

remove_dir_tree(Dir) ->
    remove_all_files(".", [Dir]).

remove_all_files(Dir, Files) ->
    lists:foreach(fun(File) ->
                          FilePath = filename:join([Dir, File]),
                          case filelib:is_dir(FilePath) of
                              true ->
                                  {ok, DirFiles} = file:list_dir(FilePath), 



2.4  Upgrade when Erlang/OTP has Changed

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

                                  remove_all_files(FilePath, DirFiles),
                                  file:del_dir(FilePath);
                              _ ->
                                  file:delete(FilePath)
                          end
                  end, Files).

2.4  Upgrade when Erlang/OTP has Changed
2.4.1  Introduction
As of Erlang/OTP 17, most applications deliver a valid application upgrade (appup) file. In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade at all. Many of the applications use the
restart_application instruction. These are applications for which it is not crucial to support real soft upgrade,
for instance tools and library applications. The restart_application instruction ensures that all modules in the
application are reloaded and thereby running the new code.

2.4.2  Upgrade of core applications
The core applications ERTS, Kernel, STDLIB and SASL never allow real soft upgrade, but require the Erlang emulator
to be restarted. This is indicated to the release_handler by the upgrade instruction restart_new_emulator.
This instruction will always be the very first instruction executed, and it will restart the emulator with the new versions
of the above mentioned core applications and the old versions of all other applications. When the node is back up all
other upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to allow code_change functions to have side effects, for example
changing data on disk. It also makes sure that the upgrade mechanism for non-core applications does not differ
depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, it is possible to handwrite the release upgrade file using only the
single upgrade instruction restart_emulator. This instruction, in contrast to restart_new_emulator, will
cause the emulator to restart with the new versions of all applications.

Note that if other instructions are included before restart_emulator in the handwritten relup file, they will
be executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after restart_emulator has no effect as the release_handler will
not do any attempt at executing them.

See relup(4) for information about the release upgrade file, and appup(4) for further information about upgrade
instructions.

2.4.3  Applications that still do not allow code upgrade
A few applications, for instance HiPE do not support upgrade at all. This is indicated by an application upgrade file
containing only {Vsn,[],[]}. Any attempt at creating a release upgrade file with such input will fail. The only
way to force an upgrade involving applications like this is to handwrite the relup file, preferably as described above
with only the restart_emulator instruction.

2.5  Versions
2.5.1  OTP Version
As of OTP release 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
a concept was introduced in OTP 17. The version scheme used is described in more detail below.



2.5  Versions

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can however be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applications from one single OTP version.

Release candidates have an -rc<N> suffix. The suffix -rc0 will be used during development up to the first release
candidate.

Retrieving Current OTP Version
In an OTP source code tree, the OTP version can be read from the text file <OTP source root>/OTP_VERSION.
The absolute path to the file can be constructed by calling filename:join([code:root_dir(),
"OTP_VERSION"]).

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OTP release number>/OTP_VERSION. The absolute path
to the file can by constructed by calling filename:join([code:root_dir(), "releases",
erlang:system_info(otp_release), "OTP_VERSION"]).

If the version read from the OTP_VERSION file in a development system has a ** suffix, the system has been patched
using the otp_patch_apply tool available to licensed customers. In this case, the system consists of application
versions from multiple OTP versions. The version preceding the ** suffix corresponds to the OTP version of the base
system that has been patched. Note that if a development system is updated by other means than otp_patch_apply,
the OTP_VERSION file may identify an incorrect OTP version.

No OTP_VERSION file will be placed in a target system created by OTP tools. This since one easily can create a
target system where it is hard to even determine the base OTP version. You may, however, place such a file there
yourself if you know the OTP version.

OTP Versions Table
The text file <OTP source root>/otp_versions.table that is part of the source code contains information
about all OTP versions from OTP 17.0 up to current OTP version. Each line contains information about application
versions that are part of a specific OTP version, and is on the format:

<OtpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<OtpVersion> is on the format OTP-<VSN>, i.e., the same as the git tag used to identify the source.
<ChangedAppVersions> and <UnchangedAppVersions> are space separated lists of application versions
on the format <application>-<vsn>. <ChangedAppVersions> corresponds to changed applications with
new version numbers in this OTP version, and <UnchangedAppVersions> corresponds to unchanged application
versions in this OTP version. Both of them might be empty, although not at the same time. If <ChangedAppVersions>
is empty, no changes has been made that change the build result of any application. This could for example be a pure
bug fix of the build system. The order of lines is undefined. All white space characters in this file are either space
(character 32) or line-break (character 10).

Using ordinary UNIX tools like sed and grep one can easily find answers to various questions like:

Which OTP versions are kernel-3.0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table

In which OTP version was kernel-3.0 introduced?

$ sed 's/#.*//;/ kernel-3\.0 /!d' otp_versions.table



2.5  Versions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Warning:
The format of the otp_versions.table might be subject to changes during the OTP 17 release.

2.5.2  Application Version
As of OTP 17.0 application versions will use the same version scheme as the OTP version. Application versions part
of a release candidate will however not have an -rc<N> suffix as the OTP version. Also note that a major increment
in an application version does not necessarily imply a major increment of the OTP version. This depends on whether
the major change in the application is considered as a major change for OTP as a whole or not.

2.5.3  Version Scheme

Note:
Note that the version scheme was changed as of OTP 17.0. This implies that application versions used prior to
OTP 17.0 do not adhere to this version scheme. A list of application versions used in OTP 17.0 can be found
at the end of this document.

In the normal case, a version will be constructed as <Major>.<Minor>.<Patch> where <Major> is the most
significant part. However, more dot separated parts than this may exist. The dot separated parts consists of non-
negative integers. If all parts less significant than <Minor> equals 0, they are omitted. The three normal parts
<Major>.<Minor>.<Patch> will be changed as follows:

<Major>
Increased when major changes, including incompatibilities, have been made.

<Minor>
Increased when new functionality has been added.

<Patch>
Increased when pure bug fixes have been made.

When a part in the version number is increased, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it does not imply anything about
how the application or OTP has been built.

Order of Versions
Version numbers in general are only partially ordered. However, normal version numbers (with three parts) as of OTP
17.0 have a total or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part towards less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with a larger version include all changes that that are part of a smaller OTP version. The same goes
for application versions.

In the general case, versions may have more than three parts. In this case the versions are only partially ordered. Note
that such versions are only used in exceptional cases. When an extra part (out of the normal three parts) is added
to a version number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order. Since they have no order, we only know that they all include



2.5  Versions

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

what is included in their closest common ancestor. When branching multiple times from the same base version, 0 parts
are added between the base version and the least significant 1 part until a unique version is found. Versions that have
an order can be compared as described in the paragraph above.

An example of branched versions: The version 6.0.2.1 is a branched version from the base version 6.0.2. Versions
on the form 6.0.2.<X> can be compared with normal versions smaller than or equal to 6.0.2, and other versions
on the form 6.0.2.<X>. The version 6.0.2.1 will include all changes in 6.0.2. However, 6.0.3 will most
likely not include all changes in 6.0.2.1 (note that these versions have no order). A second branched version from
the base version 6.0.2 will be version 6.0.2.0.1, and a third branched version will be 6.0.2.0.0.1.

2.5.4  OTP 17.0 Application Versions
The following application versions were part of OTP 17.0. If the normal part of an applications version number
compares as smaller than the corresponding application version in this list, the version number does not adhere to
the version scheme introduced in OTP 17.0 and should be considered as not having an order against versions used
as of OTP 17.0.

• asn1-3.0

• common_test-1.8

• compiler-5.0

• cosEvent-2.1.15

• cosEventDomain-1.1.14

• cosFileTransfer-1.1.16

• cosNotification-1.1.21

• cosProperty-1.1.17

• cosTime-1.1.14

• cosTransactions-1.2.14

• crypto-3.3

• debugger-4.0

• dialyzer-2.7

• diameter-1.6

• edoc-0.7.13

• eldap-1.0.3

• erl_docgen-0.3.5

• erl_interface-3.7.16

• erts-6.0

• et-1.5

• eunit-2.2.7

• gs-1.5.16

• hipe-3.10.3

• ic-4.3.5

• inets-5.10

• jinterface-1.5.9

• kernel-3.0

• megaco-3.17.1

• mnesia-4.12

• observer-2.0



2.5  Versions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

• odbc-2.10.20

• orber-3.6.27

• os_mon-2.2.15

• ose-1.0

• otp_mibs-1.0.9

• parsetools-2.0.11

• percept-0.8.9

• public_key-0.22

• reltool-0.6.5

• runtime_tools-1.8.14

• sasl-2.4

• snmp-4.25.1

• ssh-3.0.1

• ssl-5.3.4

• stdlib-2.0

• syntax_tools-1.6.14

• test_server-3.7

• tools-2.6.14

• typer-0.9.6

• webtool-0.8.10

• wx-1.2

• xmerl-1.3.7



3.1  Embedded Solaris

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3    Embedded Systems User's Guide

This manual describes the issues that are specific for running Erlang on an embedded system. It describes the
differences in installing and starting Erlang compared to how it is done for a non-embedded system.

Note that this is a supplementary document. You still need to read the Installation Guide.

There is also target architecture specific information in the top level README file of the Erlang distribution.

3.1  Embedded Solaris
This chapter describes the OS specific parts of OTP which relate to Solaris.

3.1.1  Memory Usage
Solaris takes about 17 Mbyte of RAM on a system with 64 Mbyte of total RAM. This leaves about 47 Mbyte for the
applications. If the system utilizes swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping is disabled, or if the swap space is of limited resource in the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2  Disk Space Usage
The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
Mbyte of disk space. This installs only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved may not be justified.

3.1.3  Installation
This section is about installing an embedded system. The following topics are considered,

• Creation of user and installation directory,

• Installation of embedded system,

• Configuration for automatic start at reboot,

• Making a hardware watchdog available,

• Changing permission for reboot,

• Patches,

• Configuration of the OS_Mon application.

Several of the procedures described below require expert knowledge of the Solaris 2 operating system. For most of
them super user privilege is needed.

Creation of User and Installation Directory
It is recommended that the Embedded Environment is run by an ordinary user, i.e. a user who does not have super
user privileges.

Throughout this section we assume that the user name is otpuser, and that the home directory of that user is,



3.1  Embedded Solaris

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

        /export/home/otpuser

Furthermore, we assume that in the home directory of otpuser, there is a directory named otp, the full path of
which is,

        /export/home/otpuser/otp

This directory is the installation directory of the Embedded Environment.

Installation of an Embedded System
The procedure for installation of an embedded system does not differ from that of an ordinary system (see the
Installation Guide), except for the following:

• the (compressed) tape archive file should be extracted in the installation directory as defined above, and,

• there is no need to link the start script to a standard directory like /usr/local/bin.

Configuration for Automatic Start at Boot
A true embedded system has to start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications will start automatically if the script file shown below is added to the /
etc/rc3.d directory. The file must be owned and readable by root, and its name cannot be arbitrarily assigned.
The following name is recommended,

        S75otp.system

For further details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#!/bin/sh
#  
#  File name:  S75otp.system
#  Purpose:    Automatically starts Erlang and applications when the 
#              system starts
#  Author:     janne@erlang.ericsson.se
#  Resides in: /etc/rc3.d
#

if [ ! -d /usr/bin ]
then                    # /usr not mounted
        exit
fi

killproc() {            # kill the named process(es)
        pid=`/usr/bin/ps -e |
             /usr/bin/grep -w $1 |
             /usr/bin/sed -e 's/^  *//' -e 's/ .*//'`
        [ "$pid" != "" ] && kill $pid
}

# Start/stop processes required for Erlang

case "$1" in
'start')
        # Start the Erlang emulator



3.1  Embedded Solaris

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

        #
        su - otpuser -c "/export/home/otpuser/otp/bin/start" &
        ;;
'stop')
        killproc beam
        ;;
*)
        echo "Usage: $0 { start | stop }"
        ;;
esac

The file /export/home/otpuser/otp/bin/start referred to in the above script, is precisely the script
start described in the section Starting Erlang below. The script variable OTP_ROOT in that start script
corresponds to the example path

        /export/home/otpuser/otp

used in this section. The start script should be edited accordingly.

Use of the killproc procedure in the above script could be combined with a call to erl_call, e.g.

        $SOME_PATH/erl_call -n Node init stop

In order to take Erlang down gracefully see the erl_call(1) reference manual page for further details on the use
of erl_call. That however requires that Erlang runs as a distributed node which is not always the case.

The killproc procedure should not be removed: the purpose is here to move from run level 3 (multi-user mode
with networking resources) to run level 2 (multi-user mode without such resources), in which Erlang should not run.

Hardware Watchdog
For Solaris running on VME boards from Force Computers, there is a possibility to activate the onboard hardware
watchdog, provided a VME bus driver is added to the operating system (see also Installation Problems below).

See also the heart(3) reference manual page in Kernel.

Changing Permissions for Reboot
If the HEART_COMMAND environment variable is to be set in the start script in the section, Starting Erlang, and if
the value shall be set to the path of the Solaris reboot command, i.e.

        HEART_COMMAND=/usr/sbin/reboot

the ownership and file permissions for /usr/sbin/reboot must be changed as follows,

        chown 0 /usr/sbin/reboot
        chmod 4755 /usr/sbin/reboot

See also the heart(3) reference manual page in Kernel.



3.1  Embedded Solaris

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

The TERM Environment Variable
When the Erlang runtime system is automatically started from the S75otp.system script the TERM environment
variable has to be set. The following is a minimal setting,

        TERM=sun

which should be added to the start script described in the section.

Patches
For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version specific patch with number
103640-02 must be added to the operating system. There may be other patches needed, see the release README file
<ERL_INSTALL_DIR>/README.

Installation of Module os_sup in Application OS_Mon
The following four installation procedures require super user privilege.

Installation
• Make a copy the Solaris standard configuration file for syslogd.

• Make a copy the Solaris standard configuration file for syslogd. This file is usually named syslog.conf
and found in the /etc directory.

• The file name of the copy must be syslog.conf.ORIG but the directory location is optional. Usually it
is /etc.

A simple way to do this is to issue the command

cp /etc/syslog.conf /etc/syslog.conf.ORIG

• Make an Erlang specific configuration file for syslogd.

• Make an edited copy of the back-up copy previously made.

• The file name must be syslog.conf.OTP and the path must be the same as the back-up copy.

• The format of the configuration file is found in the man page for syslog.conf(5), by issuing the
command man syslog.conf.

• Usually a line is added which should state:

• which types of information that will be supervised by Erlang,

• the name of the file (actually a named pipe) that should receive the information.

• If e.g. only information originating from the unix-kernel should be supervised, the line should begin with
kern.LEVEL (for the possible values of LEVEL see syslog.conf(5)).

• After at least one tab-character, the line added should contain the full name of the named pipe where
syslogd writes its information. The path must be the same as for the syslog.conf.ORIG and
syslog.conf.OTP files. The file name must be syslog.otp.

• If the directory for the syslog.conf.ORIG and syslog.conf.OTP files is /etc the line in
syslog.conf.OTP will look like:

kern.LEVEL                /etc/syslog.otp

• Check the file privileges of the configuration files.



3.1  Embedded Solaris

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• The configuration files should have rw-r--r-- file privileges and be owned by root.

• A simple way to do this is to issue the commands

chmod 644 /etc/syslog.conf
chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

• Note: If the syslog.conf.ORIG and syslog.conf.OTP files are not in the /etc directory, the file
path in the second and third command must be modified.

• Modify file privileges and ownership of the mod_syslog utility.

• The file privileges and ownership of the mod_syslog utility must be modified.

• The full name of the binary executable file is derived from the position of the os_mon application if the file
system by adding /priv/bin/mod_syslog. The generic full name of the binary executable file is thus

<OTP_ROOT>/lib/os_mon-<REV>/priv/bin/mod_syslog

Example: If the path to the otp-root is /usr/otp, thus the path to the os_mon application is /usr/otp/
lib/os_mon-1.0 (assuming revision 1.0) and the full name of the binary executable file is /usr/otp/
lib/os_mon-1.0/priv/bin/mod_syslog.

• The binary executable file must be owned by root, have rwsr-xr-x file privileges, in particular the setuid
bit of user must be set.

• A simple way to do this is to issue the commands

cd <OTP_ROOT>/lib/os_mon-<REV>/priv/bin/mod_syslog
chmod 4755 mod_syslog
chown root mod_syslog

Testing the Application Configuration File
The following procedure does not require root privilege.

• Ensure that the configuration parameters for the os_sup module in the os_mon application are correct.

• Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the OS_Mon application if the file system by adding /ebin/os_mon.app.

The generic full name of the file is thus

<OTP_ROOT>/lib/os_mon-<REV>/ebin/os_mon.app.

Example: If the path to the otp-root is /usr/otp, thus the path to the os_mon application is /usr/otp/lib/
os_mon-1.0  (assuming revision 1.0) and the full name of the binary executable file is /usr/otp/lib/
os_mon-1.0/ebin/os_mon.app.

• Ensure that the following configuration parameters are bound to the correct values.

Parameter Function Standard value



3.1  Embedded Solaris

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

start_os_sup
Specifies if os_sup will be started or
not.

truefor the first instance on the
hardware; falsefor the other
instances.

os_sup_own
The directory for (1)the back-
up copy, (2) the Erlang specific
configuration file for syslogd.

"/etc"

os_sup_syslogconf
The full name for the Solaris
standard configuration file for
syslogd

"/etc/syslog.conf"

error_tag
The tag for the messages that are
sent to the error logger in the Erlang
runtime system.

std_error

Table 1.1:   Configuration Parameters

If the values listed in the os_mon.app do not suit your needs, you should not edit that file. Instead you should
override values in a system configuration file, the full pathname of which is given on the command line to erl.

Example: The following is an example of the contents of an application configuration file.

          [{os_mon, [{start_os_sup, true}, {os_sup_own, "/etc"}, 
          {os_sup_syslogconf, "/etc/syslog.conf"}, {os_sup_errortag, std_error}]}].

Related Documents
See also the os_mon(3), application(3) and erl(1) reference manual pages.

Installation Problems
The hardware watchdog timer which is controlled by the heart port program requires the FORCEvme package, which
contains the VME bus driver, to be installed. This driver, however, may clash with the Sun mcp driver and cause the
system to completely refuse to boot. To cure this problem, the following lines should be added to /etc/system:

• exclude: drv/mcp

• exclude: drv/mcpzsa

• exclude: drv/mcpp

Warning:
It is recommended that these lines be added to avoid the clash described, which may make it completely impossible
to boot the system.

3.1.4  Starting Erlang
This section describes how an embedded system is started. There are four programs involved, and they all normally
reside in the directory <ERL_INSTALL_DIR>/bin. The only exception is the program start, which may be
located anywhere, and also is the only program that must be modified by the user.



3.1  Embedded Solaris

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

In an embedded system there usually is no interactive shell. However, it is possible for an operator to attach to the
Erlang system by giving the command to_erl. He is then connected to the Erlang shell, and may give ordinary
Erlang commands. All interaction with the system through this shell is logged in a special directory.

Basically, the procedure is as follows. The program start is called when the machine is started. It calls run_erl,
which sets things up so the operator can attach to the system. It calls start_erl which calls the correct version of
erlexec (which is located in <ERL_INSTALL_DIR>/erts-EVsn/bin) with the correct boot and config
files.

3.1.5  Programs
start
This program is called when the machine is started. It may be modified or re-written to suit a special system. By
default, it must be called start and reside in <ERL_INSTALL_DIR>/bin. Another start program can be used, by
using the configuration parameter start_prg in the application sasl.

The start program must call run_erl as shown below. It must also take an optional parameter which defaults to
<ERL_INSTALL_DIR>/releases/start_erl.data.

This program should set static parameters and environment variables such as -sname Name and HEART_COMMAND
to reboot the machine.

The <RELDIR> directory is where new release packets are installed, and where the release handler keeps information
about releases. See release_handler(3) in the application sasl for further information.

The following script illustrates the default behaviour of the program.

#!/bin/sh
# Usage: start [DataFile]
#
ROOTDIR=/usr/local/otp

if [ -z "$RELDIR" ]
then
   RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \ 
                     $ROOTDIR $RELDIR $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and the environment variables
HEART_COMMAND and TERM have been added to the above script.

#!/bin/sh
# Usage: start [DataFile]
#
HEART_COMMAND=/usr/sbin/reboot
TERM=sun
export HEART_COMMAND TERM

ROOTDIR=/usr/local/otp

if [ -z "$RELDIR" ]
then
   RELDIR=$ROOTDIR/releases



3.1  Embedded Solaris

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \ 
      $ROOTDIR $RELDIR $START_ERL_DATA -heart -sname cp1" > /dev/null 2>&1 &

If a diskless and/or read-only client node is about to start the start_erl.data file is located in the client directory
at the master node. Thus, the START_ERL_DATA line should look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START_ERL_DATA=${1:-$CLIENTDIR/bin/start_erl.data}

run_erl
This program is used to start the emulator, but you will not be connected to the shell. to_erl is used to connect
to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [parameters ...]"

Where pipe_dir/ should be /tmp/ (to_erl uses this name by default) and log_dir is where the log files
are written. command [parameters] is executed, and everything written to stdin and stdout is logged in the
log_dir.

In the log_dir, log files are written. Each logfile has a name of the form: erlang.log.N where N is a generation
number, ranging from 1 to 5. Each logfile holds up to 100kB text. As time goes by the following logfiles will be found
in the logfile directory

erlang.log.1
erlang.log.1, erlang.log.2
erlang.log.1, erlang.log.2, erlang.log.3
erlang.log.1, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1
...

with the most recent logfile being the right most in each row of the above list. That is, the most recent file is the one
with the highest number, or if there are already four files, the one before the skip.

When a logfile is opened (for appending or created) a time stamp is written to the file. If nothing has been written to
the log files for 15 minutes, a record is inserted that says that we're still alive.

to_erl
This program is used to attach to a running Erlang runtime system, started with run_erl.

Usage: to_erl [pipe_name | pipe_dir]

Where pipe_name defaults to /tmp/erlang.pipe.N.

To disconnect from the shell without exiting the Erlang system, type Ctrl-D.



3.2  Windows NT

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

start_erl
This program starts the Erlang emulator with parameters -boot and -config set. It reads data about where these files
are located from a file called start_erl.data which is located in the <RELDIR>. Each new release introduces a
new data file. This file is automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program.

#!/bin/sh
#
# This program is called by run_erl.  It starts
# the Erlang emulator and sets -boot and -config parameters.
# It should only be used at an embedded target system.
#
# Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]
#
ROOTDIR=$1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS_VSN=`awk '{print $1}' $DataFile`
VSN=`awk '{print $2}' $DataFile`

BINDIR=$ROOTDIR/erts-$ERTS_VSN/bin
EMU=beam
PROGNAME=`echo $0 | sed 's/.*\///'`
export EMU
export ROOTDIR
export BINDIR
export PROGNAME
export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If a diskless and/or read-only client node with the sasl configuration parameter static_emulator set to true is
about to start the -boot and -config flags must be changed. As such a client cannot read a new start_erl.data
file (the file is not possible to change dynamically) the boot and config files are always fetched from the same place
(but with new contents if a new release has been installed). The release_handler copies this files to the bin
directory in the client directory at the master nodes whenever a new release is made permanent.

Assuming the same CLIENTDIR as above the last line should look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \ 
     -config $CLIENTDIR/bin/sys $*

3.2  Windows NT
This chapter describes the OS specific parts of OTP which relate to Windows NT.

3.2.1  Introduction
A normal installation of NT 4.0, with service pack 4 or later, is required for an embedded Windows NT running OTP.



3.2  Windows NT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

3.2.2  Memory Usage
RAM memory of 96 MBytes is recommended to run OTP on NT. A system with less than 64 Mbytes of RAM is
not recommended.

3.2.3  Disk Space Usage
A minimum NT installation with networking needs 250 MB, and an additional 130 MB for the swap file.

3.2.4  Installation
Normal NT installation is performed. No additional application programs are needed, such as Internet explorer or web
server. Networking with TCP/IP is required.
Service pack 4 or later must be installed.

Hardware Watchdog
For Windows NT running on standard PCs with ISA and/or PCI bus there is a possibility to install an extension card
with a hardware watchdog.

See also the heart(3) reference manual page in Kernel.

3.2.5  Starting Erlang
On an embedded system, the erlsrv module should be used, to install the erlang process as a Windows system
service. This service can start after NT has booted. See documentation for erlsrv.



4.1  Introduction

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4    Getting Started With Erlang

4.1  Introduction
4.1.1  Introduction
This is a "kick start" tutorial to get you started with Erlang. Everything here is true, but only part of the truth. For
example, I'll only tell you the simplest form of the syntax, not all esoteric forms. Where I've greatly oversimplified
things I'll write *manual* which means there is lots more information to be found in the Erlang book or in the Erlang
Reference Manual.

I also assume that this isn't the first time you have touched a computer and you have a basic idea about how they are
programmed. Don't worry, I won't assume you're a wizard programmer.

4.1.2  Things Left Out
In particular the following has been omitted:

• References

• Local error handling (catch/throw)

• Single direction links (monitor)

• Handling of binary data (binaries / bit syntax)

• List comprehensions

• How to communicate with the outside world and/or software written in other languages (ports). There is
however a separate tutorial for this, Interoperability Tutorial

• Very few of the Erlang libraries have been touched on (for example file handling)

• OTP has been totally skipped and in consequence the Mnesia database has been skipped.

• Hash tables for Erlang terms (ETS)

• Changing code in running systems

4.2  Sequential Programming
4.2.1  The Erlang Shell
Most operating systems have a command interpreter or shell- Unix and Linux have many, while Windows has the
Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and evaluate (run) them
to see what happens (see shell(3)). Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter
in your operating system and typing erl. You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1  (abort with ^G)
1>

Now type in "2 + 5." as shown below.



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

1> 2 + 5.
7
2>

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1> 2>) and that it has correctly told
you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by finishing with a full stop "."
and a carriage return. If you make mistakes writing things in the shell, you can delete things by using the backspace
key as in most shells. There are many more editing commands in the shell (See the chapter "tty - A command line
interface" in ERTS User's Guide).

(Note: you will find a lot of line numbers given by the shell out of sequence in this tutorial as it was written and the
code tested in several sessions).

Now let's try a more complex calculation.

2> (42 + 77) * 66 / 3.
2618.0

Here you can see the use of brackets and the multiplication operator "*" and division operator "/", just as in normal
arithmetic (see the chapter "Arithmetic Expressions" in the Erlang Reference Manual).

To shutdown the Erlang system and the Erlang shell type Control-C. You will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
       (v)ersion (k)ill (D)b-tables (d)istribution
a
%

Type "a" to leave the Erlang system.

Another way to shutdown the Erlang system is by entering halt():

3> halt().
% 

4.2.2  Modules and Functions
A programming language isn't much use if you can just run code from the shell. So here is a small Erlang program.
Enter it into a file called tut.erl (the file name tut.erl is important, also make sure that it is in the same directory
as the one where you started erl) using a suitable text editor. If you are lucky your editor will have an Erlang mode
which will make it easier for you to enter and format your code nicely (see the chapter "The Erlang mode for Emacs"
in Tools User's Guide), but you can manage perfectly well without. Here's the code to enter:

-module(tut).
-export([double/1]).

double(X) ->
    2 * X.



4.2  Sequential Programming

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

It's not hard to guess that this "program" doubles the value of numbers. I'll get back to the first two lines later. Let's
compile the program. This can be done in your Erlang shell as shown below:

3> c(tut).
{ok,tut}

The {ok,tut} tells you that the compilation was OK. If it said "error" instead, you have made some mistake in the
text you entered and there will also be error messages to give you some idea as to what has gone wrong so you can
change what you have written and try again.

Now lets run the program.

4> tut:double(10).
20

As expected double of 10 is 20.

Now let's get back to the first two lines. Erlang programs are written in files. Each file contains what we call an Erlang
module. The first line of code in the module tells us the name of the module (see the chapter "Modules" in the Erlang
Reference Manual).

-module(tut).

This tells us that the module is called tut. Note the "." at the end of the line. The files which are used to store the module
must have the same name as the module but with the extension ".erl". In our case the file name is tut.erl. When
we use a function in another module, we use the syntax, module_name:function_name(arguments). So

4> tut:double(10).

means call function double in module tut with argument "10".

The second line:

-export([double/1]).

says that the module tut contains a function called double which takes one argument (X in our example) and that
this function can be called from outside the module tut. More about this later. Again note the "." at the end of the line.

Now for a more complicated example, the factorial of a number (e.g. factorial of 4 is 4 * 3 * 2 * 1). Enter the following
code in a file called tut1.erl.

-module(tut1).
-export([fac/1]).

fac(1) ->
    1;
fac(N) ->
    N * fac(N - 1).



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

Compile the file

5> c(tut1).
{ok,tut1}

And now calculate the factorial of 4.

6> tut1:fac(4).
24

The first part:

fac(1) ->
    1;

says that the factorial of 1 is 1. Note that we end this part with a ";" which indicates that there is more of this function
to come. The second part:

fac(N) ->
    N * fac(N - 1).

says that the factorial of N is N multiplied by the factorial of N - 1. Note that this part ends with a "." saying that there
are no more parts of this function.

A function can have many arguments. Let's expand the module tut1 with the rather stupid function to multiply two
numbers:

-module(tut1).
-export([fac/1, mult/2]).

fac(1) ->
    1;
fac(N) ->
    N * fac(N - 1).

mult(X, Y) ->
    X * Y.

Note that we have also had to expand the -export line with the information that there is another function mult
with two arguments.

Compile:

7> c(tut1).
{ok,tut1}

and try it out:



4.2  Sequential Programming

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8> tut1:mult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y are called
variables. Variables must start with a capital letter (see the chapter "Variables" in the Erlang Reference Manual).
Examples of variable could be Number, ShoeSize, Age etc.

4.2.3  Atoms
Atoms are another data type in Erlang. Atoms start with a small letter ((see the chapter "Atom" in the Erlang Reference
Manual)), for example: charles, centimeter, inch. Atoms are simply names, nothing else. They are not like
variables which can have a value.

Enter the next program (file: tut2.erl) which could be useful for converting from inches to centimeters and vice
versa:

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
    M / 2.54;

convert(N, centimeter) ->
    N * 2.54.

Compile and test:

9> c(tut2).
{ok,tut2}
10> tut2:convert(3, inch).
1.1811023622047243
11> tut2:convert(7, centimeter).
17.78

Notice that I have introduced decimals (floating point numbers) without any explanation, but I guess you can cope
with that.

See what happens if I enter something other than centimeter or inch in the convert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

The two parts of the convert function are called its clauses. Here we see that "miles" is not part of either of the
clauses. The Erlang system can't match either of the clauses so we get an error message function_clause. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/1:

13> v(12).
{'EXIT',{function_clause,[{tut2,convert,
                                [3,miles],
                                [{file,"tut2.erl"},{line,4}]},



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

                          {erl_eval,do_apply,5,[{file,"erl_eval.erl"},{line,482}]},
                          {shell,exprs,7,[{file,"shell.erl"},{line,666}]},
                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,621}]},
                          {shell,eval_loop,3,[{file,"shell.erl"},{line,606}]}]}}

4.2.4  Tuples
Now the tut2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Does this mean that 3 is in inches? or that 3 is in centimeters and we want to convert it to inches? So Erlang has a way to
group things together to make things more understandable. We call these tuples. Tuples are surrounded by "{" and "}".

So we can write {inch,3} to denote 3 inches and {centimeter,5} to denote 5 centimeters. Now let's write a
new program which converts centimeters to inches and vice versa. (file tut3.erl).

-module(tut3).
-export([convert_length/1]).

convert_length({centimeter, X}) ->
    {inch, X / 2.54};
convert_length({inch, Y}) ->
    {centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).
{ok,tut3}
15> tut3:convert_length({inch, 5}).
{centimeter,12.7}
16> tut3:convert_length(tut3:convert_length({inch, 5})).
{inch,5.0}

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the original value.
I.e the argument to a function can be the result of another function. Pause for a moment and consider how line 16
(above) works. The argument we have given the function {inch,5} is first matched against the first head clause of
convert_length i.e. convert_length({centimeter,X}) where it can be seen that {centimeter,X}
does not match {inch,5} (the head is the bit before the "->"). This having failed, we try the head of the next clause
i.e. convert_length({inch,Y}), this matches and Y get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain any valid
Erlang term. For example, to represent the temperature of various cities of the world we could write

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in a tuple an element. So in the tuple {moscow,
{c,-10}}, element 1 is moscow and element 2 is {c,-10}. I have chosen c meaning Centigrade (or Celsius) and
f meaning Fahrenheit.



4.2  Sequential Programming

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2.5  Lists
Whereas tuples group things together, we also want to be able to represent lists of things. Lists in Erlang are surrounded
by "[" and "]". For example a list of the temperatures of various cities in the world could be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
 {paris, {f, 28}}, {london, {f, 36}}]

Note that this list was so long that it didn't fit on one line. This doesn't matter, Erlang allows line breaks at all "sensible
places" but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, is by using "|". This is best explained by an example using the shell.

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]
18> First.
1
19> TheRest.
[2,3,4,5]

We use | to separate the first elements of the list from the rest of the list. (First has got value 1 and TheRest
value [2,3,4,5]).

Another example:

20> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
21> E1.
1
22> E2.
2
23> R.
[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more elements from the
list than there are elements in the list we will get an error. Note also the special case of the list with no elements [].

24> [A, B | C] = [1, 2].
[1,2]
25> A.
1
26> B.
2
27> C.
[]

In all the examples above, I have been using new variable names, not reusing the old ones: First, TheRest, E1,
E2, R, A, B, C. The reason for this is that a variable can only be given a value once in its context (scope). I'll get back
to this later, it isn't so peculiar as it sounds!

The following example shows how we find the length of a list:



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

-module(tut4).

-export([list_length/1]).

list_length([]) ->
    0;    
list_length([First | Rest]) ->
    1 + list_length(Rest).

Compile (file tut4.erl) and test:

28> c(tut4).
{ok,tut4}
29> tut4:list_length([1,2,3,4,5,6,7]).
7

Explanation:

list_length([]) ->
    0;

The length of an empty list is obviously 0.

list_length([First | Rest]) ->
    1 + list_length(Rest).

The length of a list with the first element First and the remaining elements Rest is 1 + the length of Rest.

(Advanced readers only: This is not tail recursive, there is a better way to write this function).

In general we can say we use tuples where we would use "records" or "structs" in other languages and we use lists
when we want to represent things which have varying sizes, (i.e. where we would use linked lists in other languages).

Erlang does not have a string data type, instead strings can be represented by lists of ASCII characters. So the list
[97,98,99] is equivalent to "abc". The Erlang shell is "clever" and guesses the what sort of list we mean and outputs
it in what it thinks is the most appropriate form, for example:

30> [97,98,99].
"abc"

4.2.6  Maps
Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42, we write:

> #{ "key" => 42 }.
#{"key" => 42}

We will jump straight into the deep end with an example using some interesting features.

The following example shows how we calculate alpha blending using maps to reference color and alpha channels:



4.2  Sequential Programming

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-module(color).

-export([new/4, blend/2]).

-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
                  ?is_channel(B), ?is_channel(A) ->
    #{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
    blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    Dst#{
        red   := red(Src,Dst) / Alpha,
        green := green(Src,Dst) / Alpha,
        blue  := blue(Src,Dst) / Alpha,
        alpha := Alpha
    };
blend(_,Dst,_) ->
    Dst#{
        red   := 0.0,
        green := 0.0,
        blue  := 0.0,
        alpha := 0.0
    }.

alpha(#{alpha := SA}, #{alpha := DA}) ->
    SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    SV*SA + DV*DA*(1.0 - SA).
green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
    SV*SA + DV*DA*(1.0 - SA).
blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
    SV*SA + DV*DA*(1.0 - SA).

Compile (file color.erl) and test:

> c(color).
{ok,color}
> C1 = color:new(0.3,0.4,0.5,1.0).
#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> C2 = color:new(1.0,0.8,0.1,0.3).
#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
> color:blend(C1,C2).
#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> color:blend(C2,C1).
#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:

-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

First we define a macro is_channel to help with our guard tests. This is only here for convenience and to reduce
syntax cluttering. You can read more about Macros in the Erlang Reference Manual.



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
                  ?is_channel(B), ?is_channel(A) ->
    #{red => R, green => G, blue => B, alpha => A}.

The function new/4 creates a new map term with and lets the keys red, green, blue and alpha be associated
with an initial value. In this case we only allow for float values between and including 0.0 and 1.0 as ensured by the
?is_channel/1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling blend/2 on any color term created by new/4 we can calculate the resulting color as determined by the
two maps terms.

The first thing blend/2 does is to calculate the resulting alpha channel.

alpha(#{alpha := SA}, #{alpha := DA}) ->
    SA + DA*(1.0 - SA).

We fetch the value associated with key alpha for both arguments using the := operator. Any other keys in the map
are ignored, only the key alpha is required and checked for.

This is also the case for functions red/2, blue/2 and green/2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    SV*SA + DV*DA*(1.0 - SA).

The difference here is that we check for two keys in each map argument. The other keys are ignored.

Finally we return the resulting color in blend/3.

blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    Dst#{
        red   := red(Src,Dst) / Alpha,
        green := green(Src,Dst) / Alpha,
        blue  := blue(Src,Dst) / Alpha,
        alpha := Alpha
    };

We update the Dst map with new channel values. The syntax for updating an existing key with a new value is done
with := operator.

4.2.7  Standard Modules and Manual Pages
Erlang has a lot of standard modules to help you do things. For example, the module io contains a lot of functions
to help you do formatted input/output. To look up information about standard modules, the command erl -man
can be used at the operating shell or command prompt (i.e. at the same place as that where you started erl). Try the
operating system shell command:

% erl -man io
ERLANG MODULE DEFINITION                                    io(3)

MODULE
     io - Standard I/O Server Interface Functions



4.2  Sequential Programming

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

DESCRIPTION
     This module provides an  interface  to  standard  Erlang  IO
     servers. The output functions all return ok if they are suc-
     ...

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP release, or you can
read the documentation as HTML or download it as PDF from either of the sites www.erlang.se (commercial Erlang)
or www.erlang.org (open source), for example for release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

4.2.8  Writing Output to a Terminal
It's nice to be able to do formatted output in these example, so the next example shows a simple way to use to use
the io:format function. Of course, just like all other exported functions, you can test the io:format function
in the shell:

31> io:format("hello world~n", []).
hello world
ok
32> io:format("this outputs one Erlang term: ~w~n", [hello]).
this outputs one Erlang term: hello
ok
33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld
ok
34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world
ok

The function format/2 (i.e. format with two arguments) takes two lists. The first one is nearly always a list written
between " ". This list is printed out as it stands, except that each ~w is replaced by a term taken in order from the
second list. Each ~n is replaced by a new line. The io:format/2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a
deliberate policy. Erlang has sophisticated mechanisms to handle errors which we will show later. As an exercise,
try to make io:format crash, it shouldn't be difficult. But notice that although io:format crashes, the Erlang
shell itself does not crash.

4.2.9  A Larger Example
Now for a larger example to consolidate what we have learnt so far. Assume we have a list of temperature readings
from a number of cities in the world. Some of them are in Celsius (Centigrade) and some in Fahrenheit (as in the
previous list). First let's convert them all to Celsius, then let's print out the data neatly.

%% This module is in file tut5.erl

-module(tut5).
-export([format_temps/1]).

%% Only this function is exported
format_temps([])->                        % No output for an empty list
    ok;
format_temps([City | Rest]) ->



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

    print_temp(convert_to_celsius(City)),
    format_temps(Rest).

convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
    {Name, {c, Temp}};
convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
    {Name, {c, (Temp - 32) * 5 / 9}}.

print_temp({Name, {c, Temp}}) ->
    io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tut5).
{ok,tut5}
36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow          -10 c
cape_town       21.11111111111111 c
stockholm       -4 c
paris           -2.2222222222222223 c
london          2.2222222222222223 c
ok

Before we look at how this program works, notice that we have added a few comments to the code. A comment starts
with a % character and goes on to the end of the line. Note as well that the -export([format_temps/1]).
line only includes the function format_temps/1, the other functions are local functions, i.e. they are not visible
from outside the module tut5.

Note as well that when testing the program from the shell, I had to spread the input over two lines as the line was
too long.

When we call format_temps the first time, City gets the value {moscow,{c,-10}} and Rest is the rest of
the list. So we call the function print_temp(convert_to_celsius({moscow,{c,-10}})).

Here we see a function call as convert_to_celsius({moscow,{c,-10}}) as the argument to the function
print_temp. When we nest function calls like this we execute (evaluate) them from the inside out. I.e. we
first evaluate convert_to_celsius({moscow,{c,-10}}) which gives the value {moscow,{c,-10}} as
the temperature is already in Celsius and then we evaluate print_temp({moscow,{c,-10}}). The function
convert_to_celsius works in a similar way to the convert_length function in the previous example.

print_temp simply calls io:format in a similar way to what has been described above. Note that ~-15w says to
print the "term" with a field length (width) of 15 and left justify it. (io(3)).

Now we call format_temps(Rest) with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Yes, this is recursion, but don't let that worry you). So the same
format_temps function is called again, this time City gets the value {cape_town,{f,70}} and we repeat
the same procedure as before. We go on doing this until the list becomes empty, i.e. [], which causes the first clause
format_temps([]) to match. This simply returns (results in) the atom ok, so the program ends.

4.2.10  Matching, Guards and Scope of Variables
It could be useful to find the maximum and minimum temperature in lists like this. Before extending the program to
do this, let's look at functions for finding the maximum value of the elements in a list:

-module(tut6).
-export([list_max/1]).

list_max([Head|Rest]) ->



4.2  Sequential Programming

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

   list_max(Rest, Head).

list_max([], Res) ->
    Res;
list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    list_max(Rest, Head);
list_max([Head|Rest], Result_so_far)  ->
    list_max(Rest, Result_so_far).

37> c(tut6).
{ok,tut6}
38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
7

First note that we have two functions here with the same name list_max. However each of these takes a different
number of arguments (parameters). In Erlang these are regarded as completely different functions. Where we need to
distinguish between these functions we write name/arity, where name is the name of the function and arity is
the number of arguments, in this case list_max/1 and list_max/2.

This is an example where we walk through a list "carrying" a value with us, in this case Result_so_far.
list_max/1 simply assumes that the max value of the list is the head of the list and calls list_max/2 with the rest
of the list and the value of the head of the list, in the above this would be list_max([2,3,4,5,7,4,3,2,1],1).
If we tried to use list_max/1 with an empty list or tried to use it with something which isn't a list at all, we would
cause an error. Note that the Erlang philosophy is not to handle errors of this type in the function they occur, but to
do so elsewhere. More about this later.

In list_max/2 we walk down the list and use Head instead of Result_so_far when Head >
Result_so_far. when is a special word we use before the -> in the function to say that we should only use this
part of the function if the test which follows is true. We call tests of this type a guard. If the guard isn't true (we say
the guard fails), we try the next part of the function. In this case if Head isn't greater than Result_so_far then it
must be smaller or equal to is, so we don't need a guard on the next part of the function.

Some useful operators in guards are, < less than, > greater than, == equal, >= greater or equal, =< less or equal, /= not
equal. (see the chapter "Guard Sequences" in the Erlang Reference Manual).

To change the above program to one which works out the minimum value of the element in a list, all we would need
to do is to write < instead of >. (But it would be wise to change the name of the function to list_min :-).

Remember that I mentioned earlier that a variable could only be given a value once in its scope? In the above we see, for
example, that Result_so_far has been given several values. This is OK since every time we call list_max/2
we create a new scope and one can regard the Result_so_far as a completely different variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if I write M = 5, a
variable called M will be created and given the value 5. If, in the same scope I then write M = 6, I'll get an error.
Try this out in the shell:

39> M = 5.
5
40> M = 6.
** exception error: no match of right hand side value 6
41> M = M + 1.
** exception error: no match of right hand side value 6
42> N = M + 1.
6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

43> {X, Y} = {paris, {f, 28}}.
{paris,{f,28}}
44> X.
paris
45> Y.
{f,28}

Here we see that X gets the value paris and Y{f,28}.

Of course if we try to do the same again with another city, we get an error:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can also be used to improve the readability of programs, for example, in the list_max/2 function above,
we could write:

list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    New_result_far = Head,
    list_max(Rest, New_result_far);

which is possibly a little clearer.

4.2.11  More About Lists
Remember that the | operator can be used to get the head of a list:

47> [M1|T1] = [paris, london, rome].
[paris,london,rome]
48> M1.
paris
49> T1.
[london,rome]

The | operator can also be used to add a head to a list:

50> L1 = [madrid | T1].
[madrid,london,rome]
51> L1.
[madrid,london,rome]

Now an example of this when working with lists - reversing the order of a list:

-module(tut8).

-export([reverse/1]).

reverse(List) ->
    reverse(List, []).

reverse([Head | Rest], Reversed_List) ->



4.2  Sequential Programming

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed_List) ->
    Reversed_List.

52> c(tut8).
{ok,tut8}
53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Reversed_List is built. It starts as [], we then successively take off the heads of the list to be reversed
and add them to the the Reversed_List, as shown in the following:

reverse([1|2,3], []) =>
    reverse([2,3], [1|[]])

reverse([2|3], [1]) =>
    reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
    reverse([], [3|[2,1]])

reverse([], [3,2,1]) =>
    [3,2,1]

The module lists contains a lot of functions for manipulating lists, for example for reversing them, so before you
write a list manipulating function it is a good idea to check that one isn't already written for you. (see lists(3)).

Now lets get back to the cities and temperatures, but take a more structured approach this time. First let's convert the
whole list to Celsius as follows and test the function:

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
    convert_list_to_c(List_of_cities).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
    [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
    [].

54> c(tut7).
{ok, tut7}.
55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {cape_town,{c,21.11111111111111}},
 {stockholm,{c,-4}},
 {paris,{c,-2.2222222222222223}},



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

 {london,{c,2.2222222222222223}}]

Looking at this bit by bit:

format_temps(List_of_cities) ->
    convert_list_to_c(List_of_cities).

Here we see that format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes off the
head of the List_of_cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted
to the converted rest of the list:

[Converted_City | convert_list_to_c(Rest)];

or

[City | convert_list_to_c(Rest)];

We go on doing this until we get to the end of the list (i.e. the list is empty:

convert_list_to_c([]) ->
    [].

Now we have converted the list, we add a function to print it:

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
    Converted_List = convert_list_to_c(List_of_cities),
    print_temp(Converted_List).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
    [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
    [].

print_temp([{Name, {c, Temp}} | Rest]) ->
    io:format("~-15w ~w c~n", [Name, Temp]),
    print_temp(Rest);
print_temp([]) ->
    ok.

56> c(tut7).
{ok,tut7}



4.2  Sequential Programming

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow          -10 c
cape_town       21.11111111111111 c
stockholm       -4 c
paris           -2.2222222222222223 c
london          2.2222222222222223 c
ok

We now have to add a function to find the cities with the maximum and minimum temperatures. The program below
isn't the most efficient way of doing this as we walk through the list of cities four times. But it is better to first strive
for clarity and correctness and to make programs efficient only if really needed.

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
    Converted_List = convert_list_to_c(List_of_cities),
    print_temp(Converted_List),
    {Max_city, Min_city} = find_max_and_min(Converted_List),
    print_max_and_min(Max_city, Min_city).

convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
    [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
    [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
    [].

print_temp([{Name, {c, Temp}} | Rest]) ->
    io:format("~-15w ~w c~n", [Name, Temp]),
    print_temp(Rest);
print_temp([]) ->
    ok.

find_max_and_min([City | Rest]) ->
    find_max_and_min(Rest, City, City).

find_max_and_min([{Name, {c, Temp}} | Rest], 
         {Max_Name, {c, Max_Temp}}, 
         {Min_Name, {c, Min_Temp}}) ->
    if 
        Temp > Max_Temp ->
            Max_City = {Name, {c, Temp}};           % Change
        true -> 
            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
    end,
    if
         Temp < Min_Temp ->
            Min_City = {Name, {c, Temp}};           % Change
        true -> 
            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
    end,
    find_max_and_min(Rest, Max_City, Min_City);

find_max_and_min([], Max_City, Min_City) ->
    {Max_City, Min_City}.

print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).

58> c(tut7).
{ok, tut7}
59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow          -10 c
cape_town       21.11111111111111 c
stockholm       -4 c
paris           -2.2222222222222223 c
london          2.2222222222222223 c
Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 c in moscow
ok

4.2.12  If and Case
The function find_max_and_min works out the maximum and minimum temperature. We have introduced a new
construct here if. If works as follows:

if
    Condition 1 ->
        Action 1;
    Condition 2 ->
        Action 2;
    Condition 3 ->
        Action 3;
    Condition 4 ->
        Action 4
end

Note there is no ";" before end! Conditions are the same as guards, tests which succeed or fail. Erlang starts at the top
until it finds a condition which succeeds and then it evaluates (performs) the action following the condition and ignores
all other conditions and action before the end. If no condition matches, there will be a run-time failure. A condition
which always is succeeds is the atom, true and this is often used last in an if meaning do the action following the
true if all other conditions have failed.

The following is a short program to show the workings of if.

-module(tut9).
-export([test_if/2]).

test_if(A, B) ->
    if 
        A == 5 ->
            io:format("A == 5~n", []),
            a_equals_5;
        B == 6 ->
            io:format("B == 6~n", []),
            b_equals_6;
        A == 2, B == 3 ->                      %i.e. A equals 2 and B equals 3
            io:format("A == 2, B == 3~n", []),
            a_equals_2_b_equals_3;
        A == 1 ; B == 7 ->                     %i.e. A equals 1 or B equals 7
            io:format("A == 1 ; B == 7~n", []),



4.2  Sequential Programming

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

            a_equals_1_or_b_equals_7
    end.

Testing this program gives:

60> c(tut9).
{ok,tut9}
61> tut9:test_if(5,33).
A == 5
a_equals_5
62> tut9:test_if(33,6).
B == 6
b_equals_6
63> tut9:test_if(2, 3).
A == 2, B == 3
a_equals_2_b_equals_3
64> tut9:test_if(1, 33).
A == 1 ; B == 7
a_equals_1_or_b_equals_7
65> tut9:test_if(33, 7).
A == 1 ; B == 7
a_equals_1_or_b_equals_7
66> tut9:test_if(33, 33).
** exception error: no true branch found when evaluating an if expression
     in function  tut9:test_if/2 (tut9.erl, line 5)

Notice that tut9:test_if(33,33) did not cause any condition to succeed so we got the run time error
if_clause, here nicely formatted by the shell. See the chapter "Guard Sequences" in the Erlang Reference
Manual for details of the many guard tests available. case is another construct in Erlang. Recall that we wrote the
convert_length function as:

convert_length({centimeter, X}) ->
    {inch, X / 2.54};
convert_length({inch, Y}) ->
    {centimeter, Y * 2.54}.

We could also write the same program as:

-module(tut10).
-export([convert_length/1]).

convert_length(Length) ->
    case Length of
        {centimeter, X} ->
            {inch, X / 2.54};
        {inch, Y} ->
            {centimeter, Y * 2.54}
    end.

67> c(tut10).
{ok,tut10}
68> tut10:convert_length({inch, 6}).
{centimeter,15.24}
69> tut10:convert_length({centimeter, 2.5}).



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

{inch,0.984251968503937}

Notice that both case and if have return values, i.e. in the above example case returned either {inch,X/2.54}
or {centimeter,Y*2.54}. The behaviour of case can also be modified by using guards. An example should
hopefully clarify this. The following example tells us the length of a month, given the year. We need to know the year
of course, since February has 29 days in a leap year.

-module(tut11).
-export([month_length/2]).

month_length(Year, Month) ->
    %% All years divisible by 400 are leap
    %% Years divisible by 100 are not leap (except the 400 rule above)
    %% Years divisible by 4 are leap (except the 100 rule above)
    Leap = if
        trunc(Year / 400) * 400 == Year ->
            leap;
        trunc(Year / 100) * 100 == Year ->
            not_leap;
        trunc(Year / 4) * 4 == Year ->
            leap;
        true ->
            not_leap
    end,  
    case Month of
        sep -> 30;
        apr -> 30;
        jun -> 30;
        nov -> 30;
        feb when Leap == leap -> 29;
        feb -> 28;
        jan -> 31;
        mar -> 31;
        may -> 31;
        jul -> 31;
        aug -> 31;
        oct -> 31;
        dec -> 31
    end.

70> c(tut11).
{ok,tut11}
71> tut11:month_length(2004, feb).
29
72> tut11:month_length(2003, feb).
28
73> tut11:month_length(1947, aug).
31

4.2.13  Built In Functions (BIFs)
Built in functions (BIFs) are functions which for some reason are built in to the Erlang virtual machine. BIFs often
implement functionality that is impossible to implement in Erlang or is too inefficient to implement in Erlang. Some
BIFs can be called by use of the function name only, but they by default belong to the erlang module. So for example,
the call to the BIF trunc below is equivalent to a call to erlang:trunc.



4.2  Sequential Programming

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

As you can see, we first find out if a year is leap or not. If a year is divisible by 400, it is a leap year. To find this
out we first divide the year by 400 and use the built in function trunc (more later) to cut off any decimals. We then
multiply by 400 again and see if we get back the same value. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) = 5
5 * 400 = 2000

and we can see that we got back 2000 which is not the same as 2004, so 2004 isn't divisible by 400. Year 2000:

2000 / 400 = 5.0
trunc(5.0) = 5
5 * 400 = 2000

so we have a leap year. The next two tests, which check if the year is divisible by 100 or 4, are done in the same way.
The first if returns leap or not_leap which ends up in the variable Leap. We use this variable in the guard for
feb in the following case which tells us how long the month is.

This example showed the use of trunc. An easier way would be to use the Erlang operator rem, which gives the
remainder after division. For example:

74> 2004 rem 400.
4

so instead of writing

trunc(Year / 400) * 400 == Year ->
    leap;

we could write

Year rem 400 == 0 ->
    leap;

There are many other built in functions (BIF) such as trunc. Only a few built in functions can be used in guards,
and you cannot use functions you have defined yourself in guards. (see the chapter "Guard Sequences" in the Erlang
Reference Manual) (Aside for advanced readers: This is to ensure that guards don't have side effects). Let's play with
a few of these functions in the shell:

75> trunc(5.6).
5
76> round(5.6).
6
77> length([a,b,c,d]).
4
78> float(5).
5.0
79> is_atom(hello).



4.2  Sequential Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

true
80> is_atom("hello").
false
81> is_tuple({paris, {c, 30}}).
true
82> is_tuple([paris, {c, 30}]).
false

All the above can be used in guards. Now for some which can't be used in guards:

83> atom_to_list(hello).
"hello"
84> list_to_atom("goodbye").
goodbye
85> integer_to_list(22).
"22"

The 3 BIFs above do conversions which would be difficult (or impossible) to do in Erlang.

4.2.14  Higher Order Functions (Funs)
Erlang, like most modern functional programming languages, has higher order functions. We start with an example
using the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl_eval.5.123085357>
87> Xf(5).
10

What we have done here is to define a function which doubles the value of number and assign this function to a
variable. Thus Xf(5) returned the value 10. Two useful functions when working with lists are foreach and map,
which are defined as follows:

foreach(Fun, [First|Rest]) ->
    Fun(First),
    foreach(Fun, Rest);
foreach(Fun, []) ->
    ok.

map(Fun, [First|Rest]) -> 
    [Fun(First)|map(Fun,Rest)];
map(Fun, []) -> 
    [].

These two functions are provided in the standard module lists. foreach takes a list and applies a fun to every
element in the list, map creates a new list by applying a fun to every element in a list. Going back to the shell, we start
by using map and a fun to add 3 to every element of a list:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<erl_eval.5.123085357>
89> lists:map(Add_3, [1,2,3]).
[4,5,6]



4.2  Sequential Programming

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Now lets print out the temperatures in a list of cities (yet again):

90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.
#Fun<erl_eval.5.123085357>
91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow          c -10
cape_town       f 70
stockholm       c -4
paris           f 28
london          f 36
ok

We will now define a fun which can be used to go through a list of cities and temperatures and transform them all
to Celsius.

-module(tut13).

-export([convert_list_to_c/1]).

convert_to_c({Name, {f, Temp}}) ->
    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to_c({Name, {c, Temp}}) ->
    {Name, {c, Temp}}.

convert_list_to_c(List) ->
    lists:map(fun convert_to_c/1, List).

92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {cape_town,{c,21}},
 {stockholm,{c,-4}},
 {paris,{c,-2}},
 {london,{c,2}}]

The convert_to_c function is the same as before, but we use it as a fun:

lists:map(fun convert_to_c/1, List)

When we use a function defined elsewhere as a fun we can refer to it as Function/Arity (remember that Arity
= number of arguments). So in the map call we write lists:map(fun convert_to_c/1, List). As you
can see convert_list_to_c becomes much shorter and easier to understand.

The standard module lists also contains a function sort(Fun, List) where Fun is a fun with two arguments.
This fun should return true if the the first argument is less than the second argument, or else false. We add sorting
to the convert_list_to_c:

-module(tut13).

-export([convert_list_to_c/1]).



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

convert_to_c({Name, {f, Temp}}) ->
    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to_c({Name, {c, Temp}}) ->
    {Name, {c, Temp}}.

convert_list_to_c(List) ->
    New_list = lists:map(fun convert_to_c/1, List),
    lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
                       Temp1 < Temp2 end, New_list).

93> c(tut13).
{ok,tut13}
94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {stockholm,{c,-4}},
 {paris,{c,-2}},
 {london,{c,2}},
 {cape_town,{c,21}}]

In sort we use the fun:

fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

Here we introduce the concept of an anonymous variable "_". This is simply shorthand for a variable which is going
to get a value, but we will ignore the value. This can be used anywhere suitable, not just in fun's. Temp1 < Temp2
returns true if Temp1 is less than Temp2.

4.3  Concurrent Programming
4.3.1  Processes
One of the main reasons for using Erlang instead of other functional languages is Erlang's ability to handle concurrency
and distributed programming. By concurrency we mean programs which can handle several threads of execution at
the same time. For example, modern operating systems would allow you to use a word processor, a spreadsheet, a
mail client and a print job all running at the same time. Of course each processor (CPU) in the system is probably only
handling one thread (or job) at a time, but it swaps between the jobs a such a rate that it gives the illusion of running
them all at the same time. It is easy to create parallel threads of execution in an Erlang program and it is easy to allow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term "process" is usually used when the threads of execution share no data with each other and the term
"thread" when they share data in some way. Threads of execution in Erlang share no data, that's why we call them
processes).

The Erlang BIF spawn is used to create a new process: spawn(Module, Exported_Function, List of
Arguments). Consider the following module:

-module(tut14).

-export([start/0, say_something/2]).

say_something(What, 0) ->



4.3  Concurrent Programming

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    done;
say_something(What, Times) ->
    io:format("~p~n", [What]),
    say_something(What, Times - 1).

start() ->
    spawn(tut14, say_something, [hello, 3]),
    spawn(tut14, say_something, [goodbye, 3]).

5> c(tut14).
{ok,tut14}
6> tut14:say_something(hello, 3).
hello
hello
hello
done

We can see that function say_something writes its first argument the number of times specified by second
argument. Now look at the function start. It starts two Erlang processes, one which writes "hello" three times and
one which writes "goodbye" three times. Both of these processes use the function say_something. Note that a
function used in this way by spawn to start a process must be exported from the module (i.e. in the -export at
the start of the module).

9> tut14:start().
hello
goodbye
<0.63.0>
hello
goodbye
hello
goodbye

Notice that it didn't write "hello" three times and then "goodbye" three times, but the first process wrote a "hello", the
second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return value
of a function is of course the return value of the last "thing" in the function. The last thing in the function start is

spawn(tut14, say_something, [goodbye, 3]).

spawn returns a process identifier, or pid, which uniquely identifies the process. So <0.63.0> is the pid of the spawn
function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w in io:format. To quote the manual: "~p Writes the data with
standard syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many
lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings".

4.3.2  Message Passing
In the following example we create two processes which send messages to each other a number of times.

-module(tut15).

-export([start/0, ping/2, pong/0]).



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

ping(0, Pong_PID) ->
    Pong_PID ! finished,
    io:format("ping finished~n", []);

ping(N, Pong_PID) ->
    Pong_PID ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping(N - 1, Pong_PID).

pong() ->
    receive
        finished ->
            io:format("Pong finished~n", []);
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    end.

start() ->
    Pong_PID = spawn(tut15, pong, []),
    spawn(tut15, ping, [3, Pong_PID]).

1> c(tut15).
{ok,tut15}
2> tut15: start().
<0.36.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished
Pong finished

The function start first creates a process, let's call it "pong":

Pong_PID = spawn(tut15, pong, [])

This process executes tut15:pong(). Pong_PID is the process identity of the "pong" process. The function
start now creates another process "ping".

spawn(tut15, ping, [3, Pong_PID]),

this process executes

tut15:ping(3, Pong_PID)

<0.36.0> is the return value from the start function.



4.3  Concurrent Programming

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The process "pong" now does:

receive
    finished ->
        io:format("Pong finished~n", []);
    {ping, Ping_PID} ->
        io:format("Pong received ping~n", []),
        Ping_PID ! pong,
        pong()
end.

The receive construct is used to allow processes to wait for messages from other processes. It has the format:

receive
   pattern1 ->
       actions1;
   pattern2 ->
       actions2;
   ....
   patternN
       actionsN
end.

Note: no ";" before the end.

Messages between Erlang processes are simply valid Erlang terms. I.e. they can be lists, tuples, integers, atoms, pids
etc.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
queue. When a process executes a receive, the first message in the queue is matched against the first pattern in the
receive, if this matches, the message is removed from the queue and the actions corresponding to the the pattern
are executed.

However, if the first pattern does not match, the second pattern is tested, if this matches the message is removed from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match the
third is tried and so on until there are no more pattern to test. If there are no more patterns to test, the first message
is kept in the queue and we try the second message instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match we try the third message and so on until we reach the end of the
queue. If we reach the end of the queue, the process blocks (stops execution) and waits until a new message is received
and this procedure is repeated.

Of course the Erlang implementation is "clever" and minimizes the number of times each message is tested against
the patterns in each receive.

Now back to the ping pong example.

"Pong" is waiting for messages. If the atom finished is received, "pong" writes "Pong finished" to the output and
as it has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping_PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

Ping_PID ! pong

Note how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

I.e. Message (any Erlang term) is sent to the process with identity Pid.

After sending the message pong, to the process "ping", "pong" calls the pong function again, which causes it to get
back to the receive again and wait for another message. Now let's look at the process "ping". Recall that it was
started by executing:

tut15:ping(3, Pong_PID)

Looking at the function ping/2 we see that the second clause of ping/2 is executed since the value of the first
argument is 3 (not 0) (first clause head is ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so
N becomes 3).

The second clause sends a message to "pong":

Pong_PID ! {ping, self()},

self() returns the pid of the process which executes self(), in this case the pid of "ping". (Recall the code for
"pong", this will land up in the variable Ping_PID in the receive previously explained).

"Ping" now waits for a reply from "pong":

receive
    pong ->
        io:format("Ping received pong~n", [])
end,

and writes "Ping received pong" when this reply arrives, after which "ping" calls the ping function again.

ping(N - 1, Pong_PID)

N-1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of ping/2
will be executed:

ping(0, Pong_PID) ->
    Pong_PID !  finished,
    io:format("ping finished~n", []);

The atom finished is sent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then itself terminates as it has nothing left to do.



4.3  Concurrent Programming

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3.3  Registered Process Names
In the above example, we first created "pong" so as to be able to give the identity of "pong" when we started "ping". I.e.
in some way "ping" must be able to know the identity of "pong" in order to be able to send a message to it. Sometimes
processes which need to know each others identities are started completely independently of each other. Erlang thus
provides a mechanism for processes to be given names so that these names can be used as identities instead of pids.
This is done by using the register BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the "pong" process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
    pong ! finished,
    io:format("ping finished~n", []);

ping(N) ->
    pong ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping(N - 1).

pong() ->
    receive
        finished ->
            io:format("Pong finished~n", []);
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    end.

start() ->
    register(pong, spawn(tut16, pong, [])),
    spawn(tut16, ping, [3]).

2> c(tut16).
{ok, tut16}
3> tut16:start().
<0.38.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished
Pong finished

In the start/0 function,



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

register(pong, spawn(tut16, pong, [])),

both spawns the "pong" process and gives it the name pong. In the "ping" process we can now send messages to
pong by:

pong ! {ping, self()},

so that ping/2 now becomes ping/1 as we don't have to use the argument Pong_PID.

4.3.4  Distributed Programming
Now let's re-write the ping pong program with "ping" and "pong" on different computers. Before we do this, there
are a few things we need to set up to get this to work. The distributed Erlang implementation provides a basic
security mechanism to prevent unauthorized access to an Erlang system on another computer. Erlang systems which
talk to each other must have the same magic cookie. The easiest way to achieve this is by having a file called
.erlang.cookie in your home directory on all machines which on which you are going to run Erlang systems
communicating with each other (on Windows systems the home directory is the directory where pointed to by the
$HOME environment variable - you may need to set this. On Linux or Unix you can safely ignore this and simply
create a file called .erlang.cookie in the directory you get to after executing the command cd without any
argument). The .erlang.cookie file should contain one line with the same atom. For example on Linux or Unix
in the OS shell:

$ cd
$ cat > .erlang.cookie
this_is_very_secret
$ chmod 400 .erlang.cookie

The chmod above make the .erlang.cookie file accessible only by the owner of the file. This is a requirement.

When you start an Erlang system which is going to talk to other Erlang systems, you must give it a name, eg:

$ erl -sname my_name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: erl -sname assumes that all nodes are in the same IP domain and we can use only the first component
of the IP address, if we want to use nodes in different domains we use -name instead, but then all IP address must
be given in full.

Here is the ping pong example modified to run on two separate nodes:

-module(tut17).

-export([start_ping/1, start_pong/0,  ping/2, pong/0]).

ping(0, Pong_Node) ->
    {pong, Pong_Node} ! finished,
    io:format("ping finished~n", []);



4.3  Concurrent Programming

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

ping(N, Pong_Node) ->
    {pong, Pong_Node} ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping(N - 1, Pong_Node).

pong() ->
    receive
        finished ->
            io:format("Pong finished~n", []);
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    end.

start_pong() ->
    register(pong, spawn(tut17, pong, [])).

start_ping(Pong_Node) ->
    spawn(tut17, ping, [3, Pong_Node]).

Let us assume we have two computers called gollum and kosken. We will start a node on kosken called ping and then
a node on gollum called pong.

On kosken (on a Linux/Unix system):

kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7  (abort with ^G)
(ping@kosken)1>

On gollum:

gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7  (abort with ^G)
(pong@gollum)1>

Now we start the "pong" process on gollum:

(pong@gollum)1> tut17:start_pong().
true

and start the "ping" process on kosken (from the code above you will see that a parameter of the start_ping
function is the node name of the Erlang system where "pong" is running):

(ping@kosken)1> tut17:start_ping(pong@gollum).
<0.37.0>



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

Ping received pong
Ping received pong 
Ping received pong
ping finished

Here we see that the ping pong program has run, on the "pong" side we see:

(pong@gollum)2>
Pong received ping                 
Pong received ping                 
Pong received ping                 
Pong finished                      
(pong@gollum)2>

Looking at the tut17 code we see that the pong function itself is unchanged, the lines:

{ping, Ping_PID} ->
    io:format("Pong received ping~n", []),
    Ping_PID ! pong,

work in the same way irrespective of on which node the "ping" process is executing. Thus Erlang pids contain
information about where the process executes so if you know the pid of a process, the "!" operator can be used to send
it a message if the process is on the same node or on a different node.

A difference is how we send messages to a registered process on another node:

{pong, Pong_Node} ! {ping, self()},

We use a tuple {registered_name,node_name} instead of just the registered_name.

In the previous example, we started "ping" and "pong" from the shells of two separate Erlang nodes. spawn can also
be used to start processes in other nodes. The next example is the ping pong program, yet again, but this time we will
start "ping" in another node:

-module(tut18).

-export([start/1,  ping/2, pong/0]).

ping(0, Pong_Node) ->
    {pong, Pong_Node} ! finished,
    io:format("ping finished~n", []);

ping(N, Pong_Node) ->
    {pong, Pong_Node} ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping(N - 1, Pong_Node).

pong() ->
    receive
        finished ->
            io:format("Pong finished~n", []);



4.3  Concurrent Programming

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    end.

start(Ping_Node) ->
    register(pong, spawn(tut18, pong, [])),
    spawn(Ping_Node, tut18, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
we do:

(pong@gollum)1> tut18:start(ping@kosken).
<3934.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong finished
ping finished

Notice we get all the output on gollum. This is because the io system finds out where the process is spawned from
and sends all output there.

4.3.5  A Larger Example
Now for a larger example. We will make an extremely simple "messenger". The messenger is a program which allows
users to log in on different nodes and send simple messages to each other.

Before we start, let's note the following:

• This example will just show the message passing logic- no attempt at all has been made to provide a nice graphical
user interface. This can, of course, also be done in Erlang - but that's another tutorial.

• This sort of problem can be solved more easily if you use the facilities in OTP, which will also provide methods
for updating code on the fly etc. But again, that's another tutorial.

• The first program we write will contain some inadequacies regarding the handling of nodes which disappear. We
will correct these in a later version of the program.

We will set up the messenger by allowing "clients" to connect to a central server and say who and where they are. I.e.
a user won't need to know the name of the Erlang node where another user is located to send a message.

File messenger.erl:

%%% Message passing utility.  
%%% User interface:
%%% logon(Name)
%%%     One user at a time can log in from each Erlang node in the
%%%     system messenger: and choose a suitable Name. If the Name
%%%     is already logged in at another node or if someone else is
%%%     already logged in at the same node, login will be rejected
%%%     with a suitable error message.
%%% logoff()
%%%     Logs off anybody at at node
%%% message(ToName, Message)



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

%%%     sends Message to ToName. Error messages if the user of this 
%%%     function is not logged on or if ToName is not logged on at
%%%     any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client" 
%%%
%%% Protocol between the client processes and the server
%%% ----------------------------------------------------
%%% 
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: {messenger, logged_off}
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: no reply
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% ----------------------------------------------
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->
    messenger@bill.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->
    receive
        {From, logon, Name} ->
            New_User_List = server_logon(From, Name, User_List),
            server(New_User_List);
        {From, logoff} ->
            New_User_List = server_logoff(From, User_List),
            server(New_User_List);
        {From, message_to, To, Message} ->
            server_transfer(From, To, Message, User_List),
            io:format("list is now: ~p~n", [User_List]),
            server(User_List)
    end.

%%% Start the server
start_server() ->



4.3  Concurrent Programming

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
    %% check if logged on anywhere else
    case lists:keymember(Name, 2, User_List) of
        true ->
            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
            User_List;
        false ->
            From ! {messenger, logged_on},
            [{From, Name} | User_List]        %add user to the list
    end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
    lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
    %% check that the user is logged on and who he is
    case lists:keysearch(From, 1, User_List) of
        false ->
            From ! {messenger, stop, you_are_not_logged_on};
        {value, {From, Name}} ->
            server_transfer(From, Name, To, Message, User_List)
    end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
    %% Find the receiver and send the message
    case lists:keysearch(To, 2, User_List) of
        false ->
            From ! {messenger, receiver_not_found};
        {value, {ToPid, To}} ->
            ToPid ! {message_from, Name, Message}, 
            From ! {messenger, sent} 
    end.

%%% User Commands
logon(Name) ->
    case whereis(mess_client) of 
        undefined ->
            register(mess_client, 
                     spawn(messenger, client, [server_node(), Name]));
        _ -> already_logged_on
    end.

logoff() ->
    mess_client ! logoff.

message(ToName, Message) ->
    case whereis(mess_client) of % Test if the client is running
        undefined ->
            not_logged_on;
        _ -> mess_client ! {message_to, ToName, Message},
             ok
end.

%%% The client process which runs on each server node
client(Server_Node, Name) ->
    {messenger, Server_Node} ! {self(), logon, Name},



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

    await_result(),
    client(Server_Node).

client(Server_Node) ->
    receive
        logoff ->
            {messenger, Server_Node} ! {self(), logoff},
            exit(normal);
        {message_to, ToName, Message} ->
            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
            await_result();
        {message_from, FromName, Message} ->
            io:format("Message from ~p: ~p~n", [FromName, Message])
    end,
    client(Server_Node).

%%% wait for a response from the server
await_result() ->
    receive
        {messenger, stop, Why} -> % Stop the client 
            io:format("~p~n", [Why]),
            exit(normal);
        {messenger, What} ->  % Normal response
            io:format("~p~n", [What])
    end.

To use this program you need to:

• configure the server_node() function

• copy the compiled code (messenger.beam) to the directory on each computer where you start Erlang.

In the following example of use of this program I have started nodes on four different computers, but if you don't have
that many machines available on your network you could start up several nodes on the same machine.

We start up four Erlang nodes: messenger@super, c1@bilbo, c2@kosken, c3@gollum.

First we start up a the server at messenger@super:

(messenger@super)1> messenger:start_server().
true

Now Peter logs on at c1@bilbo:

(c1@bilbo)1> messenger:logon(peter).
true
logged_on

James logs on at c2@kosken:

(c2@kosken)1> messenger:logon(james).
true
logged_on

and Fred logs on at c3@gollum:



4.3  Concurrent Programming

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

(c3@gollum)1> messenger:logon(fred).
true
logged_on

Now Peter sends Fred a message:

(c1@bilbo)2> messenger:message(fred, "hello").
ok
sent

And Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"
(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok
sent
(c3@gollum)3> messenger:logoff().
logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver_not_found

But this fails as Fred has already logged off.

First let's look at some of the new concepts we have introduced.

There are two versions of the server_transfer function: one with four arguments (server_transfer/4)
and one with five (server_transfer/5). These are regarded by Erlang as two separate functions.

Note how we write the server function so that it calls itself, via server(User_List), and thus creates a loop.
The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper function
call. But this only works if there is no code after the call, otherwise the compiler will expect the call to return and make
a proper function call. This would result in the process getting bigger and bigger for every loop.

We use functions from the lists module. This is a very useful module and a study of the manual page is recommended
(erl -man lists). lists:keymember(Key,Position,Lists) looks through a list of tuples and looks
at Position in each tuple to see if it is the same as Key. The first element is position 1. If it finds a tuple where the
element at Position is the same as Key, it returns true, otherwise false.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

lists:keydelete works in the same way but deletes the first tuple found (if any) and returns the remaining list:

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).



4.3  Concurrent Programming

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

[{x,y,z},{b,b,b},{q,r,s}]

lists:keysearch is like lists:keymember, but it returns {value,Tuple_Found} or the atom false.

There are a lot more very useful functions in the lists module.

An Erlang process will (conceptually) run until it does a receive and there is no message which it wants to receive in
the message queue. I say "conceptually" because the Erlang system shares the CPU time between the active processes
in the system.

A process terminates when there is nothing more for it to do, i.e. the last function it calls simply returns and doesn't
call another function. Another way for a process to terminate is for it to call exit/1. The argument to exit/1 has
a special meaning which we will look at later. In this example we will do exit(normal) which has the same effect
as a process running out of functions to call.

The BIF whereis(RegisteredName) checks if a registered process of name RegisteredName exists and
return the pid of the process if it does exist or the atom undefined if it does not.

You should by now be able to understand most of the code above so I'll just go through one case: a message is sent
from one user to another.

The first user "sends" the message in the example above by:

messenger:message(fred, "hello")

After testing that the client process exists:

whereis(mess_client) 

and a message is sent to mess_client:

mess_client ! {message_to, fred, "hello"}

The client sends the message to the server by:

{messenger, messenger@super} ! {self(), message_to, fred, "hello"},

and waits for a reply from the server.

The server receives this message and calls:

server_transfer(From, fred, "hello", User_List),

which checks that the pid From is in the User_List:

lists:keysearch(From, 1, User_List) 

If keysearch returns the atom false, some sort of error has occurred and the server sends back the message:



4.4  Robustness

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

From ! {messenger, stop, you_are_not_logged_on}

which is received by the client which in turn does exit(normal) and terminates. If keysearch returns {value,
{From,Name}} we know that the user is logged on and is his name (peter) is in variable Name. We now call:

server_transfer(From, peter, fred, "hello", User_List)

Note that as this is server_transfer/5 it is not the same as the previous function server_transfer/4. We
do another keysearch on User_List to find the pid of the client corresponding to fred:

lists:keysearch(fred, 2, User_List)

This time we use argument 2 which is the second element in the tuple. If this returns the atom false we know that
fred is not logged on and we send the message:

From ! {messenger, receiver_not_found};

which is received by the client, if keysearch returns:

{value, {ToPid, fred}}

we send the message:

ToPid ! {message_from, peter, "hello"}, 

to fred's client and the message:

From ! {messenger, sent} 

to peter's client.

Fred's client receives the message and prints it:

{message_from, peter, "hello"} ->
    io:format("Message from ~p: ~p~n", [peter, "hello"])

and peter's client receives the message in the await_result function.

4.4  Robustness
There are several things which are wrong with the messenger example from the previous chapter. For example if a
node where a user is logged on goes down without doing a log off, the user will remain in the server's User_List



4.4  Robustness

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

but the client will disappear thus making it impossible for the user to log on again as the server thinks the user already
logged on.

Or what happens if the server goes down in the middle of sending a message leaving the sending client hanging for
ever in the await_result function?

4.4.1  Timeouts
Before improving the messenger program we will look into some general principles, using the ping pong program as
an example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom finished as
a message to "pong" so that "pong" could also finish. Another way to let "pong" finish, is to make "pong" exit if it
does not receive a message from ping within a certain time, this can be done by adding a timeout to pong as shown
in the following example:

-module(tut19).

-export([start_ping/1, start_pong/0,  ping/2, pong/0]).

ping(0, Pong_Node) ->
    io:format("ping finished~n", []);

ping(N, Pong_Node) ->
    {pong, Pong_Node} ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping(N - 1, Pong_Node).

pong() ->
    receive
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    after 5000 ->
            io:format("Pong timed out~n", [])
    end.

start_pong() ->
    register(pong, spawn(tut19, pong, [])).

start_ping(Pong_Node) ->
    spawn(tut19, ping, [3, Pong_Node]).

After we have compiled this and copied the tut19.beam file to the necessary directories:

On (pong@kosken):

(pong@kosken)1> tut19:start_pong().
true
Pong received ping
Pong received ping
Pong received ping
Pong timed out

On (ping@gollum):



4.4  Robustness

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

(ping@gollum)1> tut19:start_ping(pong@kosken).
<0.36.0>
Ping received pong
Ping received pong
Ping received pong
ping finished   

(The timeout is set in:

pong() ->
    receive
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    after 5000 ->
            io:format("Pong timed out~n", [])
    end.

We start the timeout (after 5000) when we enter receive. The timeout is canceled if {ping,Ping_PID}
is received. If {ping,Ping_PID} is not received, the actions following the timeout will be done after 5000
milliseconds. after must be last in the receive, i.e. preceded by all other message reception specifications in the
receive. Of course we could also call a function which returned an integer for the timeout:

after pong_timeout() ->

In general, there are better ways than using timeouts to supervise parts of a distributed Erlang system. Timeouts are
usually appropriate to supervise external events, for example if you have expected a message from some external
system within a specified time. For example, we could use a timeout to log a user out of the messenger system if they
have not accessed it, for example, in ten minutes.

4.4.2  Error Handling
Before we go into details of the supervision and error handling in an Erlang system, we need see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executes exit(normal) or simply runs out of things to do has a normal exit.

A process which encounters a runtime error (e.g. divide by zero, bad match, trying to call a function which doesn't
exist etc) exits with an error, i.e. has an abnormal exit. A process which executes exit(Reason) where Reason is any
Erlang term except the atom normal, also has an abnormal exit.

An Erlang process can set up links to other Erlang processes. If a process calls link(Other_Pid) it sets up a bidirectional
link between itself and the process called Other_Pid. When a process terminates, it sends something called a signal
to all the processes it has links to.

The signal carries information about the pid it was sent from and the exit reason.

The default behaviour of a process which receives a normal exit is to ignore the signal.

The default behaviour in the two other cases (i.e. abnormal exit) above is to bypass all messages to the receiving
process and to kill it and to propagate the same error signal to the killed process' links. In this way you can connect
all processes in a transaction together using links and if one of the processes exits abnormally, all the processes in the
transaction will be killed. As we often want to create a process and link to it at the same time, there is a special BIF,
spawn_link which does the same as spawn, but also creates a link to the spawned process.



4.4  Robustness

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

Now an example of the ping pong example using links to terminate "pong":

-module(tut20).

-export([start/1,  ping/2, pong/0]).

ping(N, Pong_Pid) ->
    link(Pong_Pid),
    ping1(N, Pong_Pid).

ping1(0, _) ->
    exit(ping);

ping1(N, Pong_Pid) ->
    Pong_Pid ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping1(N - 1, Pong_Pid).

pong() ->
    receive
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong()
    end.

start(Ping_Node) ->
    PongPID = spawn(tut20, pong, []),
    spawn(Ping_Node, tut20, ping, [3, PongPID]).

(s1@bill)3> tut20:start(s2@kosken).
Pong received ping
<3820.41.0>
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

This is a slight modification of the ping pong program where both processes are spawned from the same start/1
function, where the "ping" process can be spawned on a separate node. Note the use of the link BIF. "Ping" calls
exit(ping) when it finishes and this will cause an exit signal to be sent to "pong" which will also terminate.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal exit
signals, but all signals will be turned into normal messages on the format {'EXIT',FromPID,Reason} and added
to the end of the receiving processes message queue. This behaviour is set by:

process_flag(trap_exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of a process in this way is usually
not done in standard user programs, but is left to the supervisory programs in OTP (but that's another tutorial). However
we will modify the ping pong program to illustrate exit trapping.



4.4  Robustness

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-module(tut21).

-export([start/1,  ping/2, pong/0]).

ping(N, Pong_Pid) ->
    link(Pong_Pid), 
    ping1(N, Pong_Pid).

ping1(0, _) ->
    exit(ping);

ping1(N, Pong_Pid) ->
    Pong_Pid ! {ping, self()},
    receive
        pong ->
            io:format("Ping received pong~n", [])
    end,
    ping1(N - 1, Pong_Pid).

pong() ->
    process_flag(trap_exit, true), 
    pong1().

pong1() ->
    receive
        {ping, Ping_PID} ->
            io:format("Pong received ping~n", []),
            Ping_PID ! pong,
            pong1();
        {'EXIT', From, Reason} ->
            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
    end.

start(Ping_Node) ->
    PongPID = spawn(tut21, pong, []),
    spawn(Ping_Node, tut21, ping, [3, PongPID]).

(s1@bill)1> tut21:start(s2@gollum).
<3820.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
pong exiting, got {'EXIT',<3820.39.0>,ping}

4.4.3  The Larger Example with Robustness Added
Now we return to the messenger program and add changes which make it more robust:

%%% Message passing utility.  
%%% User interface:
%%% login(Name)
%%%     One user at a time can log in from each Erlang node in the
%%%     system messenger: and choose a suitable Name. If the Name
%%%     is already logged in at another node or if someone else is
%%%     already logged in at the same node, login will be rejected
%%%     with a suitable error message.



4.4  Robustness

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

%%% logoff()
%%%     Logs off anybody at at node
%%% message(ToName, Message)
%%%     sends Message to ToName. Error messages if the user of this 
%%%     function is not logged on or if ToName is not logged on at
%%%     any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client" 
%%%
%%% Protocol between the client processes and the server
%%% ----------------------------------------------------
%%% 
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% When the client terminates for some reason
%%% To server: {'EXIT', ClientPid, Reason}
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% ---------------------------------------------- 
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/0, 
         logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->
    messenger@super.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server() ->
    process_flag(trap_exit, true),
    server([]).

server(User_List) ->
    receive
        {From, logon, Name} ->
            New_User_List = server_logon(From, Name, User_List),
            server(New_User_List);
        {'EXIT', From, _} ->
            New_User_List = server_logoff(From, User_List),
            server(New_User_List);
        {From, message_to, To, Message} ->
            server_transfer(From, To, Message, User_List),
            io:format("list is now: ~p~n", [User_List]),



4.4  Robustness

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

            server(User_List)
    end.

%%% Start the server
start_server() ->
    register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
    %% check if logged on anywhere else
    case lists:keymember(Name, 2, User_List) of
        true ->
            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
            User_List;
        false ->
            From ! {messenger, logged_on},
            link(From),
            [{From, Name} | User_List]        %add user to the list
    end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
    lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
    %% check that the user is logged on and who he is
    case lists:keysearch(From, 1, User_List) of
        false ->
            From ! {messenger, stop, you_are_not_logged_on};
        {value, {_, Name}} ->
            server_transfer(From, Name, To, Message, User_List)
    end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
    %% Find the receiver and send the message
    case lists:keysearch(To, 2, User_List) of
        false ->
            From ! {messenger, receiver_not_found};
        {value, {ToPid, To}} ->
            ToPid ! {message_from, Name, Message}, 
            From ! {messenger, sent} 
    end.

%%% User Commands
logon(Name) ->
    case whereis(mess_client) of 
        undefined ->
            register(mess_client, 
                     spawn(messenger, client, [server_node(), Name]));
        _ -> already_logged_on
    end.

logoff() ->
    mess_client ! logoff.

message(ToName, Message) ->
    case whereis(mess_client) of % Test if the client is running
        undefined ->
            not_logged_on;
        _ -> mess_client ! {message_to, ToName, Message},
             ok
end.



4.5  Records and Macros

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

%%% The client process which runs on each user node
client(Server_Node, Name) ->
    {messenger, Server_Node} ! {self(), logon, Name},
    await_result(),
    client(Server_Node).

client(Server_Node) ->
    receive
        logoff ->
            exit(normal);
        {message_to, ToName, Message} ->
            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
            await_result();
        {message_from, FromName, Message} ->
            io:format("Message from ~p: ~p~n", [FromName, Message])
    end,
    client(Server_Node).

%%% wait for a response from the server
await_result() ->
    receive
        {messenger, stop, Why} -> % Stop the client 
            io:format("~p~n", [Why]),
            exit(normal);
        {messenger, What} ->  % Normal response
            io:format("~p~n", [What])
    after 5000 ->
            io:format("No response from server~n", []),
            exit(timeout)
    end.

We have added the following changes:

The messenger server traps exits. If it receives an exit signal, {'EXIT',From,Reason} this means that a client
process has terminated or is unreachable because:

• the user has logged off (we have removed the "logoff" message),

• the network connection to the client is broken,

• the node on which the client process resides has gone down, or

• the client processes has done some illegal operation.

If we receive an exit signal as above, we delete the tuple, {From,Name} from the servers User_List using the
server_logoff function. If the node on which the server runs goes down, an exit signal (automatically generated
by the system), will be sent to all of the client processes: {'EXIT',MessengerPID,noconnection} causing
all the client processes to terminate.

We have also introduced a timeout of five seconds in the await_result function. I.e. if the server does not reply
within five seconds (5000 ms), the client terminates. This is really only needed in the logon sequence before the client
and server are linked.

An interesting case is if the client was to terminate before the server links to it. This is taken care of because linking
to a non-existent process causes an exit signal, {'EXIT',From,noproc}, to be automatically generated as if the
process terminated immediately after the link operation.

4.5  Records and Macros
Larger programs are usually written as a collection of files with a well defined interface between the various parts.



4.5  Records and Macros

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5.1  The Larger Example Divided into Several Files
To illustrate this, we will divide the messenger example from the previous chapter into five files.

mess_config.hrl
header file for configuration data

mess_interface.hrl
interface definitions between the client and the messenger

user_interface.erl
functions for the user interface

mess_client.erl
functions for the client side of the messenger

mess_server.erl
functions for the server side of the messenger

While doing this we will also clean up the message passing interface between the shell, the client and the server and
define it using records, we will also introduce macros.

%%%----FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server_node, messenger@super).

%%%----END FILE----

%%%----FILE mess_interface.hrl----

%%% Message interface between client and server and client shell for
%%% messenger program 

%%%Messages from Client to server received in server/1 function.
-record(logon,{client_pid, username}).
-record(message,{client_pid, to_name, message}).
%%% {'EXIT', ClientPid, Reason}  (client terminated or unreachable.

%%% Messages from Server to Client, received in await_result/0 function 
-record(abort_client,{message}).
%%% Messages are: user_exists_at_other_node, 
%%%               you_are_not_logged_on
-record(server_reply,{message}).
%%% Messages are: logged_on
%%%               receiver_not_found
%%%               sent  (Message has been sent (no guarantee)
%%% Messages from Server to Client received in client/1 function
-record(message_from,{from_name, message}).

%%% Messages from shell to Client received in client/1 function
%%% spawn(mess_client, client, [server_node(), Name])
-record(message_to,{to_name, message}).
%%% logoff

%%%----END FILE----

%%%----FILE user_interface.erl----

%%% User interface to the messenger program



4.5  Records and Macros

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

%%% login(Name)
%%%     One user at a time can log in from each Erlang node in the
%%%     system messenger: and choose a suitable Name. If the Name
%%%     is already logged in at another node or if someone else is
%%%     already logged in at the same node, login will be rejected
%%%     with a suitable error message.

%%% logoff()
%%%     Logs off anybody at at node

%%% message(ToName, Message)
%%%     sends Message to ToName. Error messages if the user of this 
%%%     function is not logged on or if ToName is not logged on at
%%%     any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess_interface.hrl").
-include("mess_config.hrl").

logon(Name) ->
    case whereis(mess_client) of 
        undefined ->
            register(mess_client, 
                     spawn(mess_client, client, [?server_node, Name]));
        _ -> already_logged_on
    end.

logoff() ->
    mess_client ! logoff.

message(ToName, Message) ->
    case whereis(mess_client) of % Test if the client is running
        undefined ->
            not_logged_on;
        _ -> mess_client ! #message_to{to_name=ToName, message=Message},
             ok
end.

%%%----END FILE----

%%%----FILE mess_client.erl----

%%% The client process which runs on each user node

-module(mess_client).
-export([client/2]).
-include("mess_interface.hrl").

client(Server_Node, Name) ->
    {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
    await_result(),
    client(Server_Node).

client(Server_Node) ->
    receive
        logoff ->
            exit(normal);
        #message_to{to_name=ToName, message=Message} ->
            {messenger, Server_Node} ! 
                #message{client_pid=self(), to_name=ToName, message=Message},
            await_result();
        {message_from, FromName, Message} ->



4.5  Records and Macros

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

            io:format("Message from ~p: ~p~n", [FromName, Message])
    end,
    client(Server_Node).

%%% wait for a response from the server
await_result() ->
    receive
        #abort_client{message=Why} ->
            io:format("~p~n", [Why]),
            exit(normal);
        #server_reply{message=What} ->
            io:format("~p~n", [What])
    after 5000 ->
            io:format("No response from server~n", []),
            exit(timeout)
    end.

%%%----END FILE---

%%%----FILE mess_server.erl----

%%% This is the server process of the messenger service

-module(mess_server).
-export([start_server/0, server/0]).
-include("mess_interface.hrl").

server() ->
    process_flag(trap_exit, true),
    server([]).

%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->
    io:format("User list = ~p~n", [User_List]),
    receive
        #logon{client_pid=From, username=Name} ->
            New_User_List = server_logon(From, Name, User_List),
            server(New_User_List);
        {'EXIT', From, _} ->
            New_User_List = server_logoff(From, User_List),
            server(New_User_List);
        #message{client_pid=From, to_name=To, message=Message} ->
            server_transfer(From, To, Message, User_List),
            server(User_List)
    end.

%%% Start the server
start_server() ->
    register(messenger, spawn(?MODULE, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
    %% check if logged on anywhere else
    case lists:keymember(Name, 2, User_List) of
        true ->
            From ! #abort_client{message=user_exists_at_other_node},
            User_List;
        false ->
            From ! #server_reply{message=logged_on},
            link(From),
            [{From, Name} | User_List]        %add user to the list
    end.



4.5  Records and Macros

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
    lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
    %% check that the user is logged on and who he is
    case lists:keysearch(From, 1, User_List) of
        false ->
            From ! #abort_client{message=you_are_not_logged_on};
        {value, {_, Name}} ->
            server_transfer(From, Name, To, Message, User_List)
    end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
    %% Find the receiver and send the message
    case lists:keysearch(To, 2, User_List) of
        false ->
            From ! #server_reply{message=receiver_not_found};
        {value, {ToPid, To}} ->
            ToPid ! #message_from{from_name=Name, message=Message}, 
            From !  #server_reply{message=sent} 
    end.

%%%----END FILE---

4.5.2  Header Files
You will see some files above with extension .hrl. These are header files which are included in the .erl files by:

-include("File_Name").

for example:

-include("mess_interface.hrl").

In our case above the file is fetched from the same directory as all the other files in the messenger example. (*manual*).

.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3  Records
A record is defined as:

-record(name_of_record,{field_name1, field_name2, field_name3, ......}).

For example:

-record(message_to,{to_name, message}).

This is exactly equivalent to:



4.5  Records and Macros

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

{message_to, To_Name, Message}

Creating record, is best illustrated by an example:

#message_to{message="hello", to_name=fred)

This will create:

{message_to, fred, "hello"}

Note that you don't have to worry about the order you assign values to the various parts of the records when you
create it. The advantage of using records is that by placing their definitions in header files you can conveniently define
interfaces which are easy to change. For example, if you want to add a new field to the record, you will only have to
change the code where the new field is used and not at every place the record is referred to. If you leave out a field
when creating a record, it will get the value of the atom undefined. (*manual*)

Pattern matching with records is very similar to creating records. For example inside a case or receive:

#message_to{to_name=ToName, message=Message} ->

is the same as:

{message_to, ToName, Message}

4.5.4  Macros
The other thing we have added to the messenger is a macro. The file mess_config.hrl contains the definition:

%%% Configure the location of the server node,
-define(server_node, messenger@super).

We include this file in mess_server.erl:

-include("mess_config.hrl").

Every occurrence of ?server_node in mess_server.erl will now be replaced by messenger@super.

The other place a macro is used is when we spawn the server process:

spawn(?MODULE, server, [])

This is a standard macro (i.e. defined by the system, not the user). ?MODULE is always replaced by the name of current
module (i.e. the -module definition near the start of the file). There are more advanced ways of using macros with,
for example parameters (*manual*).



4.5  Records and Macros

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

The three Erlang (.erl) files in the messenger example are individually compiled into object code file (.beam). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
our case we simply have put them in the same directory which is our current working directory (i.e. the place we have
done "cd" to). There are ways of putting the .beam files in other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It could be any
valid Erlang term.



5.1  Introduction

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5    Erlang Reference Manual

5.1  Introduction
5.1.1  Purpose
This reference manual describes the Erlang programming language. The focus is on the language itself, not the
implementation. The language constructs are described in text and with examples rather than formally specified, with
the intention to make the manual more readable. The manual is not intended as a tutorial.

Information about this implementation of Erlang can be found, for example, in System Principles (starting and stopping,
boot scripts, code loading, error logging, creating target systems), Efficiency Guide (memory consumption, system
limits) and ERTS User's Guide (crash dumps, drivers).

5.1.2  Prerequisites
It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3  Document Conventions
In the document, the following terminology is used:

• A sequence is one or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

• A list is any number of items. For example, an argument list can consist of zero, one or more arguments.

If a feature has been added recently, in Erlang 5.0/OTP R7 or later, this is mentioned in the text.

5.1.4  Complete List of BIFs
For a complete list of BIFs, their arguments and return values, refer to erlang(3).

5.1.5  Reserved Words
The following are reserved words in Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse receive rem
try when xor

5.2  Character Set and Source File Encoding
5.2.1  Character Set
In Erlang 4.8/OTP R5A the syntax of Erlang tokens was extended to allow the use of the full ISO-8859-1 (Latin-1)
character set. This is noticeable in the following ways:

• All the Latin-1 printable characters can be used and are shown without the escape backslash convention.

• Atoms and variables can use all Latin-1 letters.



5.3  Data Types

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

Octal Decimal  Class

200 - 237 128 - 159  Control characters

240 - 277 160 - 191 - ¿ Punctuation characters

300 - 326 192 - 214 À - Ö Uppercase letters

327 215 × Punctuation character

330 - 336 216 - 222 Ø - Þ Uppercase letters

337 - 366 223 - 246 ß - ö Lowercase letters

367 247 ÷ Punctuation character

370 - 377 248 - 255 ø - ÿ Lowercase letters

Table 2.1:   Character Classes.

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support is limited to string
literals and comments. Atoms, module names, and function names are restricted to the ISO-Latin-1 range. More about
the usage of Unicode in Erlang source files can be found in STDLIB's User's Guide.

5.2.2  Source File Encoding
The Erlang source file encoding is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression coding\s*[:=]\s*([-a-zA-Z0-9])+ selects the encoding. If the
matching string is not a valid encoding it is ignored. The valid encodings are Latin-1 and UTF-8 where the case
of the characters can be chosen freely.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

The default encoding for Erlang source files was changed from Latin-1 to UTF-8 in Erlang OTP 17.0.

5.3  Data Types
5.3.1  Terms
Erlang provides a number of data types which are listed in this chapter. A piece of data of any data type is called a term.



5.3  Data Types

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3.2  Number
There are two types of numeric literals, integers and floats. Besides the conventional notation, there are two Erlang-
specific notations:

• $char
ASCII value of the character char.

• base#value
Integer with the base base, which must be an integer in the range 2..36.
In Erlang 5.2/OTP R9B and earlier versions, the allowed range is 2..16.

Examples:

1> 42.
42
2> $A.
65
3> $\n.
10
4> 2#101.
5
5> 16#1f.
31
6> 2.3.
2.3
7> 2.3e3.
2.3e3
8> 2.3e-3.
0.0023

5.3.3  Atom
An atom is a literal, a constant with name. An atom should be enclosed in single quotes (') if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (_), or @.

Examples:

hello
phone_number
'Monday'
'phone number'

5.3.4  Bit Strings and Binaries
A bit string is used to store an area of untyped memory.

Bit Strings are expressed using the bit syntax.

Bit Strings which consists of a number of bits which is evenly divisible by eight are called Binaries

Examples:

1> <<10,20>>.
<<10,20>>
2> <<"ABC">>.
<<"ABC">>



5.3  Data Types

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

1> <<1:1,0:1>>.
<<2:2>>

More examples can be found in Programming Examples.

5.3.5  Reference
A reference is a term which is unique in an Erlang runtime system, created by calling make_ref/0.

5.3.6  Fun
A fun is a functional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Fun1 = fun (X) -> X+1 end.
#Fun<erl_eval.6.39074546>
2> Fun1(2).
3

Read more about funs in Fun Expressions. More examples can be found in Programming Examples.

5.3.7  Port Identifier
A port identifier identifies an Erlang port. open_port/2, which is used to create ports, will return a value of this type.

Read more about ports in Ports and Port Drivers.

5.3.8  Pid
A process identifier, pid, identifies a process. spawn/1,2,3,4, spawn_link/1,2,3,4 and spawn_opt/4,
which are used to create processes, return values of this type. Example:

1> spawn(m, f, []).
<0.51.0>

The BIF self() returns the pid of the calling process. Example:

-module(m).
-export([loop/0]).

loop() ->
    receive
        who_are_you ->
            io:format("I am ~p~n", [self()]),
            loop()
    end.

1> P = spawn(m, loop, []).
<0.58.0>
2> P ! who_are_you.
I am <0.58.0>
who_are_you



5.3  Data Types

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Read more about processes in Processes.

5.3.9  Tuple
Compound data type with a fixed number of terms:

{Term1,...,TermN}

Each term Term in the tuple is called an element. The number of elements is said to be the size of the tuple.

There exists a number of BIFs to manipulate tuples.

Examples:

1> P = {adam,24,{july,29}}.
{adam,24,{july,29}}
2> element(1,P).
adam
3> element(3,P).
{july,29}
4> P2 = setelement(2,P,25).
{adam,25,{july,29}}
5> tuple_size(P).
3
6> tuple_size({}).
0

5.3.10  Map
Compound data type with a variable number of key-value associations:

#{Key1=>Value1,...,KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairs is said to be the size of the map.

There exists a number of BIFs to manipulate maps.

Examples:

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).
adam
3> maps:get(date,M1).
{july,29}
4> M2 = maps:update(age,25,M1).
#{age => 25,date => {july,29},name => adam}
5> map_size(M).
3
6> map_size(#{}).
0

A collection of maps processing functions can be found in the STDLIB module maps.



5.3  Data Types

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

Read more about Maps.

Note:
Maps are considered experimental during OTP 17.

5.3.11  List
Compound data type with a variable number of terms.

[Term1,...,TermN]

Each term Term in the list is called an element. The number of elements is said to be the length of the list.

Formally, a list is either the empty list [] or consists of a head (first element) and a tail (remainder of the list) which is
also a list. The latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is actually shorthand
for the list [Term1|[...|[TermN|[]]]].

Example:
[] is a list, thus
[c|[]] is a list, thus
[b|[c|[]]] is a list, thus
[a|[b|[c|[]]]] is a list, or in short [a,b,c].

A list where the tail is a list is sometimes called a proper list. It is allowed to have a list where the tail is not a list, for
example [a|b]. However, this type of list is of little practical use.

Examples:

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]
2> [H|T] = L1.
[a,2,{c,4}]
3> H.
a
4> T.
[2,{c,4}]
5> L2 = [d|T].
[d,2,{c,4}]
6> length(L1).
3
7> length([]).
0

A collection of list processing functions can be found in the STDLIB module lists.

5.3.12  String
Strings are enclosed in double quotes ("), but is not a data type in Erlang. Instead a string "hello" is shorthand for
the list [$h,$e,$l,$l,$o], that is [104,101,108,108,111].

Two adjacent string literals are concatenated into one. This is done at compile-time and does not incur any runtime
overhead. Example:



5.3  Data Types

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

"string" "42"

is equivalent to

"string42"

5.3.13  Record
A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct
in C. However, record is not a true data type. Instead record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. See
shell(3) for details.

Examples:

-module(person).
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
    #person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie,44}

Read more about records in Records. More examples can be found in Programming Examples.

5.3.14  Boolean
There is no Boolean data type in Erlang. Instead the atoms true and false are used to denote Boolean values.

Examples:

1> 2 =< 3.
true
2> true or false.
true

5.3.15  Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b backspace

\d delete

\e escape



5.3  Data Types

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

\f form feed

\n newline

\r carriage return

\s space

\t tab

\v vertical tab

\XYZ, \YZ, \Z character with octal representation XYZ, YZ or Z

\xXY character with hexadecimal representation XY

\x{X...}
character with hexadecimal representation; X... is one or
more hexadecimal characters

\^a...\^z
\^A...\^Z

control A to control Z

\' single quote

\" double quote

\\ backslash

Table 3.1:   Recognized Escape Sequences.

5.3.16  Type Conversions
There are a number of BIFs for type conversions. Examples:

1> atom_to_list(hello).
"hello"
2> list_to_atom("hello").
hello
3> binary_to_list(<<"hello">>).
"hello"
4> binary_to_list(<<104,101,108,108,111>>).
"hello"
5> list_to_binary("hello").
<<104,101,108,108,111>>
6> float_to_list(7.0).
"7.00000000000000000000e+00"
7> list_to_float("7.000e+00").
7.0
8> integer_to_list(77).
"77"
9> list_to_integer("77").
77
10> tuple_to_list({a,b,c}).
[a,b,c]
11> list_to_tuple([a,b,c]).



5.4  Pattern Matching

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

{a,b,c}
12> term_to_binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}
14> binary_to_integer(<<"77">>).
77
15> integer_to_binary(77).
<<"77">>
16> float_to_binary(7.0).
<<"7.00000000000000000000e+00">>
17> binary_to_float(<<"7.000e+00>>").
7.0

5.4  Pattern Matching
5.4.1  Pattern Matching
Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case- receive- try- expressions and match operator (=) expressions.

In a pattern matching, a left-hand side pattern is matched against a right-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, a run-time error occurs.

Examples:

1> X.
** 1: variable 'X' is unbound **
2> X = 2.
2
3> X + 1.
3
4> {X, Y} = {1, 2}.
** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.
{2,3}
6> Y.
3

5.5  Modules
5.5.1  Module Syntax
Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.). Example:

-module(m).          % module attribute
-export([fact/1]).   % module attribute

fact(N) when N>0 ->  % beginning of function declaration
    N * fact(N-1);   %  |
fact(0) ->           %  |
    1.               % end of function declaration

See the Functions chapter for a description of function declarations.



5.5  Modules

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.5.2  Module Attributes
A module attribute defines a certain property of a module. A module attribute consists of a tag and a value.

-Tag(Value).

Tag must be an atom, while Value must be a literal term. As a convenience in user-defined attributes, if the literal
term Value has the syntax Name/Arity (where Name is an atom and Arity a positive integer), the term Name/
Arity will be translated to {Name,Arity}.

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Module:module_info(attributes) or by using beam_lib(3).

There are several module attributes with predefined meanings, some of which have arity two, but user-defined module
attributes must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes should be placed before any function declaration.

-module(Module).

Module declaration, defining the name of the module. The name Module, an atom, should be the same as the
file name minus the extension erl. Otherwise code loading will not work as intended.

This attribute should be specified first and is the only attribute which is mandatory.

-export(Functions).

Exported functions. Specifies which of the functions defined within the module that are visible outside the module.

Functions is a list [Name1/Arity1, ..., NameN/ArityN], where each NameI is an atom and
ArityI an integer.

-import(Module,Functions).

Imported functions. Imported functions can be called the same way as local functions, that is without any module
prefix.

Module, an atom, specifies which module to import functions from. Functions is a list similar as for export
above.

-compile(Options).

Compiler options. Options, which is a single option or a list of options, will be added to the option list when
compiling the module. See compile(3).

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam_lib:version/1, see beam_lib(3).

If this attribute is not specified, the version defaults to the MD5 checksum of the module.

-on_load(Function).

Names a function that should be run automatically when a module a loaded. See  code loading for more
information.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for a behaviour:



5.5  Modules

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-behaviour(Behaviour).

The atom Behaviour gives the name of the behaviour, which can be a user defined behaviour or one of the OTP
standard behaviours gen_server, gen_fsm, gen_event or supervisor.

The spelling behavior is also accepted.

The callback functions of the module can be specified either directly by the exported function behaviour_info/1:

behaviour_info(callbacks) -> Callbacks.

or by a -callback attribute for each callback function:

-callback Name(Arguments) -> Result.

where Arguments is a list of zero or more arguments. The -callback attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

Read more about behaviours and callback modules in  OTP Design Principles.

Record Definitions
The same syntax as for module attributes is used by for record definitions:

-record(Record,Fields).

Record definitions are allowed anywhere in a module, also among the function declarations. Read more in Records.

The Preprocessor
The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).

Read more in The Preprocessor.

Setting File and Line
The same syntax as for module attributes is used for changing the pre-defined macros ?FILE and ?LINE:

-file(File, Line).

This attribute is used by tools such as Yecc to inform the compiler that the source program was generated by another
tool and indicates the correspondence of source files to lines of the original user-written file from which the source
program was produced.

Types and function specifications
A similar syntax as for module attributes is used for specifying types and function specifications.



5.5  Modules

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

-type my_type() :: atom() | integer().
-spec my_function(integer()) -> integer().
 

Read more in Types and Function specifications.

The description is based on EEP8 - Types and function specifications which will not be further updated.

5.5.3  Comments
Comments may be placed anywhere in a module except within strings and quoted atoms. The comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Note that the terminating
end-of-line has the effect of white space.

5.5.4  The module_info/0 and module_info/1 functions
The compiler automatically inserts the two special, exported functions into each module:
Module:module_info/0 and Module:module_info/1. These functions can be called to retrieve information
about the module.

module_info/0
The module_info/0 function in each module returns a list of {Key,Value} tuples with information about
the module. Currently, the list contain tuples with the following Keys: attributes, compile, exports, and
imports. The order and number of tuples may change without prior notice.

Warning:
The {imports,Value} tuple may be removed in a future release because Value is always an empty list. Do
not write code that depends on it being present.

module_info/1
The call module_info(Key), where key is an atom, returns a single piece of information about the module.

The following values are allowed for Key:

attributes

Return a list of {AttributeName,ValueList} tuples, where AttributeName is the name of an attribute,
and ValueList is a list of values. Note: a given attribute may occur more than once in the list with different
values if the attribute occurs more than once in the module.

The list of attributes will be empty if the module has been stripped with beam_lib(3).

compile

Return a list of tuples containing information about how the module was compiled. This list will be empty if the
module has been stripped with beam_lib(3).

imports

Always return an empty list. The imports key may not be supported in future release.

exports

Return a list of {Name,Arity} tuples with all exported functions in the module.

href


5.6  Functions

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

functions

Return a list of {Name,Arity} tuples with all functions in the module.

5.6  Functions
5.6.1  Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).

A function clause consists of a clause head and a clause body, separated by ->.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when.

Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
    Body1;
...;
Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
    BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments N is the arity of the function. A function is uniquely defined by the module name, function
name and arity. That is, two functions with the same name and in the same module, but with different arities are two
completely different functions.

A function named f in the module m and with arity N is often denoted as m:f/N.

A clause body consists of a sequence of expressions separated by comma (,):

Expr1,
...,
ExprN

Valid Erlang expressions and guard sequences are described in Erlang Expressions.

Example:

fact(N) when N>0 ->  % first clause head
    N * fact(N-1);   % first clause body

fact(0) ->           % second clause head
    1.               % second clause body

5.6.2  Function Evaluation
When a function m:f/N is called, first the code for the function is located. If the function cannot be found, an undef
run-time error will occur. Note that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills the following
two conditions:

• the patterns in the clause head can be successfully matched against the given arguments, and

• the guard sequence, if any, is true.



5.6  Functions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

If such a clause cannot be found, a function_clause run-time error will occur.

If such a clause is found, the corresponding clause body is evaluated. That is, the expressions in the body are evaluated
sequentially and the value of the last expression is returned.

Example: Consider the function fact:

-module(m).
-export([fact/1]).

fact(N) when N>0 ->
    N * fact(N-1);
fact(0) ->
    1.

Assume we want to calculate factorial for 1:

1> m:fact(1).

Evaluation starts at the first clause. The pattern N is matched against the argument 1. The matching succeeds and the
guard (N>0) is true, thus N is bound to 1 and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now fact(0) is called and the function clauses are scanned sequentially again. First, the pattern N is matched against
0. The matching succeeds, but the guard (N>0) is false. Second, the pattern 0 is matched against 0. The matching
succeeds and the body is evaluated:

1 * fact(0) =>
1 * 1 =>
1

Evaluation has succeed and m:fact(1) returns 1.

If m:fact/1 is called with a negative number as argument, no clause head will match. A function_clause run-
time error will occur.

5.6.3  Tail recursion
If the last expression of a function body is a function call, a tail recursive call is done so that no system resources for
example call stack are consumed. This means that an infinite loop can be done if it uses tail recursive calls.

Example:

loop(N) ->
    io:format("~w~n", [N]),
    loop(N+1).

As a counter-example see the factorial example above that is not tail recursive since a multiplication is done on the
result of the recursive call to fact(N-1).



5.7  Types and Function Specifications

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6.4  Built-In Functions, BIFs
Built-in functions, BIFs, are implemented in C code in the runtime system and do things that are difficult or impossible
to implement in Erlang. Most of the built-in functions belong to the module erlang but there are also built-in
functions belonging to a few other modules, for example lists and ets.

The most commonly used BIFs belonging to erlang are auto-imported, they do not need to be prefixed with the
module name. Which BIFs are auto-imported is specified in erlang(3). For example, standard type conversion
BIFs like atom_to_list and BIFs allowed in guards can be called without specifying the module name. Examples:

1> tuple_size({a,b,c}).
3
2> atom_to_list('Erlang').
"Erlang"

Note that normally it is the set of auto-imported built-in functions that is referred to when talking about 'BIFs'.

5.7  Types and Function Specifications
5.7.1  The Erlang Type Language
Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type, effectively forming a specific sub-type of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and the argument and return types of functions.

Type information can be used to document function interfaces, provide more information for bug detection tools such
as Dialyzer, and can be exploited by documentation tools such as Edoc for generating program documentation of
various forms. It is expected that the type language described in this document will supersede and replace the purely
comment-based @type and @spec declarations used by Edoc.

5.7.2  Types and their Syntax
Types describe sets of Erlang terms. Types consist and are built from a set of predefined types (e.g. integer(),
atom(), pid(), ...) described below. Predefined types represent a typically infinite set of Erlang terms which belong
to this type. For example, the type atom() stands for the set of all Erlang atoms.

For integers and atoms, we allow for singleton types (e.g. the integers -1 and 42 or the atoms 'foo' and 'bar').
All other types are built using unions of either predefined types or singleton types. In a type union between a type and
one of its sub-types the sub-type is absorbed by the super-type and the union is subsequently treated as if the sub-type
was not a constituent of the union. For example, the type union:

  atom() | 'bar' | integer() | 42

describes the same set of terms as the type union:

  atom() | integer()

Because of sub-type relations that exist between types, types form a lattice where the topmost element, any(), denotes
the set of all Erlang terms and the bottom-most element, none(), denotes the empty set of terms.

The set of predefined types and the syntax for types is given below:



5.7  Types and Function Specifications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

  Type :: any()                 %% The top type, the set of all Erlang terms
        | none()                %% The bottom type, contains no terms
        | pid()
        | port()
        | reference()
        | []                    %% nil
        | Atom
        | Bitstring
        | float()
        | Fun
        | Integer
        | List
        | Map
        | Tuple
        | Union
        | UserDefined           %% described in Section 7.3

  Atom :: atom()
        | Erlang_Atom           %% 'foo', 'bar', ...

  Bitstring :: <<>>
             | <<_:M>>          %% M is a positive integer
             | <<_:_*N>>        %% N is a positive integer
             | <<_:M, _:_*N>>

  Fun :: fun()                  %% any function
       | fun((...) -> Type)     %% any arity, returning Type
       | fun(() -> Type)
       | fun((TList) -> Type)

  Integer :: integer()
           | Erlang_Integer                    %% ..., -1, 0, 1, ... 42 ...
           | Erlang_Integer..Erlang_Integer    %% specifies an integer range

  List :: list(Type)                           %% Proper list ([]-terminated)
        | maybe_improper_list(Type1, Type2)    %% Type1=contents, Type2=termination
        | nonempty_improper_list(Type1, Type2) %% Type1 and Type2 as above
        | nonempty_list(Type)                  %% Proper non-empty list

  Map :: map()                                 %% stands for a map of any size
       | #{}                                   %% stands for a map of any size
       | #{PairList}

  Tuple :: tuple()                             %% stands for a tuple of any size
         | {}
         | {TList}

  PairList :: Type => Type
            | Type => Type, PairList

  TList :: Type
         | Type, TList

  Union :: Type1 | Type2

The general form of bitstrings is <<_:M, _:_*N>>, where M and N are positive integers. It denotes a bitstring that
is M + (k*N) bits long (i.e., a bitstring that starts with M bits and continues with k segments of N bits each, where k
is also a positive integer). The notations <<_:_*N>>, <<_:M>>, and <<>> are convenient shorthands for the cases
that M, N, or both, respectively, are zero.



5.7  Types and Function Specifications

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonempty_list(T) have the shorthands [T] and [T,...], respectively. The only difference between the two
shorthands is that [T] may be an empty list but [T,...] may not.

Notice that the shorthand for list(), i.e. the list of elements of unknown type, is [_] (or [any()]), not []. The
notation [] specifies the singleton type for the empty list.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table.

Built-in type Defined as

term() any()

binary() <<_:_*8>>

bitstring() <<_:_*1>>

boolean() 'false' | 'true'

byte() 0..255

char() 0..16#10ffff

number() integer() | float()

list() [any()]

maybe_improper_list() maybe_improper_list(any(), any())

nonempty_list() nonempty_list(any())

string() [char()]

nonempty_string() [char(),...]

iodata() iolist() | binary()

iolist()
maybe_improper_list(byte() | binary()
| iolist(), binary() | [])

function() fun()

module() atom()

mfa() {atom(),atom(),arity()}

arity() 0..255

node() atom()

timeout() 'infinity' | non_neg_integer()

no_return() none()



5.7  Types and Function Specifications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition" is not valid syntax according to the type language defined above.

Built-in type Could be thought defined by the syntax

non_neg_integer() 0..

pos_integer() 1..

neg_integer() ..-1

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and its violation results in a compilation error.

Note:
The following built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

  nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
  nonempty_improper_list(Type1, Type2)
  nonempty_maybe_improper_list(Type1, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, we allow for record notation to be used. Records are just shorthands for the corresponding tuples.

  Record :: #Erlang_Atom{}
          | #Erlang_Atom{Fields}

Records have been extended to possibly contain type information. This is described in the sub-section "Type
information in record declarations" below.

Note:
Map types, both map() and #{ ... }, are considered experimental during OTP 17.

No type information of maps pairs, only the containing map types, are used by Dialyzer in OTP 17.

5.7.3  Type declarations of user-defined types
As seen, the basic syntax of a type is an atom followed by closed parentheses. New types are declared using '-type'
and '-opaque' compiler attributes as in the following:

  -type my_struct_type() :: Type.
  -opaque my_opaq_type() :: Type.



5.7  Types and Function Specifications

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

where the type name is an atom ('my_struct_type' in the above) followed by parentheses. Type is a type as
defined in the previous section. A current restriction is that Type can contain only predefined types, or user-defined
types which are either module-local (i.e., with a definition that is present in the code of the module) or are remote types
(i.e., types defined in and exported by other modules; see below). For module-local types, the restriction that their
definition exists in the module is enforced by the compiler and results in a compilation error. (A similar restriction
currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables (starts with an upper case letter). Naturally, these variables can - and should
- appear on the RHS of the definition. A concrete example appears below:

  -type orddict(Key, Val) :: [{Key, Val}].

A module can export some types in order to declare that other modules are allowed to refer to them as remote types.
This declaration has the following form:

  -export_type([T1/A1, ..., Tk/Ak]).

where the Ti's are atoms (the name of the type) and the Ai's are their arguments. An example is given below:

  -export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module 'mod' then one can refer to them from other modules using
remote type expressions like those below:

  mod:my_struct_type()
  mod:orddict(atom(), term())

One is not allowed to refer to types which are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not supposed to be visible in any way outside of
their defining module (i.e., only the module defining them is allowed to depend on their term structure). Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and should always be exported.

5.7.4  Type information in record declarations
The types of record fields can be specified in the declaration of the record. The syntax for this is:

  -record(rec, {field1 :: Type1, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). I.e., the above is a shorthand for:

  -record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization as in the following:



5.7  Types and Function Specifications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

  -record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

Naturally, the initial values for fields should be compatible with (i.e. a member of) the corresponding types. This is
checked by the compiler and results in a compilation error if a violation is detected. For fields without initial values,
the singleton type 'undefined' is added to all declared types. In other words, the following two record declarations
have identical effects:

  -record(rec, {f1 = 42 :: integer(),
                f2      :: float(),
                f3      :: 'a' | 'b'}).

  -record(rec, {f1 = 42 :: integer(),
                f2      :: 'undefined' | float(),
                f3      :: 'undefined' | 'a' | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.

Any record, containing type information or not, once defined, can be used as a type using the syntax:

  #rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field in the following manner:

  #rec{some_field :: Type}

Any unspecified fields are assumed to have the type in the original record declaration.

5.7.5  Specifications for functions
A specification (or contract) for a function is given using the new compiler attribute '-spec'. The general format
is as follows:

  -spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.

The arity of the function has to match the number of arguments, or else a compilation error occurs.

This form can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can be included in files that (implicitly or explicitly) import these functions.

For most uses within a given module, the following shorthand suffices:

  -spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

  -spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.



5.7  Types and Function Specifications

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

  -spec foo(T1, T2) -> T3
         ; (T4, T5) -> T6.

A current restriction, which currently results in a warning (OBS: not an error) by the compiler, is that the domains of
the argument types cannot be overlapping. For example, the following specification results in a warning:

  -spec foo(pos_integer()) -> pos_integer()
         ; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

  -spec id(X) -> X.

However, note that the above specification does not restrict the input and output type in any way. We can constrain
these types by guard-like subtype constraints and provide bounded quantification:

  -spec id(X) -> X when X :: tuple().

Currently, the :: constraint (read as is_subtype) is the only guard constraint which can be used in the 'when'
part of a '-spec' attribute.

Note:
The above function specification, using multiple occurrences of the same type variable, provides more type
information than the function specification below where the type variables are missing:

  -spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple, while the one with the X
type variable specifies that the function takes a tuple and returns the same tuple.

However, it's up to the tools that process the specs to choose whether to take this extra information into account
or ignore it.

The scope of an :: constraint is the (...) -> RetType specification after which it appears. To avoid confusion,
we suggest that different variables are used in different constituents of an overloaded contract as in the example below:

  -spec foo({X, integer()}) -> X when X :: atom()
         ; ([Y]) -> Y when Y :: number().



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

Note:
For backwards compatibility the following form is also allowed:

  -spec id(X) -> X when is_subtype(X, tuple()).

but its use is discouraged. It will be taken out in a future Erlang/OTP release.

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions as the function below:

  my_error(Err) -> erlang:throw({error, Err}).

For such functions we recommend the use of the special no_return() type for their "return", via a contract of
the form:

  -spec my_error(term()) -> no_return().

5.8  Expressions
In this chapter, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate chapters: Macros and Records.

5.8.1  Expression Evaluation
All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Expr1 + Expr2

Expr1 and Expr2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type will cause a badarg run-time error.

5.8.2  Terms
The simplest form of expression is a term, that is an integer, float, atom, string, list, map or tuple. The return value
is the term itself.

5.8.3  Variables
A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only allowed in patterns.

Variables start with an uppercase letter or underscore (_) and may contain alphanumeric characters, underscore and
@. Examples:



5.8  Expressions

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

X
Name1
PhoneNumber
Phone_number
_
_Height

Variables are bound to values using pattern matching. Erlang uses single assignment, a variable can only be bound
once.

The anonymous variable is denoted by underscore (_) and can be used when a variable is required but its value can
be ignored. Example:

[H|_] = [1,2,3]

Variables starting with underscore (_), for example _Height, are normal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Example: The
following code

member(_, []) ->
    [].

can be rewritten to be more readable:

member(Elem, []) ->
    [].

This will however cause a warning for an unused variable Elem, if the code is compiled with the flag
warn_unused_vars set. Instead, the code can be rewritten to:

member(_Elem, []) ->
    [].

Note that since variables starting with an underscore are not anonymous, this will match:

{_,_} = {1,2}

But this will fail:

{_N,_N} = {1,2}

The scope for a variable is its function clause. Variables bound in a branch of an if, case, or receive expression
must be bound in all branches to have a value outside the expression, otherwise they will be regarded as 'unsafe' outside
the expression.

For the try expression introduced in Erlang 5.4/OTP-R10B, variable scoping is limited so that variables bound in the
expression are always 'unsafe' outside the expression. This will be improved.



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.8.4  Patterns
A pattern has the same structure as a term but may contain unbound variables. Example:

Name1
[H|T]
{error,Reason}

Patterns are allowed in clause heads, case and receive expressions, and match expressions.

Match Operator = in Patterns
If Pattern1 and Pattern2 are valid patterns, then the following is also a valid pattern:

Pattern1 = Pattern2

When matched against a term, both Pattern1 and Pattern2 will be matched against the term. The idea behind
this feature is to avoid reconstruction of terms. Example:

f({connect,From,To,Number,Options}, To) ->
    Signal = {connect,From,To,Number,Options},
    ...;
f(Signal, To) ->
    ignore.

can instead be written as

f({connect,_,To,_,_} = Signal, To) ->
    ...;
f(Signal, To) ->
    ignore.

String Prefix in Patterns
When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern, if it uses only numeric or bitwise operators, and if its value can
be evaluated to a constant at compile-time. Example:



5.8  Expressions

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

case {Value, Result} of
    {?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/OTP R7.

5.8.5  Match

Expr1 = Expr2

Matches Expr1, a pattern, against Expr2. If the matching succeeds, any unbound variable in the pattern becomes
bound and the value of Expr2 is returned.

If the matching fails, a badmatch run-time error will occur.

Examples:

1> {A, B} = {answer, 42}.
{answer,42}
2> A.
answer
3> {C, D} = [1, 2].
** exception error: no match of right hand side value [1,2]

5.8.6  Function Calls

ExprF(Expr1,...,ExprN)
ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of ExprM and ExprF must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. This is often referred to as a remote or external function call. Example:

lists:keysearch(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be an atom or evaluate to a fun.

If ExprF is an atom the function is said to be called by using the implicitly qualified function name. If the
function ExprF is locally defined, it is called. Alternatively if ExprF is explicitly imported from module M,
M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared locally nor explicitly imported, ExprF
must be the name of an automatically imported BIF. Examples:

handle(Msg, State)
spawn(m, init, [])

Examples where ExprF is a fun:

Fun1 = fun(X) -> X+1 end



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

Fun1(3)
=> 4

fun lists:append/2([1,2], [3,4])
=> [1,2,3,4]

Note that when calling a local function, there is a difference between using the implicitly or fully qualified function
name, as the latter always refers to the latest version of the module. See Compilation and Code Loading.

See also the chapter about Function Evaluation.

Local Function Names Clashing With Auto-imported BIFs
If a local function has the same name as an auto-imported BIF, the semantics is that implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, there is a compiler directive available,
-compile({no_auto_import,[F/A]}), that makes a BIF not being auto-imported. In certain situations, such
a compile-directive is mandatory.

Warning:
Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to a function having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler the local
function is instead called. The change is there to avoid that future additions to the set of auto-imported BIFs does
not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with a fully qualified function
call, otherwise you will get a compilation error. See example below:

-export([length/1,f/1]).

-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported

length([]) ->
    0;
length([H|T]) ->
    1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
                                  %% which is allowed in guards
    long.

The same logic applies to explicitly imported functions from other modules as to locally defined functions. To both
import a function from another module and have the function declared in the module at the same time is not allowed.

-export([f/1]).

-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported

-import(mod,[length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,



5.8  Expressions

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

                                   %% which is allowed in guards

    erlang:length(X);              %% Explicit call to erlang:length in body

f(X) ->
    length(X).                     %% mod:length/1 is called

For auto-imported BIFs added to Erlang in release R14A and thereafter, overriding the name with a local function
or explicit import is always allowed. However, if the -compile({no_auto_import,[F/A]) directive is not
used, the compiler will issue a warning whenever the function is called in the module using the implicitly qualified
function name.

5.8.7  If

if
    GuardSeq1 ->
        Body1;
    ...;
    GuardSeqN ->
        BodyN
end

The branches of an if-expression are scanned sequentially until a guard sequence GuardSeq which evaluates to true
is found. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

The return value of Body is the return value of the if expression.

If no guard sequence is true, an if_clause run-time error will occur. If necessary, the guard expression true can
be used in the last branch, as that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
    if
        X>Y ->
            true;
        true -> % works as an 'else' branch
            false
    end

5.8.8  Case

case Expr of
    Pattern1 [when GuardSeq1] ->
        Body1;
    ...;
    PatternN [when GuardSeqN] ->
        BodyN
end

The expression Expr is evaluated and the patterns Pattern are sequentially matched against the result. If a match
succeeds and the optional guard sequence GuardSeq is true, the corresponding Body is evaluated.

The return value of Body is the return value of the case expression.



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

If there is no matching pattern with a true guard sequence, a case_clause run-time error will occur.

Example:

is_valid_signal(Signal) ->
    case Signal of
        {signal, _What, _From, _To} ->
            true;
        {signal, _What, _To} ->
            true;
        _Else ->
            false
    end.

5.8.9  Send

Expr1 ! Expr2

Sends the value of Expr2 as a message to the process specified by Expr1. The value of Expr2 is also the return
value of the expression.

Expr1 must evaluate to a pid, a registered name (atom) or a tuple {Name,Node}, where Name is an atom and Node
a node name, also an atom.

• If Expr1 evaluates to a name, but this name is not registered, a badarg run-time error will occur.

• Sending a message to a pid never fails, even if the pid identifies a non-existing process.

• Distributed message sending, that is if Expr1 evaluates to a tuple {Name,Node} (or a pid located at another
node), also never fails.

5.8.10  Receive

receive
    Pattern1 [when GuardSeq1] ->
        Body1;
    ...;
    PatternN [when GuardSeqN] ->
        BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pattern are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If a match succeeds and the optional
guard sequence GuardSeq is true, the corresponding Body is evaluated. The matching message is consumed, that is
removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body is the return value of the receive expression.

receive never fails. Execution is suspended, possibly indefinitely, until a message arrives that does match one of
the patterns and with a true guard sequence.

Example:

wait_for_onhook() ->
    receive



5.8  Expressions

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

        onhook ->
            disconnect(),
            idle();
        {connect, B} ->
            B ! {busy, self()},
            wait_for_onhook()
    end.

It is possible to augment the receive expression with a timeout:

receive
    Pattern1 [when GuardSeq1] ->
        Body1;
    ...;
    PatternN [when GuardSeqN] ->
        BodyN
after
    ExprT ->
        BodyT
end

ExprT should evaluate to an integer. The highest allowed value is 16#ffffffff, that is, the value must fit in 32 bits.
receive..after works exactly as receive, except that if no matching message has arrived within ExprT
milliseconds, then BodyT is evaluated instead and its return value becomes the return value of the receive..after
expression.

Example:

wait_for_onhook() ->
    receive
        onhook ->
            disconnect(),
            idle();
        {connect, B} ->
            B ! {busy, self()},
            wait_for_onhook()
    after
        60000 ->
            disconnect(),
            error()
    end.

It is legal to use a receive..after expression with no branches:

receive
after
    ExprT ->
        BodyT
end

This construction will not consume any messages, only suspend execution in the process for ExprT milliseconds and
can be used to implement simple timers.

Example:



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

timer() ->
    spawn(m, timer, [self()]).

timer(Pid) ->
    receive
    after
        5000 ->
            Pid ! timeout
    end.

There are two special cases for the timeout value ExprT:

infinity
The process should wait indefinitely for a matching message -- this is the same as not using a timeout. Can be
useful for timeout values that are calculated at run-time.

0
If there is no matching message in the mailbox, the timeout will occur immediately.

5.8.11  Term Comparisons

Expr1 op Expr2

op Description

== equal to

/= not equal to

=< less than or equal to

< less than

>= greater than or equal to

> greater than

=:= exactly equal to

=/= exactly not equal to

Table 8.1:   Term Comparison Operators.

The arguments may be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < list < bit string

Lists are compared element by element. Tuples are ordered by size, two tuples with the same size are compared element
by element.



5.8  Expressions

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

When comparing an integer to a float, the term with the lesser precision will be converted into the other term's type,
unless the operator is one of =:= or =/=. A float is more precise than an integer until all significant figures of the float
are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0. The
conversion strategy is changed depending on the size of the float because otherwise comparison of large floats and
integers would lose their transitivity.

Returns the Boolean value of the expression, true or false.

Examples:

1> 1==1.0.
true
2> 1=:=1.0.
false
3> 1 > a.
false

5.8.12  Arithmetic Expressions

op Expr
Expr1 op Expr2

op Description Argument type

+ unary + number

- unary - number

+  number

-  number

*  number

/ floating point division number

bnot unary bitwise not integer

div integer division integer

rem integer remainder of X/Y integer

band bitwise and integer

bor bitwise or integer

bxor arithmetic bitwise xor integer

bsl arithmetic bitshift left integer



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

bsr bitshift right integer

Table 8.2:   Arithmetic Operators.

Examples:

1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
     in operator  +/2
        called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
     in operator  bsl/2
        called as 1 bsl 18446744073709551616

5.8.13  Boolean Expressions

op Expr
Expr1 op Expr2

op Description

not unary logical not

and logical and

or logical or

xor logical xor

Table 8.3:   Logical Operators.

Examples:



5.8  Expressions

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
     in operator  or/2
        called as true or garbage

5.8.14  Short-Circuit Expressions

Expr1 orelse Expr2
Expr1 andalso Expr2

Expressions where Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if Expr1 evaluates to
false in an orelse expression, or only if Expr1 evaluates to true in an andalso expression. Returns either
the value of Expr1 (that is, true or false) or the value of Expr2 (if Expr2 was evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This will work even if A is less than -1.0, since in that case, math:sqrt/1 is never evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
         (is_list(L) andalso length(L) == 1),

From R13A, Expr2 is no longer required to evaluate to a boolean value. As a consequence, andalso and orelse
are now tail-recursive. For instance, the following function is tail-recursive in R13A and later:

all(Pred, [Hd|Tail]) ->
    Pred(Hd) andalso all(Pred, Tail);
all(_, []) ->
    true.

5.8.15  List Operations

Expr1 ++ Expr2
Expr1 -- Expr2

The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator -- produces a list which is a copy of the first argument, subjected to the following
procedure: for each element in the second argument, the first occurrence of this element (if any) is removed.

Example:



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

1> [1,2,3]++[4,5].
[1,2,3,4,5]
2> [1,2,3,2,1,2]--[2,1,2].
[3,1,2]

Warning:
The complexity of A -- B is proportional to length(A)*length(B), meaning that it will be very slow
if both A and B are long lists.

5.8.16  Map Expressions
Creating Maps
Constructing a new map is done by letting an expression K be associated with another expression V:

#{ K => V }

New maps may include multiple associations at construction by listing every association:

#{ K1 => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by ,.

Examples:

M0 = #{},                 % empty map
M1 = #{a => <<"hello">>}, % single association with literals
M2 = #{1 => 2, b => b},   % multiple associations with literals
M3 = #{k => {A,B}},       % single association with variables
M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

where, A and B are any expressions and M0 through M4 are the resulting map terms.

If two matching keys are declared, the latter key will take precedence.

Example:

1> #{1 => a, 1 => b}.
#{1 => b }
2> #{1.0 => a, 1 => b}.
#{1 => b, 1.0 => a}



5.8  Expressions

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The order in which the expressions constructing the keys and their associated values are evaluated is not defined. The
syntactic order of the key-value pairs in the construction is of no relevance, except in the above mentioned case of
two matching keys.

Updating Maps
Updating a map has similar syntax as constructing it.

An expression defining the map to be updated is put in front of the expression defining the keys to be updated and
their respective values.

M#{ K => V }

where M is a term of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association will be created from key K to value V. If key K
matches an existing key in map M its associated value will be replaced by the new value V. In both cases the evaluated
map expression will return a new map.

If M is not of type map an exception of type badmap is thrown.

To only update an existing value, the following syntax is used,

M#{ K := V } 

where M is an term of type map, V is an expression and K is an expression which evaluates to an existing key in M.

If key K does not match any existing keys in map M an exception of type badarg will be triggered at runtime. If a
matching key K is present in map M its associated value will be replaced by the new value V and the evaluated map
expression returns a new map.

If M is not of type map an exception of type badmap is thrown.

Examples:

M0 = #{},
M1 = M0#{a => 0},
M2 = M1#{a => 1, b => 2},
M3 = M2#{"function" => fun() -> f() end},
M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

where M0 is any map. It follows that M1 .. M4 are maps as well.

More Examples:

1> M = #{1 => a}.
#{1 => a }
2> M#{1.0 => b}.
#{1 => a, 1.0 => b}.
3> M#{1 := b}.
#{1 => b}
4> M#{1.0 := b}.
** exception error: bad argument



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

As in construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match, in which case the
latter value is used.

Maps in Patterns
Matching of key-value associations from maps is done in the following way:

#{ K := V } = M

where M is any map. The key K has to be an expression with bound variables or a literals, and V can be any pattern
with either bound or unbound variables.

If the variable V is unbound, it will be bound to the value associated with the key K, which has to exist in the map M.
If the variable V is bound, it has to match the value associated with K in M.

Example:

1> 
#{"tuple" => {1,2}}
2> 
#{"tuple" => {1,2}}
3> 
2.

This will bind variable B to integer 2.

Similarly, multiple values from the map may be matched:

#{ K1 := V1, .., Kn := Vn } = M

where keys K1 .. Kn are any expressions with literals or bound variables. If all keys exist in map M all variables in
V1 .. Vn will be matched to the associated values of their respective keys.

If the matching conditions are not met, the match will fail, either with

• a badmatch exception, if used in the context of the matching operator as in the example,

• or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only allows for := as delimiters of associations. The order in which keys are declared in matching
has no relevance.

Duplicate keys are allowed in matching and will match each pattern associated to the keys.

#{ K := V1, K := V2 } = M

Matching an expression against an empty map literal will match its type but no variables will be bound:

#{} = Expr

This expression will match if the expression Expr is of type map, otherwise it will fail with an exception badmatch.

Matching syntax: Example with literals in function heads
Matching of literals as keys are allowed in function heads.



5.8  Expressions

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

%% only start if not_started
handle_call(start, From, #{ state := not_started } = S) ->
...
    {reply, ok, S#{ state := start }};

%% only change if started
handle_call(change, From, #{ state := start } = S) ->
...
    {reply, ok, S#{ state := changed }};

Maps in Guards
Maps are allowed in guards as long as all sub-expressions are valid guard expressions.

Two guard BIFs handles maps:

• is_map/1

• map_size/1

5.8.17  Bit Syntax Expressions

<<>>
<<E1,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
     Value:Size |
     Value/TypeSpecifierList |
     Value:Size/TypeSpecifierList

Used in a bit string construction, Value is an expression which should evaluate to an integer, float or bit string. If the
expression is something else than a single literal or variable, it should be enclosed in parenthesis.

Used in a bit string matching, Value must be a variable, or an integer, float or string.

Note that, for example, using a string literal as in <<"abc">> is syntactic sugar for <<$a,$b,$c>>.

Used in a bit string construction, Size is an expression which should evaluate to an integer.

Used in a bit string matching, Size must be an integer or a variable bound to an integer.

The value of Size specifies the size of the segment in units (see below). The default value depends on the type (see
below). For integer it is 8, for float it is 64, for binary and bitstring it is the whole binary or bit string.
In matching, this default value is only valid for the very last element. All other bit string or binary elements in the
matching must have a size specification.

For the utf8, utf16, and utf32 types, Size must not be given. The size of the segment is implicitly determined
by the type and value itself.

TypeSpecifierList is a list of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.

Type= integer | float | binary | bytes | bitstring | bits | utf8 | utf16 | utf32
The default is integer. bytes is a shorthand for binary and bits is a shorthand for bitstring. See
below for more information about the utf types.



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

Signedness= signed | unsigned
Only matters for matching and when the type is integer. The default is unsigned.

Endianness= big | little | native
Native-endian means that the endianness will be resolved at load time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machine is run on. Endianness only matters when the
Type is either integer, utf16, utf32, or float. The default is big.

Unit= unit:IntegerLiteral
The allowed range is 1..256. Defaults to 1 for integer, float and bitstring, and to 8 for binary. No
unit specifier must be given for the types utf8, utf16, and utf32.

The value of Size multiplied with the unit gives the number of bits. A segment of type binary must have a size
that is evenly divisible by 8.

Note:
When constructing binaries, if the size N of an integer segment is too small to contain the given integer, the most
significant bits of the integer will be silently discarded and only the N least significant bits will be put into the
binary.

The types utf8, utf16, and utf32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Value must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction will fail with a badarg exception if Value is outside the allowed ranges. The
size of the resulting binary segment depends on the type and/or Value. For utf8, Value will be encoded in 1
through 4 bytes. For utf16, Value will be encoded in 2 or 4 bytes. Finally, for utf32, Value will always be
encoded in 4 bytes.

When constructing, a literal string may be given followed by one of the UTF types, for example: <<"abc"/utf8>>
which is syntatic sugar for <<$a/utf8,$b/utf8,$c/utf8>>.

A successful match of a segment of a utf type results in an integer in the range 0..16#D7FF or 16#E000..16#10FFFF.
The match will fail if returned value would fall outside those ranges.

A segment of type utf8 will match 1 to 4 bytes in the binary, if the binary at the match position contains a valid
UTF-8 sequence. (See RFC-3629 or the Unicode standard.)

A segment of type utf16 may match 2 or 4 bytes in the binary. The match will fail if the binary at the match position
does not contain a legal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type utf32 may match 4 bytes in the binary in the same way as an integer segment matching 32
bits. The match will fail if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Bin1 = <<1,17,42>>.
<<1,17,42>>
2> Bin2 = <<"abc">>.
<<97,98,99>>
3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>
4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>
5> C.
42
6> <<D:16,E,F>> = <<1,17,42:16>>.



5.8  Expressions

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

<<1,17,0,42>>
7> D.
273
8> F.
42
9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>
10> H.
<<17,0,42>>
11> <<G,H/bitstring>> = <<1,17,42:12>>.
<<1,17,1,10:4>>
12> H.
<<17,1,10:4>>
13> <<1024/utf8>>.
<<208,128>>

Note that bit string patterns cannot be nested.

Note also that "B=<<1>>" is interpreted as "B =<<1>>" which is a syntax error. The correct way is to write a space
after '=': "B= <<1>>.

More examples can be found in Programming Examples.

5.8.18  Fun Expressions

fun
    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
              Body1;
    ...;
    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
              BodyK
end

A fun expression begins with the keyword fun and ends with the keyword end. Between them should be a function
declaration, similar to a regular function declaration, except that the function name is optional and should be a variable
if any.

Variables in a fun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression, and variables bound in a fun body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
#Fun<erl_eval.6.39074546>
2> Fun1(2).
3
3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
#Fun<erl_eval.6.39074546>
4> Fun2(7).
gt
5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl_eval.6.39074546>
6> Fun3(4).
24

The following fun expressions are also allowed:



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

fun Name/Arity
fun Module:Name/Arity

In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must specify an existing local function.
The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

In Module:Name/Arity, Module and Name are atoms and Arity is an integer. Starting from the R15 release,
Module, Name, and Arity may also be variables. A fun defined in this way will refer to the function Name with
arity Arity in the latest version of module Module. A fun defined in this way will not be dependent on the code
for module in which it is defined.

More examples can be found in Programming Examples.

5.8.19  Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught. For
exceptions of class error, that is run-time errors: {'EXIT',{Reason,Stack}} is returned. For exceptions of
class exit, that is the code called exit(Term): {'EXIT',Term} is returned. For exceptions of class throw,
that is the code called throw(Term): Term is returned.

Reason depends on the type of error that occurred, and Stack is the stack of recent function calls, see Errors and
Error Handling.

Examples:

1> catch 1+2.
3
2> catch 1+a.
{'EXIT',{badarith,[...]}}

Note that catch has low precedence and catch subexpressions often needs to be enclosed in a block expression or
in parenthesis:

3> A = catch 1+2.
** 1: syntax error before: 'catch' **
4> A = (catch 1+2).
3

The BIF throw(Any) can be used for non-local return from a function. It must be evaluated within a catch, which
will return the value Any. Example:

5> catch throw(hello).
hello



5.8  Expressions

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

If throw/1 is not evaluated within a catch, a nocatch run-time error will occur.

5.8.20  Try

try Exprs
catch
    [Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
        ExceptionBody1;
    [ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->
        ExceptionBodyN
end

This is an enhancement of catch that appeared in Erlang 5.4/OTP-R10B. It gives the possibility do distinguish between
different exception classes, and to choose to handle only the desired ones, passing the others on to an enclosing try
or catch or to default error handling.

Note that although the keyword catch is used in the try expression, there is not a catch expression within the
try expression.

Returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) unless an exception occurs during the
evaluation. In that case the exception is caught and the patterns ExceptionPattern with the right exception class
Class are sequentially matched against the caught exception. An omitted Class is shorthand for throw. If a match
succeeds and the optional guard sequence ExceptionGuardSeq is true, the corresponding ExceptionBody is
evaluated to become the return value.

If an exception occurs during evaluation of Exprs but there is no matching ExceptionPattern of the right
Class with a true guard sequence, the exception is passed on as if Exprs had not been enclosed in a try expression.

If an exception occurs during evaluation of ExceptionBody it is not caught.

The try expression can have an of section:

try Exprs of
    Pattern1 [when GuardSeq1] ->
        Body1;
    ...;
    PatternN [when GuardSeqN] ->
        BodyN
catch
    [Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
        ExceptionBody1;
    ...;
    [ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->
        ExceptionBodyN
end

If the evaluation of Exprs succeeds without an exception, the patterns Pattern are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, a try_clause run-time error
will occur.

An exception occurring during the evaluation of Body is not caught.

The try expression can also be augmented with an after section, intended to be used for cleanup with side effects:

try Exprs of
    Pattern1 [when GuardSeq1] ->



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

        Body1;
    ...;
    PatternN [when GuardSeqN] ->
        BodyN
catch
    [Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
        ExceptionBody1;
    ...;
    [ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->
        ExceptionBodyN
after
    AfterBody
end

AfterBody is evaluated after either Body or ExceptionBody no matter which one. The evaluated value of
AfterBody is lost; the return value of the try expression is the same with an after section as without.

Even if an exception occurs during evaluation of Body or ExceptionBody, AfterBody is evaluated. In this case
the exception is passed on after AfterBody has been evaluated, so the exception from the try expression is the
same with an after section as without.

If an exception occurs during evaluation of AfterBody itself it is not caught, so if AfterBody is evaluated after an
exception in Exprs, Body or ExceptionBody, that exception is lost and masked by the exception in AfterBody.

The of, catch and after sections are all optional, as long as there is at least a catch or an after section, so
the following are valid try expressions:

try Exprs of 
    Pattern when GuardSeq -> 
        Body 
after 
    AfterBody 
end

try Exprs
catch 
    ExpressionPattern -> 
        ExpressionBody
after
    AfterBody
end

try Exprs after AfterBody end

Example of using after, this code will close the file even in the event of exceptions in file:read/2 or in
binary_to_term/1, and exceptions will be the same as without the try...after...end expression:

termize_file(Name) ->
    {ok,F} = file:open(Name, [read,binary]),
    try
        {ok,Bin} = file:read(F, 1024*1024),
        binary_to_term(Bin)
    after
        file:close(F)
    end.

Example: Using try to emulate catch Expr.



5.8  Expressions

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

try Expr
catch
    throw:Term -> Term;
    exit:Reason -> {'EXIT',Reason}
    error:Reason -> {'EXIT',{Reason,erlang:get_stacktrace()}}
end

5.8.21  Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example in arithmetic expressions:

1> 1 + 2 * 3.
7
2> (1 + 2) * 3.
9

5.8.22  Block Expressions

begin
   Expr1,
   ...,
   ExprN
end

Block expressions provide a way to group a sequence of expressions, similar to a clause body. The return value is the
value of the last expression ExprN.

5.8.23  List Comprehensions
List comprehensions are a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elements in a list.

List comprehensions are analogous to set comprehensions in Zermelo-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the setof and findall predicates in Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifier1,...,QualifierN]

Expr is an arbitrary expression, and each Qualifier is either a generator or a filter.

• A generator is written as:
  Pattern <- ListExpr.
ListExpr must be an expression which evaluates to a list of terms.

• A bit string generator is written as:
  BitstringPattern <= BitStringExpr.
BitStringExpr must be an expression which evaluates to a bitstring.



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

• A filter is an expression which evaluates to true or false.

The variables in the generator patterns shadow variables in the function clause surrounding the list comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and bit string generator elements for which all filters are true.

Example:

1> [X*2 || X <- [1,2,3]].
[2,4,6]

More examples can be found in Programming Examples.

5.8.24  Bit String Comprehensions
Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifier1,...,QualifierN >>

BitString is a bit string expression, and each Qualifier is either a generator, a bit string generator or a filter.

• A generator is written as:
  Pattern <- ListExpr.
ListExpr must be an expression which evaluates to a list of terms.

• A bit string generator is written as:
  BitstringPattern <= BitStringExpr.
BitStringExpr must be an expression which evaluates to a bitstring.

• A filter is an expression which evaluates to true or false.

The variables in the generator patterns shadow variables in the function clause surrounding the bit string
comprehensions.

A bit string comprehension returns a bit string, which is created by concatenating the results of evaluating BitString
for each combination of bit string generator elements for which all filters are true.

Example:

1> << << (X*2) >> || 
<<X>> <= << 1,2,3 >> >>.
<<2,4,6>>

More examples can be found in Programming Examples.

5.8.25  Guard Sequences
A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequence is true if at least one of the
guards is true. (The remaining guards, if any, will not be evaluated.)
Guard1;...;GuardK



5.8  Expressions

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

A guard is a sequence of guard expressions, separated by comma (,). The guard is true if all guard expressions evaluate
to true.
GuardExpr1,...,GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to
be free of side effects. Valid guard expressions are:

• the atom true,

• other constants (terms and bound variables), all regarded as false,

• calls to the BIFs specified below,

• term comparisons,

• arithmetic expressions,

• boolean expressions, and

• short-circuit expressions (andalso/orelse).

is_atom/1

is_binary/1

is_bitstring/1

is_boolean/1

is_float/1

is_function/1

is_function/2

is_integer/1

is_list/1

is_map/1

is_number/1

is_pid/1

is_port/1

is_record/2

is_record/3

is_reference/1

is_tuple/1

Table 8.4:   Type Test BIFs.



5.8  Expressions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

Note that most type test BIFs have older equivalents, without the is_ prefix. These old BIFs are retained for backwards
compatibility only and should not be used in new code. They are also only allowed at top level. For example, they
are not allowed in boolean expressions in guards.

abs(Number)

bit_size(Bitstring)

byte_size(Bitstring)

element(N, Tuple)

float(Term)

hd(List)

length(List)

map_size(Map)

node()

node(Pid|Ref|Port)

round(Number)

self()

size(Tuple|Bitstring)

tl(List)

trunc(Number)

tuple_size(Tuple)

Table 8.5:   Other BIFs Allowed in Guard Expressions.

If an arithmetic expression, a boolean expression, a short-circuit expression, or a call to a guard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) will be evaluated.

5.8.26  Operator Precedence
Operator precedence in falling priority:

:  

#  

Unary + - bnot not  



5.9  The Preprocessor

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

/ * div rem band and Left associative

+ - bor bxor bsl bsr or xor Left associative

++ -- Right associative

== /= =< < >= > =:= =/=  

andalso  

orelse  

= ! Right associative

catch  

Table 8.6:   Operator Precedence.

When evaluating an expression, the operator with the highest priority is evaluated first. Operators with the same priority
are evaluated according to their associativity. Example: The left associative arithmetic operators are evaluated left
to right:

6 + 5 * 4 - 3 / 2 evaluates to
6 + 20 - 1.5 evaluates to
26 - 1.5 evaluates to
24.5

5.9  The Preprocessor
5.9.1  File Inclusion
A file can be included in the following way:

-include(File).
-include_lib(File).

File, a string, should point out a file. The contents of this file are included as-is, at the position of the directive.

Include files are typically used for record and macro definitions that are shared by several modules. It is recommended
that the file name extension .hrl be used for include files.

File may start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false,
$VAR is left as is.

If the filename File is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified file is searched for in the current working directory, in the same directory as the module being
compiled, and in the directories given by the include option, in that order. See erlc(1) and compile(3) for
details.

Examples:



5.9  The Preprocessor

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

-include("my_records.hrl").
-include("incdir/my_records.hrl").
-include("/home/user/proj/my_records.hrl").
-include("$PROJ_ROOT/my_records.hrl").

include_lib is similar to include, but should not point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application. Example:

-include_lib("kernel/include/file.hrl").

The code server uses code:lib_dir(kernel) to find the directory of the current (latest) version of Kernel, and
then the subdirectory include is searched for the file file.hrl.

5.9.2  Defining and Using Macros
A macro is defined the following way:

-define(Const, Replacement).
-define(Func(Var1,...,VarN), Replacement).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If a macro is used in several modules, it is recommended that the macro definition is placed in an include file.

A macro is used the following way:

?Const
?Func(Arg1,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const will be replaced with Replacement. Example:

-define(TIMEOUT, 200).
...
call(Request) ->
    server:call(refserver, Request, ?TIMEOUT).

This will be expanded to:

call(Request) ->
    server:call(refserver, Request, 200).

A macro ?Func(Arg1,...,ArgN) will be replaced with Replacement, where all occurrences of a variable
Var from the macro definition are replaced with the corresponding argument Arg. Example:

-define(MACRO1(X, Y), {a, X, b, Y}).
...



5.9  The Preprocessor

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

bar(X) ->
    ?MACRO1(a, b),
    ?MACRO1(X, 123)

This will be expanded to:

bar(X) ->
    {a,a,b,b},
    {a,X,b,123}.

It is good programming practice, but not mandatory, to ensure that a macro definition is a valid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the 'P' option. compile:file(File,
['P']). This produces a listing of the parsed code after preprocessing and parse transforms, in the file File.P.

5.9.3  Predefined Macros
The following macros are predefined:

?MODULE
The name of the current module.

?MODULE_STRING.
The name of the current module, as a string.

?FILE.
The file name of the current module.

?LINE.
The current line number.

?MACHINE.
The machine name, 'BEAM'.

5.9.4  Macros Overloading
It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/OTP R13B04.

A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results in an error message if there
is at least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(F0(), c).
-define(F1(A), A).
-define(C, m:f).

the following will not work:

f0() ->
    ?F0. % No, an empty list of arguments expected.

f1(A) ->
    ?F1(A, A). % No, exactly one argument expected.



5.9  The Preprocessor

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

On the other hand,

f() ->
    ?C().

will expand to

f() ->
    m:f().

5.9.5  Flow Control in Macros
The following macro directives are supplied:

-undef(Macro).
Causes the macro to behave as if it had never been defined.

-ifdef(Macro).
Evaluate the following lines only if Macro is defined.

-ifndef(Macro).
Evaluate the following lines only if Macro is not defined.

-else.
Only allowed after an ifdef or ifndef directive. If that condition was false, the lines following else are
evaluated instead.

-endif.
Specifies the end of an ifdef or ifndef directive.

Note:
The macro directives cannot be used inside functions.

Example:

-module(m).
...

-ifdef(debug).
-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.
-define(LOG(X), true).
-endif.

...

When trace output is desired, debug should be defined when the module m is compiled:

% erlc -Ddebug m.erl

or



5.10  Records

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1> c(m, {d, debug}).
{ok,m}

?LOG(Arg) will then expand to a call to io:format/2 and provide the user with some simple trace output.

5.9.6  Stringifying Macro Arguments
The construction ??Arg, where Arg is a macro argument, will be expanded to a string containing the tokens of the
argument. This is similar to the #arg stringifying construction in C.

The feature was added in Erlang 5.0/OTP R7.

Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)).

results in

io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

That is, a trace output with both the function called and the resulting value.

5.10  Records
A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless special actions are taken. See shell(3) for details.

More record examples can be found in Programming Examples.

5.10.1  Defining Records
A record definition consists of the name of the record, followed by the field names of the record. Record and field
names must be atoms. Each field can be given an optional default value. If no default value is supplied, undefined
will be used.

-record(Name, {Field1 [= Value1],
               ...
               FieldN [= ValueN]}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If a record is used in several modules, it is recommended that the record definition is placed in an include file.

5.10.2  Creating Records
The following expression creates a new Name record where the value of each field FieldI is the value of evaluating
the corresponding expression ExprI:



5.10  Records

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

#Name{Field1=Expr1,...,FieldK=ExprK}

The fields may be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields will get their respective default value instead.

If several fields should be assigned the same value, the following construction can be used:

#Name{Field1=Expr1,...,FieldK=ExprK, _=ExprL}

Omitted fields will then get the value of evaluating ExprL instead of their default values. This feature was added
in Erlang 5.1/OTP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.
Example:

-record(person, {name, phone, address}).

...

lookup(Name, Tab) ->
    ets:match_object(Tab, #person{name=Name, _='_'}).

5.10.3  Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr should evaluate to a Name record.

The following expression returns the position of the specified field in the tuple representation of the record:

#Name.Field

Example:

-record(person, {name, phone, address}).

...

lookup(Name, List) ->
    lists:keysearch(Name, #person.name, List).

5.10.4  Updating Records

Expr#Name{Field1=Expr1,...,FieldK=ExprK}

Expr should evaluate to a Name record. Returns a copy of this record, with the value of each specified field FieldI
changed to the value of evaluating the corresponding expression ExprI. All other fields retain their old values.



5.10  Records

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10.5  Records in Guards
Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example for field initiations, must of course be valid guard expressions
as well. Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->
    ...

handle(Msg, State) when State#state.running==true ->
    ...

There is also a type test BIF is_record(Term, RecordTag). Example:

is_person(P) when is_record(P, person) ->
    true;
is_person(_P) ->
    false.

5.10.6  Records in Patterns
A pattern that will match a certain record is created the same way as a record is created:

#Name{Field1=Expr1,...,FieldK=ExprK}

In this case, one or more of Expr1...ExprK may be unbound variables.

5.10.7  Nested records
Beginning with R14 parentheses when accessing or updating nested records can be omitted. Assuming we have the
following record definitions:

-record(nrec0, {name = "nested0"}).
-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).

N2 = #nrec2{},
    

Before R14 you would have needed to use parentheses as following:

"nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},
    

Since R14 you can also write:

"nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,



5.11  Errors and Error Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},

5.10.8  Internal Representation of Records
Record expressions are translated to tuple expressions during compilation. A record defined as

-record(Name, {Field1,...,FieldN}).

is internally represented by the tuple

{Name,Value1,...,ValueN}

where each ValueI is the default value for FieldI.

To each module using records, a pseudo function is added during compilation to obtain information about records:

record_info(fields, Record) -> [Field]
record_info(size, Record) -> Size

Size is the size of the tuple representation, that is one more than the number of fields.

In addition, #Record.Name returns the index in the tuple representation of Name of the record Record. Name
must be an atom.

5.11  Errors and Error Handling
5.11.1  Terminology
Errors can roughly be divided into four different types:

• Compile-time errors

• Logical errors

• Run-time errors

• Generated errors

A compile-time error, for example a syntax error, should not cause much trouble as it is caught by the compiler.

A logical error is when a program does not behave as intended, but does not crash. An example could be that nothing
happens when a button in a graphical user interface is clicked.

A run-time error is when a crash occurs. An example could be when an operator is applied to arguments of the wrong
type. The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling erlang:error(Reason) or erlang:error(Reason,
Args) (those appeared in Erlang 5.4/OTP-R10).

A run-time error is another name for an exception of class error.

A generated error is when the code itself calls exit/1 or throw/1. Note that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classes exit and throw.



5.11  Errors and Error Handling

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

When a run-time error or generated error occurs in Erlang, execution for the process which evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates or exits. Note that a process may terminate/exit for other reasons than a failure.

A process that terminates will emit an exit signal with an exit reason that says something about which error has
occurred. Normally, some information about the error will be printed to the terminal.

5.11.2  Exceptions
Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (appeared in Erlang 5.4/OTP-R10B) can distinguish between the different classes, whereas the catch
expression can not. They are described in the Expressions chapter.

Class Origin

error
Run-time error for example 1+a, or the process called
erlang:error/1,2 (appeared in Erlang 5.4/OTP-
R10B)

exit The process called exit/1

throw The process called throw/1

Table 11.1:   Exception Classes.

An exception consists of its class, an exit reason (the Exit Reason), and a stack trace (that aids in finding the code
location of the exception).

The stack trace can be retrieved using erlang:get_stacktrace/0 (new in Erlang 5.4/OTP-R10B) from within
a try expression, and is returned for exceptions of class error from a catch expression.

An exception of class error is also known as a run-time error.

5.11.3  Handling of Run-Time Errors in Erlang
Error Handling Within Processes
It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using catch
or try, see the Expressions chapter about Catch and Try.

Error Handling Between Processes
Processes can monitor other processes and detect process terminations, see the Processes chapter.

5.11.4  Exit Reasons
When a run-time error occurs, that is an exception of class error, the exit reason is a tuple {Reason,Stack}.
Reason is a term indicating the type of error:

Reason Type of error

badarg
Bad argument. The argument is of wrong data type, or is
otherwise badly formed.



5.12  Processes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

badarith Bad argument in an arithmetic expression.

{badmatch,V}
Evaluation of a match expression failed. The value V
did not match.

function_clause
No matching function clause is found when evaluating a
function call.

{case_clause,V}
No matching branch is found when evaluating a case
expression. The value V did not match.

if_clause
No true branch is found when evaluating an if
expression.

{try_clause,V}
No matching branch is found when evaluating the of-
section of a try expression. The value V did not match.

undef
The function cannot be found when evaluating a
function call.

{badfun,F} There is something wrong with a fun F.

{badarity,F}
A fun is applied to the wrong number of arguments. F
describes the fun and the arguments.

timeout_value
The timeout value in a receive..after expression
is evaluated to something else than an integer or
infinity.

noproc Trying to link to a non-existing process.

{nocatch,V}
Trying to evaluate a throw outside a catch. V is the
thrown term.

system_limit
A system limit has been reached. See Efficiency Guide
for information about system limits.

Table 11.2:   Exit Reasons.

Stack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{Module,Name,Arity} with the most recent function call first. The most recent function call tuple may in some
cases be {Module,Name,[Arg]}.

5.12  Processes
5.12.1  Processes
Erlang is designed for massive concurrency. Erlang processes are light-weight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate and the scheduling overhead is low.



5.12  Processes

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12.2  Process Creation
A process is created by calling spawn:

spawn(Module, Name, Args) -> pid()
  Module = Name = atom()
  Args = [Arg1,...,ArgN]
    ArgI = term()

spawn creates a new process and returns the pid.

The new process will start executing in Module:Name(Arg1,...,ArgN) where the arguments is the elements
of the (possible empty) Args argument list.

There exist a number of other spawn BIFs, for example spawn/4 for spawning a process at another node.

5.12.3  Registered Processes
Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

register(Name, Pid)
Associates the name Name, an atom, with the process
Pid.

registered()
Returns a list of names which have been registered
usingregister/2.

whereis(Name)
Returns the pid registered under Name,
orundefinedif the name is not registered.

Table 12.1:   Name Registration BIFs.

5.12.4  Process Termination
When a process terminates, it always terminates with an exit reason. The reason may be any term.

A process is said to terminate normally, if the exit reason is the atom normal. A process with no more code to execute
terminates normally.

A process terminates with exit reason {Reason,Stack} when a run-time error occurs. See Error and Error
Handling.

A process can terminate itself by calling one of the BIFs exit(Reason), erlang:error(Reason),
erlang:error(Reason, Args), erlang:fault(Reason) or erlang:fault(Reason, Args). The
process then terminates with reason Reason for exit/1 or {Reason,Stack} for the others.

A process may also be terminated if it receives an exit signal with another exit reason than normal, see Error Handling
below.

5.12.5  Message Sending
Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.



5.12  Processes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

5.12.6  Links
Two processes can be linked to each other. A link between two processes Pid1 and Pid2 is created by Pid1 calling
the BIF link(Pid2) (or vice versa). There also exist a number of spawn_link BIFs, which spawn and link to
a process in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated calls to link(Pid) have
no effect.

A link can be removed by calling the BIF unlink(Pid).

Links are used to monitor the behaviour of other processes, see Error Handling below.

5.12.7  Error Handling
Erlang has a built-in feature for error handling between processes. Terminating processes will emit exit signals to
all linked processes, which may terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example restarting them
if they terminate abnormally.

Refer to OTP Design Principles for more information about OTP supervision trees, which uses this feature.

Emitting Exit Signals
When a process terminates, it will terminate with an exit reason as explained in Process Termination above. This exit
reason is emitted in an exit signal to all linked processes.

A process can also call the function exit(Pid,Reason). This will result in an exit signal with exit reason Reason
being emitted to Pid, but does not affect the calling process.

Receiving Exit Signals
The default behaviour when a process receives an exit signal with an exit reason other than normal, is to terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signal with reason normal
is ignored.

A process can be set to trap exit signals by calling:

process_flag(trap_exit, true)

When a process is trapping exits, it will not terminate when an exit signal is received. Instead, the signal is transformed
into a message {'EXIT',FromPid,Reason} which is put into the mailbox of the process just like a regular
message.

An exception to the above is if the exit reason is kill, that is if exit(Pid,kill) has been called. This will
unconditionally terminate the process, regardless of if it is trapping exit signals or not.

5.12.8  Monitors
An alternative to links are monitors. A process Pid1 can create a monitor for Pid2 by calling the BIF
erlang:monitor(process, Pid2). The function returns a reference Ref.

If Pid2 terminates with exit reason Reason, a 'DOWN' message is sent to Pid1:

{'DOWN', Ref, process, Pid2, Reason}

If Pid2 does not exist, the 'DOWN' message is sent immediately with Reason set to noproc.



5.13  Distributed Erlang

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Monitors are unidirectional. Repeated calls to erlang:monitor(process, Pid) will create several,
independent monitors and each one will send a 'DOWN' message when Pid terminates.

A monitor can be removed by calling erlang:demonitor(Ref).

It is possible to create monitors for processes with registered names, also at other nodes.

5.12.9  Process Dictionary
Each process has its own process dictionary, accessed by calling the following BIFs:

put(Key, Value)
get(Key)
get()
get_keys(Value)
erase(Key)
erase()

5.13  Distributed Erlang
5.13.1  Distributed Erlang System
A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, are local to each node. This means the node
must be specified as well when sending messages etc. using registered names.

The distribution mechanism is implemented using TCP/IP sockets. How to implement an alternative carrier is described
in ERTS User's Guide.

5.13.2  Nodes
A node is an executing Erlang runtime system which has been given a name, using the command line flag -name
(long names) or -sname (short names).

The format of the node name is an atom name@host where name is the name given by the user and host is the
full host name if long names are used, or the first part of the host name if short names are used. node() returns the
name of the node. Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se'

% erl -sname dilbert
(dilbert@uab)1> node().
dilbert@uab

Note:
A node with a long node name cannot communicate with a node with a short node name.



5.13  Distributed Erlang

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

5.13.3  Node Connections
The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used, for
example if spawn(Node,M,F,A) or net_adm:ping(Node) is called, a connection attempt to that node will
be made.

Connections are by default transitive. If a node A connects to node B, and node B has a connection to node C, then node
A will also try to connect to node C. This feature can be turned off by using the command line flag -connect_all
false, see erl(1).

If a node goes down, all connections to that node are removed. Calling erlang:disconnect_node(Node) will
force disconnection of a node.

The list of (visible) nodes currently connected to is returned by nodes().

5.13.4  epmd
The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. See epmd(1).

5.13.5  Hidden Nodes
In a distributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example could be some kind of O&M functionality used to inspect the status of a system without disturbing it.
For this purpose, a hidden node may be used.

A hidden node is a node started with the command line flag -hidden. Connections between hidden nodes and other
nodes are not transitive, they must be set up explicitly. Also, hidden nodes does not show up in the list of nodes returned
by nodes(). Instead, nodes(hidden) or nodes(connected) must be used. This means, for example, that
the hidden node will not be added to the set of nodes that global is keeping track of.

This feature was added in Erlang 5.0/OTP R7.

5.13.6  C Nodes
A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. Refer to the documentation for Erl_Interface and Interoperability Tutorial for
more information about C nodes.

5.13.7  Security
Authentication determines which nodes are allowed to communicate with each other. In a network of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a nodes tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocookie. The first action of the Erlang network authentication server (auth) is then to read a file named
$HOME/.erlang.cookie. If the file does not exist, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its contents are a random string. An atom Cookie is created from the contents
of the file and the cookie of the local node is set to this using erlang:set_cookie(node(), Cookie). This
also makes the local node assume that all other nodes have the same cookie Cookie.

Thus, groups of users with identical cookie files get Erlang nodes which can communicate freely and without
interference from the magic cookie system. Users who want run nodes on separate file systems must make certain that
their cookie files are identical on the different file systems.



5.13  Distributed Erlang

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

For a node Node1 with magic cookie Cookie to be able to connect to, or accept a connection from, another node
Node2 with a different cookie DiffCookie, the function erlang:set_cookie(Node2, DiffCookie)
must first be called at Node1. Distributed systems with multiple user IDs can be handled in this way.

The default when a connection is established between two nodes, is to immediately connect all other visible nodes as
well. This way, there is always a fully connected network. If there are nodes with different cookies, this method might
be inappropriate and the command line flag -connect_all false must be set, see erl(1).

The magic cookie of the local node is retrieved by calling erlang:get_cookie().

5.13.8  Distribution BIFs
Some useful BIFs for distributed programming, see erlang(3) for more information:

erlang:disconnect_node(Node) Forces the disconnection of a node.

erlang:get_cookie() Returns the magic cookie of the current node.

is_alive()
Returns true if the runtime system is a node and can
connect to other nodes, false otherwise.

monitor_node(Node, true|false)
Monitor the status of Node. A message{nodedown,
Node} is received if the connection to it is lost.

node()
Returns the name of the current node. Allowed in
guards.

node(Arg)
Returns the node where Arg, a pid, reference, or port, is
located.

nodes()
Returns a list of all visible nodes this node is connected
to.

nodes(Arg)
Depending on Arg, this function can return a list
not only of visible nodes, but also hidden nodes and
previously known nodes, etc.

erlang:set_cookie(Node, Cookie)
Sets the magic cookie used when connecting to Node.
If Node is the current node, Cookie will be used when
connecting to all new nodes.

spawn[_link|_opt](Node, Fun) Creates a process at a remote node.

spawn[_link|opt](Node, Module,
FunctionName, Args)

Creates a process at a remote node.

Table 13.1:   Distribution BIFs.

5.13.9  Distribution Command Line Flags
Examples of command line flags used for distributed programming, see erl(1) for more information:

-connect_all false Only explicit connection set-ups will be used.



5.14  Compilation and Code Loading

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

-hidden Makes a node into a hidden node.

-name Name
Makes a runtime system into a node, using long node
names.

-setcookie Cookie
Same as calling erlang:set_cookie(node(),
Cookie).

-sname Name
Makes a runtime system into a node, using short node
names.

Table 13.2:   Distribution Command Line Flags.

5.13.10  Distribution Modules
Examples of modules useful for distributed programming:

In Kernel:

global A global name registration facility.

global_group Grouping nodes to global name registration groups.

net_adm Various Erlang net administration routines.

net_kernel Erlang networking kernel.

Table 13.3:   Kernel Modules Useful For Distribution.

In STDLIB:

slave Start and control of slave nodes.

Table 13.4:   STDLIB Modules Useful For Distribution.

5.14  Compilation and Code Loading
How code is compiled and loaded is not a language issue, but is system dependent. This chapter describes compilation
and code loading in Erlang/OTP with pointers to relevant parts of the documentation.

5.14.1  Compilation
Erlang programs must be compiled to object code. The compiler can generate a new file which contains the object
code. The current abstract machine which runs the object code is called BEAM, therefore the object files get the suffix
.beam. The compiler can also generate a binary which can be loaded directly.

The compiler is located in the Kernel module compile, see compile(3).

compile:file(Module)
compile:file(Module, Options)



5.14  Compilation and Code Loading

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The Erlang shell understands the command c(Module) which both compiles and loads Module.

There is also a module make which provides a set of functions similar to the UNIX type Make functions, see make(3).

The compiler can also be accessed from the OS prompt, see erl(1).

% erl -compile Module1...ModuleN
% erl -make

The erlc program provides an even better way to compile modules from the shell, see erlc(1). It understands a
number of flags that can be used to define macros, add search paths for include files, and more.

% erlc <flags> File1.erl...FileN.erl

5.14.2  Code Loading
The object code must be loaded into the Erlang runtime system. This is handled by the code server, see code(3).

The code server loads code according to a code loading strategy which is either interactive (default) or embedded. In
interactive mode, code are searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. This is described in System Principles.

5.14.3  Code Replacement
Erlang supports change of code in a running system. Code replacement is done on module level.

The code of a module can exist in two variants in a system: current and old. When a module is loaded into the system
for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes 'current'.

Both old and current code is valid, and may be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code may still be evaluated because of processes lingering in the old code.

If a third instance of the module is loaded, the code server will remove (purge) the old code and any processes lingering
in it will be terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call. Example:

-module(m).
-export([loop/0]).

loop() ->
    receive
        code_switch ->
            m:loop();
        Msg ->
            ...
            loop()
    end.

To make the process change code, send the message code_switch to it. The process then will make a fully qualified
call to m:loop() and change to current code. Note that m:loop/0 must be exported.

For code replacement of funs to work, the syntax fun Module:FunctionName/Arity should be used.



5.15  Ports and Port Drivers

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

5.14.4  Running a function when a module is loaded

Warning:
The on_load feature should be considered experimental as there are a number of known weak points in current
semantics which therefore might also change in future releases:

• Doing external call in on_load to the module itself leads to deadlock.

• At module upgrade, other processes calling the module get suspended waiting for on_load to finish. This can
be very bad for applications with demands on realtime characteristics.

• At module upgrade, no rollback is done if the on_load function fails. The system will be left in a bad limbo
state without any working and reachable instance of the module.

The problems with module upgrade described above could be fixed in future releases by changing the behaviour
to not make the module reachable until after the on_load function has successfully returned.

The -on_load() directive names a function that should be run automatically when a module a loaded. Its syntax is:

-on_load(Name/0).

It is not necessary to export the function. It will be called in a freshly spawned process (which will be terminated as
soon as the function returns). The function must return ok if the module is to be remained loaded and become callable,
or any other value if the module is to be unloaded. Generating an exception will also cause the module to be unloaded.
If the return value is not an atom, a warning error report will be sent to the error logger.

A process that calls any function in a module whose on_load function has not yet returned will be suspended until
the on_load function has returned.

In embedded mode, all modules will be loaded first and then will all on_load functions be called. The system will be
terminated unless all of the on_load functions return ok

Example:

-module(m).
-on_load(load_my_nifs/0).

load_my_nifs() ->
    NifPath = ...,    %Set up the path to the NIF library.
    Info = ...,       %Initialize the Info term
    erlang:load_nif(NifPath, Info).

If the call to erlang:load_nif/2 fails, the module will be unloaded and there will be warning report sent to the
error loader.

5.15  Ports and Port Drivers
Examples of how to use ports and port drivers can be found in Interoperability Tutorial. The BIFs mentioned are as
usual documented in erlang(3).



5.15  Ports and Port Drivers

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15.1  Ports
Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process which creates a port is said to be the port owner, or the connected process of the port. All
communication to and from the port should go via the port owner. If the port owner terminates, so will the port (and
the external program, if it is written correctly).

The external program resides in another OS process. By default, it should read from standard input (file descriptor 0)
and write to standard output (file descriptor 1). The external program should terminate when the port is closed.

5.15.2  Port Drivers
It is also possible to write a driver in C according to certain principles and dynamically link it to the Erlang runtime
system. The linked-in driver looks like a port from the Erlang programmer's point of view and is called a port driver.

Warning:
An erroneous port driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Port drivers are documented in erl_driver(4), driver_entry(1) and erl_ddll(3).

5.15.3  Port BIFs
To create a port:

open_port(PortName, PortSettings

Returns a port identifier Portas the result of opening a
new Erlang port. Messages can be sent to and received
from a port identifier, just like a pid. Port identifiers
can also be linked to or registered under a name using
link/1and register/2.

Table 15.1:   Port Creation BIF.

PortName is usually a tuple {spawn,Command}, where the string Command is the name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Command is found. If
found, that driver is started.

PortSettings is a list of settings (options) for the port. The list typically contains at least a tuple {packet,N}
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Valid values for N are 1, 2 or 4. If binaries should be used instead of lists of bytes, the option binary must be included.

The port owner Pid can communicate with the port Port by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of OTP-R16 messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an
asynchronous operation, so this should not be an issue for an Erlang program communicating with ports, unless false
assumptions about ports has been made.

Below, Data must be an I/O list. An I/O list is a binary or a (possibly deep) list of binaries or integers in the range
0..255.



5.15  Ports and Port Drivers

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

{Pid,{command,Data}} Sends Datato the port.

{Pid,close}
Closes the port. Unless the port is already closed, the
port replies with {Port,closed}when all buffers
have been flushed and the port really closes.

{Pid,{connect,NewPid}}

Sets the port owner of Portto NewPid. Unless
the port is already closed, the port replies
with{Port,connected}to the old port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 15.2:   Messages Sent To a Port.

{Port,{data,Data}} Datais received from the external program.

{Port,closed} Reply to Port ! {Pid,close}.

{Port,connected} Reply to Port ! {Pid,{connect,NewPid}}

{'EXIT',Port,Reason} If the port has terminated for some reason.

Table 15.3:   Messages Received From a Port.

Instead of sending and receiving messages, there are also a number of BIFs that can be used.

port_command(Port,Data) Sends Datato the port.

port_close(Port) Closes the port.

port_connect(Port,NewPid)
Sets the port owner of Portto NewPid. The old port
owner Pidstays linked to the port and have to call
unlink(Port)if this is not desired.

erlang:port_info(Port,Item) Returns information as specified by Item.

erlang:ports() Returns a list of all ports on the current node.

Table 15.4:   Port BIFs.

There are some additional BIFs that only apply to port drivers: port_control/3 and erlang:port_call/3.



6.1  Records

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6    Programming Examples

This chapter contains examples on using records, funs, list comprehensions and the bit syntax.

6.1  Records
6.1.1  Records vs Tuples
The main advantage of using records instead of tuples is that fields in a record are accessed by name, whereas fields
in a tuple are accessed by position. To illustrate these differences, suppose that we want to represent a person with
the tuple {Name, Address, Phone}.

We must remember that the Name field is the first element of the tuple, the Address field is the second element, and
so on, in order to write functions which manipulate this data. For example, to extract data from a variable P which
contains such a tuple we might write the following code and then use pattern matching to extract the relevant fields.

Name = element(1, P),
Address = element(2, P),
...

Code like this is difficult to read and understand and errors occur if we get the numbering of the elements in the
tuple wrong. If we change the data representation by re-ordering the fields, or by adding or removing a field, then all
references to the person tuple, wherever they occur, must be checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use a record instead of a tuple to store the data.
If we write a record definition of the type shown below, we can then refer to the fields of the record by name.

-record(person, {name, phone, address}).

For example, if P is now a variable whose value is a person record, we can code as follows in order to access the
name and address fields of the records.

Name = P#person.name,
Address = P#person.address,
...

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}



6.1  Records

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

6.1.2  Defining a Record
This definition of a person will be used in many of the examples which follow. It contains three fields, name, phone
and address. The default values for name and phone is "" and [], respectively. The default value for address is
the atom undefined, since no default value is supplied for this field:

-record(person, {name = "", phone = [], address}).

We have to define the record in the shell in order to be able use the record syntax in the examples:

> rd(person, {name = "", phone = [], address}).
person

This is due to the fact that record definitions are available at compile time only, not at runtime. See shell(3) for
details on records in the shell.

6.1.3  Creating a Record
A new person record is created as follows:

> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

Since the address field was omitted, its default value is used.

There is a new feature introduced in Erlang 5.1/OTP R8B, with which you can set a value to all fields in a record,
overriding the defaults in the record specification. The special field _, means "all fields not explicitly specified".

> #person{name = "Jakob", _ = '_'}.
#person{name = "Jakob",phone = '_',address = '_'}

It is primarily intended to be used in ets:match/2 and mnesia:match_object/3, to set record fields to the
atom '_'. (This is a wildcard in ets:match/2.)

6.1.4  Accessing a Record Field

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.
"Joe"

6.1.5  Updating a Record

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}
> P2 = P1#person{name="Robert"}.



6.1  Records

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

#person{name = "Robert",phone = [1,2,3],address = "A street"}

6.1.6  Type Testing
The following example shows that the guard succeeds if P is record of type person.

foo(P) when is_record(P, person) -> a_person;
foo(_) -> not_a_person.

6.1.7  Pattern Matching
Matching can be used in combination with records as shown in the following example:

> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"

The following function takes a list of person records and searches for the phone number of a person with a particular
name:

find_phone([#person{name=Name, phone=Phone} | _], Name) ->
    {found,  Phone};
find_phone([_| T], Name) ->
    find_phone(T, Name);
find_phone([], Name) ->
    not_found.

The fields referred to in the pattern can be given in any order.

6.1.8  Nested Records
The value of a field in a record might be an instance of a record. Retrieval of nested data can be done stepwise, or in
a single step, as shown in the following example:

-record(name, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

demo() ->
  P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
  First = (P#person.name)#name.first.

In this example, demo() evaluates to "Robert".

6.1.9  Example

%% File: person.hrl

%%-----------------------------------------------------------



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

%% Data Type: person
%% where:
%%    name:  A string (default is undefined).
%%    age:   An integer (default is undefined).
%%    phone: A list of integers (default is []).
%%    dict:  A dictionary containing various information 
%%           about the person. 
%%           A {Key, Value} list (default is the empty list).
%%------------------------------------------------------------
-record(person, {name, age, phone = [], dict = []}).

-module(person).
-include("person.hrl").
-compile(export_all). % For test purposes only.

%% This creates an instance of a person.
%%   Note: The phone number is not supplied so the
%%         default value [] will be used.

make_hacker_without_phone(Name, Age) ->
   #person{name = Name, age = Age, 
           dict = [{computer_knowledge, excellent}, 
                   {drinks, coke}]}.

%% This demonstrates matching in arguments

print(#person{name = Name, age = Age,
              phone = Phone, dict = Dict}) ->
  io:format("Name: ~s, Age: ~w, Phone: ~w ~n" 
            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) -> 
   P#person{age = P#person.age + 1}.

register_two_hackers() ->
   Hacker1 = make_hacker_without_phone("Joe", 29),
   OldHacker = birthday(Hacker1),
   % The central_register_server should have 
   % an interface function for this.
   central_register_server ! {register_person, Hacker1},
   central_register_server ! {register_person, 
             OldHacker#person{name = "Robert", 
                              phone = [0,8,3,2,4,5,3,1]}}.

6.2  Funs
6.2.1  Example 1 - map
If we want to double every element in a list, we could write a function named double:

double([H|T]) -> [2*H|double(T)];
double([])    -> [].

This function obviously doubles the argument entered as input as follows:



6.2  Funs

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

> double([1,2,3,4]).
[2,4,6,8]

We now add the function add_one, which adds one to every element in a list:

add_one([H|T]) -> [H+1|add_one(T)];
add_one([])    -> [].

These functions, double and add_one, have a very similar structure. We can exploit this fact and write a function
map which expresses this similarity:

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, [])    -> [].

We can now express the functions double and add_one in terms of map as follows:

double(L)  -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) is a function which takes a function F and a list L as arguments and returns the new list which is
obtained by applying F to each of the elements in L.

The process of abstracting out the common features of a number of different programs is called procedural abstraction.
Procedural abstraction can be used in order to write several different functions which have a similar structure, but
differ only in some minor detail. This is done as follows:

• write one function which represents the common features of these functions

• parameterize the difference in terms of functions which are passed as arguments to the common function.

6.2.2  Example 2 - foreach
This example illustrates procedural abstraction. Initially, we show the following two examples written as conventional
functions:

• all elements of a list are printed onto a stream

• a message is broadcast to a list of processes.

print_list(Stream, [H|T]) ->
    io:format(Stream, "~p~n", [H]),
    print_list(Stream, T);
print_list(Stream, []) ->
    true.

broadcast(Msg, [Pid|Pids]) ->
    Pid ! Msg,
    broadcast(Msg, Pids);
broadcast(_, []) ->



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

    true.

Both these functions have a very similar structure. They both iterate over a list doing something to each element in the
list. The "something" has to be carried round as an extra argument to the function which does this.

The function foreach expresses this similarity:

foreach(F, [H|T]) ->
    F(H),
    foreach(F, T);
foreach(F, []) ->
    ok.

Using foreach, print_list becomes:

foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

broadcast becomes:

foreach(fun(Pid) -> Pid ! M end, L)

foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) calls Fun(X) for each element X
in L and the processing occurs in the order in which the elements were defined in L. map does not define the order
in which its elements are processed.

6.2.3  The Syntax of Funs
Funs are written with the syntax:

F = fun (Arg1, Arg2, ... ArgN) ->
        ...
    end

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument, we can use
the following syntax:

F = fun FunctionName/Arity

With this form of function reference, the function which is referred to does not need to be exported from the module.

We can also refer to a function defined in a different module with the following syntax:

F = {Module, FunctionName}

In this case, the function must be exported from the module in question.



6.2  Funs

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The follow program illustrates the different ways of creating funs:

-module(fun_test).
-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).

t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({?MODULE, double}, [1,2,3,4,5]).

double(X) -> X * 2.

We can evaluate the fun F with the syntax:

F(Arg1, Arg2, ..., Argn)

To check whether a term is a fun, use the test is_function/1 in a guard. Example:

f(F, Args) when is_function(F) ->
   apply(F, Args);
f(N, _) when is_integer(N) ->
   N.

Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve information about a fun, and the BIF
erlang:fun_to_list/1 returns a textual representation of a fun. The check_process_code/2 BIF returns true if the process
contains funs that depend on the old version of a module.

Note:
In OTP R5 and earlier releases, funs were represented using tuples.

6.2.4  Variable Bindings Within a Fun
The scope rules for variables which occur in funs are as follows:

• All variables which occur in the head of a fun are assumed to be "fresh" variables.

• Variables which are defined before the fun, and which occur in function calls or guard tests within the fun, have
the values they had outside the fun.

• No variables may be exported from a fun.

The following examples illustrate these rules:

print_list(File, List) ->
    {ok, Stream} = file:open(File, write),
    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    file:close(Stream).



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

In the above example, the variable X which is defined in the head of the fun is a new variable. The value of the variable
Stream which is used within within the fun gets its value from the file:open line.

Since any variable which occurs in the head of a fun is considered a new variable it would be equally valid to write:

print_list(File, List) ->
    {ok, Stream} = file:open(File, write),
    foreach(fun(File) -> 
                io:format(Stream,"~p~n",[File]) 
            end, List),
    file:close(Stream).

In this example, File is used as the new variable instead of X. This is rather silly since code in the body of the fun
cannot refer to the variable File which is defined outside the fun. Compiling this example will yield the diagnostic:

./FileName.erl:Line: Warning: variable 'File' 
      shadowed in 'lambda head'

This reminds us that the variable File which is defined inside the fun collides with the variable File which is
defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching operations have to be
moved into guard expressions and cannot be written in the head of the fun. For example, we might write the following
code if we intend the first clause of F to be evaluated when the value of its argument is Y:

f(...) ->
    Y = ...
    map(fun(X) when X == Y ->
             ;
           (_) ->
             ...
        end, ...)
    ...

instead of

f(...) ->
    Y = ...
    map(fun(Y) ->
             ;
           (_) ->
             ...
        end, ...)
    ...

6.2.5  Funs and the Module Lists
The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
from the module lists.



6.2  Funs

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

map

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, [])    -> [].

map takes a function of one argument and a list of terms. It returns the list obtained by applying the function to every
argument in the list.

> Double = fun(X) -> 2 * X end.
#Fun<erl_eval.6.72228031>
> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When a new fun is defined in the shell, the value of the Fun is printed as Fun#<erl_eval>.

any

any(Pred, [H|T]) ->
    case Pred(H) of
        true  ->  true;
        false ->  any(Pred, T)
    end;
any(Pred, []) ->
    false.

any takes a predicate P of one argument and a list of terms. A predicate is a function which returns true or false.
any is true if there is a term X in the list such that P(X) is true.

We define a predicate Big(X) which is true if its argument is greater that 10.

> Big =  fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl_eval.6.72228031>
> lists:any(Big, [1,2,3,4]).
false
> lists:any(Big, [1,2,3,12,5]).
true

all

all(Pred, [H|T]) ->
    case Pred(H) of
        true  ->  all(Pred, T);
        false ->  false
    end;
all(Pred, []) ->
    true.

all has the same arguments as any. It is true if the predicate applied to all elements in the list is true.



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

> lists:all(Big, [1,2,3,4,12,6]).   
false
> lists:all(Big, [12,13,14,15]).       
true

foreach

foreach(F, [H|T]) ->
    F(H),
    foreach(F, T);
foreach(F, []) ->
    ok.

foreach takes a function of one argument and a list of terms. The function is applied to each argument in the list.
foreach returns ok. It is used for its side-effect only.

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]). 
1
2
3
4
ok

foldl

foldl(F, Accu, [Hd|Tail]) ->
    foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

foldl takes a function of two arguments, an accumulator and a list. The function is called with two arguments. The
first argument is the successive elements in the list, the second argument is the accumulator. The function must return
a new accumulator which is used the next time the function is called.

If we have a list of lists L = ["I","like","Erlang"], then we can sum the lengths of all the strings in L
as follows:

> L = ["I","like","Erlang"].
["I","like","Erlang"]
10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).                    
11

foldl works like a while loop in an imperative language:

L =  ["I","like","Erlang"],
Sum = 0,
while( L != []){
    Sum += length(head(L)),
    L = tail(L)



6.2  Funs

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

end

mapfoldl

mapfoldl(F, Accu0, [Hd|Tail]) ->
    {R,Accu1} = F(Hd, Accu0),
    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    {[R|Rs], Accu2};
mapfoldl(F, Accu, []) -> {[], Accu}.

mapfoldl simultaneously maps and folds over a list. The following example shows how to change all letters in L
to upper case and count them.

First upcase:

> Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
(X) -> X 
end.
#Fun<erl_eval.6.72228031>
> Upcase_word = 
fun(X) -> 
lists:map(Upcase, X) 
end.
#Fun<erl_eval.6.72228031>
> Upcase_word("Erlang").
"ERLANG"
> lists:map(Upcase_word, L).
["I","LIKE","ERLANG"]

Now we can do the fold and the map at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
{Upcase_word(Word), Sum + length(Word)}
end, 0, L).
{["I","LIKE","ERLANG"],11}

filter

filter(F, [H|T]) ->
    case F(H) of
        true  -> [H|filter(F, T)];
        false -> filter(F, T)
    end;
filter(F, []) -> [].

filter takes a predicate of one argument and a list and returns all element in the list which satisfy the predicate.

> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

When we combine maps and filters we can write very succinct code. For example, suppose we want to define a set
difference function. We want to define diff(L1, L2) to be the difference between the lists L1 and L2. This is the
list of all elements in L1 which are not contained in L2. This code can be written as follows:

diff(L1, L2) -> 
    filter(fun(X) -> not member(X, L2) end, L1).

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

takewhile

takewhile(Pred, [H|T]) ->
    case Pred(H) of
        true  -> [H|takewhile(Pred, T)];
        false -> []
    end;
takewhile(Pred, []) ->
    [].

takewhile(P, L) takes elements X from a list L as long as the predicate P(X) is true.

> lists:takewhile(Big, [200,500,45,5,3,45,6]).  
[200,500,45]

dropwhile

dropwhile(Pred, [H|T]) ->
    case Pred(H) of
        true  -> dropwhile(Pred, T);
        false -> [H|T]
    end;
dropwhile(Pred, []) ->
    [].

dropwhile is the complement of takewhile.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitwith



6.2  Funs

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

splitwith(Pred, L) ->
    splitwith(Pred, L, []).

splitwith(Pred, [H|T], L) ->
    case Pred(H) of 
        true  -> splitwith(Pred, T, [H|L]);
        false -> {reverse(L), [H|T]}
    end;
splitwith(Pred, [], L) ->
    {reverse(L), []}.

splitwith(P, L) splits the list L into the two sub-lists {L1, L2}, where L = takewhile(P, L) and
L2 = dropwhile(P, L).

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

6.2.6  Funs Which Return Funs
So far, this section has only described functions which take funs as arguments. It is also possible to write more powerful
functions which themselves return funs. The following examples illustrate these type of functions.

Simple Higher Order Functions
Adder(X) is a function which, given X, returns a new function G such that G(K) returns K + X.

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl_eval.6.72228031>
> Add6 = Adder(6).
#Fun<erl_eval.6.72228031>
> Add6(10).
16

Infinite Lists
The idea is to write something like:

-module(lazy).
-export([ints_from/1]).
ints_from(N) ->
    fun() ->
            [N|ints_from(N+1)]
    end.

Then we can proceed as follows:

> XX = lazy:ints_from(1).
#Fun<lazy.0.29874839>
> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).
1
> Y = tl(XX()).
#Fun<lazy.0.29874839>



6.2  Funs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

> hd(Y()).
2

etc. - this is an example of "lazy embedding".

Parsing
The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toks1} | fail

Toks is the list of tokens to be parsed. A successful parse returns {ok, Tree, Toks1}, where Tree is a parse
tree and Toks1 is a tail of Tree which contains symbols encountered after the structure which was correctly parsed.
Otherwise fail is returned.

The example which follows illustrates a simple, functional parser which parses the grammar:

(a | b) & (c | d)

The following code defines a function pconst(X) in the module funparse, which returns a fun which parses a
list of tokens.

pconst(X) ->
    fun (T) ->
       case T of
           [X|T1] -> {ok, {const, X}, T1};
           _      -> fail
       end
    end.

This function can be used as follows:

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).
{ok,{const,a},[b,c]}
> P1([x,y,z]).     
fail

Next, we define the two higher order functions pand and por which combine primitive parsers to produce more
complex parsers. Firstly pand:

pand(P1, P2) ->
    fun (T) ->
        case P1(T) of
            {ok, R1, T1} ->
                case P2(T1) of
                    {ok, R2, T2} ->
                        {ok, {'and', R1, R2}};



6.2  Funs

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

                    fail ->
                        fail
                end;
            fail ->
                fail
        end
    end.

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens which satisfy G2.

por(P1, P2) returns a parser for the language described by the grammar G1 or G2.

por(P1, P2) ->
    fun (T) ->
        case P1(T) of
            {ok, R, T1} -> 
                {ok, {'or',1,R}, T1};
            fail -> 
                case P2(T) of
                    {ok, R1, T1} ->
                        {ok, {'or',2,R1}, T1};
                    fail ->
                        fail
                end
        end
    end.

The original problem was to parse the grammar (a | b) & (c | d). The following code addresses this problem:

grammar() ->
    pand(
         por(pconst(a), pconst(b)),
         por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
    (grammar())(List).

We can test this parser as follows:

> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]). 
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).   
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]). 
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).   



6.3  List Comprehensions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

fail

6.3  List Comprehensions
6.3.1  Simple Examples
We start with a simple example:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
[a,4,b,5,6]

This should be read as follows:

The list of X such that X is taken from the list [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a filter.

An additional filter can be added in order to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

6.3.2  Quick Sort
The well known quick sort routine can be written as follows:

sort([Pivot|T]) ->
    sort([ X || X <- T, X < Pivot]) ++
    [Pivot] ++
    sort([ X || X <- T, X >= Pivot]);
sort([]) -> [].

The expression [X || X <- T, X < Pivot] is the list of all elements in T, which are less than Pivot.

[X || X <- T, X >= Pivot] is the list of all elements in T, which are greater or equal to Pivot.

To sort a list, we isolate the first element in the list and split the list into two sub-lists. The first sub-list contains all
elements which are smaller than the first element in the list, the second contains all elements which are greater than
or equal to the first element in the list. We then sort the sub-lists and combine the results.

6.3.3  Permutations
The following example generates all permutations of the elements in a list:

perms([]) -> [[]];



6.3  List Comprehensions

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

We take take H from L in all possible ways. The result is the set of all lists [H|T], where T is the set of all possible
permutations of L with H removed.

> perms([b,u,g]).
[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

6.3.4  Pythagorean Triplets
Pythagorean triplets are sets of integers {A,B,C} such that A**2 + B**2 = C**2.

The function pyth(N) generates a list of all integers {A,B,C} such that A**2 + B**2 = C**2 and where the
sum of the sides is equal to or less than N.

pyth(N) ->
    [ {A,B,C} ||
        A <- lists:seq(1,N),
        B <- lists:seq(1,N),
        C <- lists:seq(1,N),
        A+B+C =< N,
        A*A+B*B == C*C 
    ].

> pyth(3).
[].
> pyth(11).
[].
> pyth(12).
[{3,4,5},{4,3,5}]
> pyth(50).
[{3,4,5},
 {4,3,5},
 {5,12,13},
 {6,8,10},
 {8,6,10},
 {8,15,17},
 {9,12,15},
 {12,5,13},
 {12,9,15},
 {12,16,20},
 {15,8,17},
 {16,12,20}]

The following code reduces the search space and is more efficient:

pyth1(N) ->
   [{A,B,C} ||
       A <- lists:seq(1,N-2),
       B <- lists:seq(A+1,N-1),
       C <- lists:seq(B+1,N),
       A+B+C =< N,
       A*A+B*B == C*C ].



6.3  List Comprehensions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

6.3.5  Simplifications with List Comprehensions
As an example, list comprehensions can be used to simplify some of the functions in lists.erl:

append(L)   ->  [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

6.3.6  Variable Bindings in List Comprehensions
The scope rules for variables which occur in list comprehensions are as follows:

• all variables which occur in a generator pattern are assumed to be "fresh" variables

• any variables which are defined before the list comprehension and which are used in filters have the values they
had before the list comprehension

• no variables may be exported from a list comprehension.

As an example of these rules, suppose we want to write the function select, which selects certain elements from a
list of tuples. We might write select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting
all tuples from L where the first item is X.

Compiling this yields the following diagnostic:

./FileName.erl:Line: Warning: variable 'X' shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X which occurs in
the function head.

Evaluating select yields the following result:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
[1,2,3,7]

This result is not what we wanted. To achieve the desired effect we must write select as follows:

select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter. This now works as expected:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
[2,7]

One consequence of the rules for importing variables into a list comprehensions is that certain pattern matching
operations have to be moved into the filters and cannot be written directly in the generators. To illustrate this, do not
write as follows:

f(...) ->
    Y = ...



6.4  Bit Syntax

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    [ Expression || PatternInvolving Y  <- Expr, ...]
    ...

Instead, write as follows:

f(...) ->
    Y = ...
    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
    ...

6.4  Bit Syntax
6.4.1  Introduction
In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

      <<E1, E2, ... En>>

A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to be able to, from a high level, construct a binary,

Bin = <<E1, E2, ... En>>

in which case all elements must be bound, or to match a binary,

<<E1, E2, ... En>> = Bin 

where Bin is bound, and where the elements are bound or unbound, as in any match.

In R12B, a Bin need not consist of a whole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits doesn't need to be divisible by 8. If the number
of bits is divisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment etc.

The following examples illustrate how binaries are constructed or matched, and how elements and tails are specified.

Examples
Example 1: A binary can be constructed from a set of constants or a string literal:

Bin11 = <<1, 17, 42>>,
Bin12 = <<"abc">>

yields binaries of size 3; binary_to_list(Bin11) evaluates to [1, 17, 42], and
binary_to_list(Bin12) evaluates to [97, 98, 99].



6.4  Bit Syntax

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A = 1, B = 17, C = 42,
Bin2 = <<A, B, C:16>>

yields a binary of size 4, and binary_to_list(Bin2) evaluates to [1, 17, 00, 42] too. Here we used a
size expression for the variable C in order to specify a 16-bits segment of Bin2.

Example 3: A Bin can also be used for matching: if D, E, and F are unbound variables, and Bin2 is bound as in the
former example,

<<D:16, E, F/binary>> = Bin2

yields D = 273, E = 00, and F binds to a binary of size 1: binary_to_list(F) = [42].

Example 4: The following is a more elaborate example of matching, where Dgram is bound to the consecutive bytes
of an IP datagram of IP protocol version 4, and where we want to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = byte_size(Dgram),
case Dgram of 
    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16, 
      ID:16, Flgs:3, FragOff:13,
      TTL:8, Proto:8, HdrChkSum:16,
      SrcIP:32,
      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    ...
end.

Here the segment corresponding to the Opts variable has a type modifier specifying that Opts should bind to a binary.
All other variables have the default type equal to unsigned integer.

An IP datagram header is of variable length, and its length - measured in the number of 32-bit words - is given in the
segment corresponding to HLen, the minimum value of which is 5. It is the segment corresponding to Opts that is
variable: if HLen is equal to 5, Opts will be an empty binary.

The tail variables RestDgram and Data bind to binaries, as all tail variables do. Both may bind to empty binaries.

If the first 4-bits segment of Dgram is not equal to 4, or if HLen is less than 5, or if the size of Dgram is less than
4*HLen, the match of Dgram fails.

6.4.2  A Lexical Note
Note that "B=<<1>>" will be interpreted as "B =< <1>>", which is a syntax error. The correct way to write the
expression is "B = <<1>>".

6.4.3  Segments
Each segment has the following general syntax:

Value:Size/TypeSpecifierList



6.4  Bit Syntax

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Both the Size and the TypeSpecifier or both may be omitted; thus the following variations are allowed:

Value

Value:Size

Value/TypeSpecifierList

Default values will be used for missing specifications. The default values are described in the section Defaults.

Used in binary construction, the Value part is any expression. Used in binary matching, the Value part must be a
literal or variable. You can read more about the Value part in the section about constructing binaries and matching
binaries.

The Size part of the segment multiplied by the unit in the TypeSpecifierList (described below) gives the
number of bits for the segment. In construction, Size is any expression that evaluates to an integer. In matching,
Size must be a constant expression or a variable.

The TypeSpecifierList is a list of type specifiers separated by hyphens.

Type
The type can be integer, float, or binary.

Signedness
The signedness specification can be either signed or unsigned. Note that signedness only matters for
matching.

Endianness
The endianness specification can be either big, little, or native. Native-endian means that the endian
will be resolved at load time to be either big-endian or little-endian, depending on what is "native" for the CPU
that the Erlang machine is run on.

Unit
The unit size is given as unit:IntegerLiteral. The allowed range is 1-256. It will be multiplied by
the Size specifier to give the effective size of the segment. In R12B, the unit size specifies the alignment for
binary segments without size (examples will follow).

Example:

X:4/little-signed-integer-unit:8

This element has a total size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

6.4.4  Defaults
The default type for a segment is integer. The default type does not depend on the value, even if the value is a literal.
For instance, the default type in '<<3.14>>' is integer, not float.

The default Size depends on the type. For integer it is 8. For float it is 64. For binary it is all of the binary. In
matching, this default value is only valid for the very last element. All other binary elements in matching must have
a size specification.

The default unit depends on the the type. For integer, float, and bitstring it is 1. For binary it is 8.

The default signedness is unsigned.

The default endianness is big.

6.4.5  Constructing Binaries and Bitstrings
This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of a binary can fail with a badarg exception.



6.4  Bit Syntax

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

There can be zero or more segments in a binary to be constructed. The expression '<<>>' constructs a zero length
binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
type integer and float. For binaries and bitstrings without size, the unit specifies the alignment. Since the default
alignment for the binary type is 8, the size of a binary segment must be a multiple of 8 bits (i.e. only whole bytes).
Example:

<<Bin/binary,Bitstring/bitstring>>

The variable Bin must contain a whole number of bytes, because the binary type defaults to unit:8. A badarg
exception will be generated if Bin would consist of (for instance) 17 bits.

On the other hand, the variable Bitstring may consist of any number of bits, for instance 0, 1, 8, 11, 17, 42, and
so on, because the default unit for bitstrings is 1.

Warning:
For clarity, it is recommended not to change the unit size for binaries, but to use binary when you need byte
alignment, and bitstring when you need bit alignment.

The following example

<<X:1,Y:6>>

will successfully construct a bitstring of 7 bits. (Provided that all of X and Y are integers.)

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When constructing binaries, Value and Size can be any Erlang expression. However, for syntactical reasons, both
Value and Size must be enclosed in parenthesis if the expression consists of anything more than a single literal or
variable. The following gives a compiler syntax error:

<<X+1:8>>

This expression must be rewritten to

<<(X+1):8>>

in order to be accepted by the compiler.

Including Literal Strings
As syntactic sugar, an literal string may be written instead of a element.



6.4  Bit Syntax

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

<<"hello">>

which is syntactic sugar for

<<$h,$e,$l,$l,$o>>

6.4.6  Matching Binaries
This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur in every place patterns are allowed,
also inside other patterns. Binary patterns cannot be nested.

The pattern '<<>>' matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8 (or divisible by the unit size, if the unit size has
been changed).

A segment of type bitstring has no restrictions on the size.

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When matching Value value must be either a variable or an integer or floating point literal. Expressions are not
allowed.

Size must be an integer literal, or a previously bound variable. Note that the following is not allowed:

foo(N, <<X:N,T/binary>>) ->
   {X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is unbound.

The correct way to write this example is like this:

foo(N, Bin) ->
   <<X:N,T/binary>> = Bin,
   {X,T}.

Getting the Rest of the Binary or Bitstring
To match out the rest of a binary, specify a binary field without size:

foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify a field without size:

foo(<<A:8,Rest/bitstring>>) ->



6.4  Bit Syntax

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

There is no restriction on the number of bits in the tail.

6.4.7  Appending to a Binary
In R12B, the following function for creating a binary out of a list of triples of integers is now efficient:

triples_to_bin(T) ->
    triples_to_bin(T, <<>>).

triples_to_bin([{X,Y,Z} | T], Acc) ->
    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);   % inefficient before R12B
triples_to_bin([], Acc) -> 
    Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was copied in
each recursion step. That is no longer the case. See the Efficiency Guide for more information.



7.1  Introduction

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7    Efficiency Guide

7.1  Introduction
7.1.1  Purpose
Premature optimization is the root of all evil. -- D.E. Knuth

Efficient code can be well-structured and clean code, based on on a sound overall architecture and sound algorithms.
Efficient code can be highly implementation-code that bypasses documented interfaces and takes advantage of obscure
quirks in the current implementation.

Ideally, your code should only contain the first kind of efficient code. If that turns out to be too slow, you should
profile the application to find out where the performance bottlenecks are and optimize only the bottlenecks. Other
code should stay as clean as possible.

Fortunately, compiler and run-time optimizations introduced in R12B makes it easier to write code that is both clean
and efficient. For instance, the ugly workarounds needed in R11B and earlier releases to get the most speed out of
binary pattern matching are no longer necessary. In fact, the ugly code is slower than the clean code (because the clean
code has become faster, not because the uglier code has become slower).

This Efficiency Guide cannot really learn you how to write efficient code. It can give you a few pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. We have generally
not included general tips about optimization that will work in any language, such as moving common calculations
out of loops.

7.1.2  Prerequisites
It is assumed that the reader is familiar with the Erlang programming language and concepts of OTP.

7.2  The Eight Myths of Erlang Performance
Some truths seem to live on well beyond their best-before date, perhaps because "information" spreads more rapidly
from person-to-person faster than a single release note that notes, for instance, that funs have become faster.

Here we try to kill the old truths (or semi-truths) that have become myths.

7.2.1  Myth: Funs are slow
Yes, funs used to be slow. Very slow. Slower than apply/3. Originally, funs were implemented using nothing more
than compiler trickery, ordinary tuples, apply/3, and a great deal of ingenuity.

But that is ancient history. Funs was given its own data type in the R6B release and was further optimized in the R7B
release. Now the cost for a fun call falls roughly between the cost for a call to local function and apply/3.

7.2.2  Myth: List comprehensions are slow
List comprehensions used to be implemented using funs, and in the bad old days funs were really slow.

Nowadays the compiler rewrites list comprehensions into an ordinary recursive function. Of course, using a tail-
recursive function with a reverse at the end would be still faster. Or would it? That leads us to the next myth.



7.2  The Eight Myths of Erlang Performance

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

7.2.3  Myth: Tail-recursive functions are MUCH faster than recursive
functions
According to the myth, recursive functions leave references to dead terms on the stack and the garbage collector will
have to copy all those dead terms, while tail-recursive functions immediately discard those terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites references to terms
that will never be used with an empty list, so that the garbage collector would not keep dead values any longer than
necessary.

Even after that optimization, a tail-recursive function would still most of the time be faster than a body-recursive
function. Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, a recursive function
would use more words on the stack for each recursion than the number of words a tail-recursive would allocate on
the heap. Since more memory is used, the garbage collector will be invoked more frequently, and it will have more
work traversing the stack.

In R12B and later releases, there is an optimization that will in many cases reduces the number of words used on the
stack in body-recursive calls, so that a body-recursive list function and tail-recursive function that calls lists:reverse/1
at the end will use exactly the same amount of memory. lists:map/2, lists:filter/2, list comprehensions,
and many other recursive functions now use the same amount of space as their tail-recursive equivalents.

So which is faster?

It depends. On Solaris/Sparc, the body-recursive function seems to be slightly faster, even for lists with very many
elements. On the x86 architecture, tail-recursion was up to about 30 percent faster.

So the choice is now mostly a matter of taste. If you really do need the utmost speed, you must measure. You can no
longer be absolutely sure that the tail-recursive list function will be the fastest in all circumstances.

Note: A tail-recursive function that does not need to reverse the list at the end is, of course, faster than a body-recursive
function, as are tail-recursive functions that do not construct any terms at all (for instance, a function that sums all
integers in a list).

7.2.4  Myth: '++' is always bad
The ++ operator has, somewhat undeservedly, got a very bad reputation. It probably has something to do with code like

DO NOT

naive_reverse([H|T]) ->
    naive_reverse(T)++[H];
naive_reverse([]) ->
    [].

which is the most inefficient way there is to reverse a list. Since the ++ operator copies its left operand, the result will
be copied again and again and again... leading to quadratic complexity.

On the other hand, using ++ like this

OK

naive_but_ok_reverse([H|T], Acc) ->
    naive_but_ok_reverse(T, [H]++Acc);
naive_but_ok_reverse([], Acc) ->
    Acc.



7.3  Common Caveats

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

is not bad. Each list element will only be copied once. The growing result Acc is the right operand for the ++ operator,
and it will not be copied.

Of course, experienced Erlang programmers would actually write

DO

vanilla_reverse([H|T], Acc) ->
    vanilla_reverse(T, [H|Acc]);
vanilla_reverse([], Acc) ->
    Acc.

which is slightly more efficient because you don't build a list element only to directly copy it. (Or it would be more
efficient if the the compiler did not automatically rewrite [H]++Acc to [H|Acc].)

7.2.5  Myth: Strings are slow
Actually, string handling could be slow if done improperly. In Erlang, you'll have to think a little more about how
the strings are used and choose an appropriate representation and use the re module instead of the obsolete regexp
module if you are going to use regular expressions.

7.2.6  Myth: Repairing a Dets file is very slow
The repair time is still proportional to the number of records in the file, but Dets repairs used to be much, much slower
in the past. Dets has been massively rewritten and improved.

7.2.7  Myth: BEAM is a stack-based byte-code virtual machine (and
therefore slow)
BEAM is a register-based virtual machine. It has 1024 virtual registers that are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive a function call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

7.2.8  Myth: Use '_' to speed up your program when a variable is not
used
That was once true, but since R6B the BEAM compiler is quite capable of seeing itself that a variable is not used.

7.3  Common Caveats
Here we list a few modules and BIFs to watch out for, and not only from a performance point of view.

7.3.1  The timer module
Creating timers using erlang:send_after/3 and erlang:start_timer/3 is much more efficient than using the timers
provided by the timer module. The timer module uses a separate process to manage the timers, and that process
can easily become overloaded if many processes create and cancel timers frequently (especially when using the SMP
emulator).

The functions in the timer module that do not manage timers (such as timer:tc/3 or timer:sleep/1), do
not call the timer-server process and are therefore harmless.



7.3  Common Caveats

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

7.3.2  list_to_atom/1
Atoms are not garbage-collected. Once an atom is created, it will never be removed. The emulator will terminate if
the limit for the number of atoms (1048576 by default) is reached.

Therefore, converting arbitrary input strings to atoms could be dangerous in a system that will run continuously. If
only certain well-defined atoms are allowed as input, you can use list_to_existing_atom/1 to guard against a denial-
of-service attack. (All atoms that are allowed must have been created earlier, for instance by simply using all of them
in a module and loading that module.)

Using list_to_atom/1 to construct an atom that is passed to apply/3 like this

apply(list_to_atom("some_prefix"++Var), foo, Args)

is quite expensive and is not recommended in time-critical code.

7.3.3  length/1
The time for calculating the length of a list is proportional to the length of the list, as opposed to tuple_size/1,
byte_size/1, and bit_size/1, which all execute in constant time.

Normally you don't have to worry about the speed of length/1, because it is efficiently implemented in C. In time
critical-code, though, you might want to avoid it if the input list could potentially be very long.

Some uses of length/1 can be replaced by matching. For instance, this code

foo(L) when length(L) >= 3 ->
    ...

can be rewritten to

foo([_,_,_|_]=L) ->
   ...

(One slight difference is that length(L) will fail if the L is an improper list, while the pattern in the second code
fragment will accept an improper list.)

7.3.4  setelement/3
setelement/3 copies the tuple it modifies. Therefore, updating a tuple in a loop using setelement/3 will create a
new copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give exactly the same result as if the tuple was copied, the call to setelement/3 will be replaced
with a special destructive setelement instruction. In the following code sequence

multiple_setelement(T0) ->
    T1 = setelement(9, T0, bar),
    T2 = setelement(7, T1, foobar),
    setelement(5, T2, new_value).



7.3  Common Caveats

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

the first setelement/3 call will copy the tuple and modify the ninth element. The two following setelement/3
calls will modify the tuple in place.

For the optimization to be applied, all of the followings conditions must be true:

• The indices must be integer literals, not variables or expressions.

• The indices must be given in descending order.

• There must be no calls to other function in between the calls to setelement/3.

• The tuple returned from one setelement/3 call must only be used in the subsequent call to
setelement/3.

If it is not possible to structure the code as in the multiple_setelement/1 example, the best way to modify
multiple elements in a large tuple is to convert the tuple to a list, modify the list, and convert the list back to a tuple.

7.3.5  size/1
size/1 returns the size for both tuples and binary.

Using the new BIFs tuple_size/1 and byte_size/1 introduced in R12B gives the compiler and run-time
system more opportunities for optimization. A further advantage is that the new BIFs could help Dialyzer find more
bugs in your program.

7.3.6  split_binary/2
It is usually more efficient to split a binary using matching instead of calling the split_binary/2 function.
Furthermore, mixing bit syntax matching and split_binary/2 may prevent some optimizations of bit syntax
matching.

DO

        <<Bin1:Num/binary,Bin2/binary>> = Bin,

DO NOT

        {Bin1,Bin2} = split_binary(Bin, Num)
        

7.3.7  The '--' operator
Note that the '--' operator has a complexity proportional to the product of the length of its operands, meaning that it
will be very slow if both of its operands are long lists:

DO NOT

        HugeList1 -- HugeList2

Instead use the ordsets module:

DO

        HugeSet1 = ordsets:from_list(HugeList1),
        HugeSet2 = ordsets:from_list(HugeList2),



7.4  Constructing and matching binaries

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

        ordsets:subtract(HugeSet1, HugeSet2)
        

Obviously, that code will not work if the original order of the list is important. If the order of the list must be preserved,
do like this:

DO

        Set = gb_sets:from_list(HugeList2),
        [E || E <- HugeList1, not gb_sets:is_element(E, Set)]

Subtle note 1: This code behaves differently from '--' if the lists contain duplicate elements. (One occurrence of an
element in HugeList2 will remove all occurrences in HugeList1.)

Subtle note 2: This code compares lists elements using the '==' operator, while '--' uses the '=:='. If that difference
is important, sets can be used instead of gb_sets, but note that sets:from_list/1 is much slower than
gb_sets:from_list/1 for long lists.

Using the '--' operator to delete an element from a list is not a performance problem:

OK

        HugeList1 -- [Element]
        

7.4  Constructing and matching binaries
In R12B, the most natural way to write binary construction and matching is now significantly faster than in earlier
releases.

To construct at binary, you can simply write

DO (in R12B) / REALLY DO NOT (in earlier releases)

my_list_to_binary(List) ->
    my_list_to_binary(List, <<>>).

my_list_to_binary([H|T], Acc) ->
    my_list_to_binary(T, <<Acc/binary,H>>);
my_list_to_binary([], Acc) ->
    Acc.

In releases before R12B, Acc would be copied in every iteration. In R12B, Acc will be copied only in the first iteration
and extra space will be allocated at the end of the copied binary. In the next iteration, H will be written in to the extra
space. When the extra space runs out, the binary will be reallocated with more extra space.

The extra space allocated (or reallocated) will be twice the size of the existing binary data, or 256, whichever is larger.

The most natural way to match binaries is now the fastest:

DO (in R12B)

my_binary_to_list(<<H,T/binary>>) ->
    [H|my_binary_to_list(T)];



7.4  Constructing and matching binaries

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

my_binary_to_list(<<>>) -> [].

7.4.1  How binaries are implemented
Internally, binaries and bitstrings are implemented in the same way. In this section, we will call them binaries since
that is what they are called in the emulator source code.

There are four types of binary objects internally. Two of them are containers for binary data and two of them are
merely references to a part of a binary.

The binary containers are called refc binaries (short for reference-counted binaries) and heap binaries.

Refc binaries consist of two parts: an object stored on the process heap, called a ProcBin, and the binary object itself
stored outside all process heaps.

The binary object can be referenced by any number of ProcBins from any number of processes; the object contains a
reference counter to keep track of the number of references, so that it can be removed when the last reference disappears.

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of them and
decrement the reference counters in the binary when a ProcBin disappears.

Heap binaries are small binaries, up to 64 bytes, that are stored directly on the process heap. They will be copied
when the process is garbage collected and when they are sent as a message. They don't require any special handling
by the garbage collector.

There are two types of reference objects that can reference part of a refc binary or heap binary. They are called sub
binaries and match contexts.

A sub binary is created by split_binary/2 and when a binary is matched out in a binary pattern. A sub binary
is a reference into a part of another binary (refc or heap binary, never into a another sub binary). Therefore, matching
out a binary is relatively cheap because the actual binary data is never copied.

A match context is similar to a sub binary, but is optimized for binary matching; for instance, it contains a direct pointer
to the binary data. For each field that is matched out of a binary, the position in the match context will be incremented.

In R11B, a match context was only used during a binary matching operation.

In R12B, the compiler tries to avoid generating code that creates a sub binary, only to shortly afterwards create a new
match context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do this optimization if it can know for sure that the match context will not be shared. If it would
be shared, the functional properties (also called referential transparency) of Erlang would break.

7.4.2  Constructing binaries
In R12B, appending to a binary or bitstring

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

is specially optimized by the run-time system. Because the run-time system handles the optimization (instead of the
compiler), there are very few circumstances in which the optimization will not work.

To explain how it works, we will go through this code

Bin0 = <<0>>,                    %% 1
Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
Bin2 = <<Bin1/binary,4,5,6>>,    %% 3



7.4  Constructing and matching binaries

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
{Bin4,Bin3}                      %% 6

line by line.

The first line (marked with the %% 1 comment), assigns a heap binary to the variable Bin0.

The second line is an append operation. Since Bin0 has not been involved in an append operation, a new refc binary
will be created and the contents of Bin0 will be copied into it. The ProcBin part of the refc binary will have its size
set to the size of the data stored in the binary, while the binary object will have extra space allocated. The size of the
binary object will be either twice the size of Bin0 or 256, whichever is larger. In this case it will be 256.

It gets more interesting in the third line. Bin1 has been used in an append operation, and it has 255 bytes of unused
storage at the end, so the three new bytes will be stored there.

Same thing in the fourth line. There are 252 bytes left, so there is no problem storing another three bytes.

But in the fifth line something interesting happens. Note that we don't append to the previous result in Bin3, but to
Bin1. We expect that Bin4 will be assigned the value <<0,1,2,3,17>>. We also expect that Bin3 will retain
its value (<<0,1,2,3,4,5,6,7,8,9>>). Clearly, the run-time system cannot write the byte 17 into the binary,
because that would change the value of Bin3 to <<0,1,2,3,4,17,6,7,8,9>>.

What will happen?

The run-time system will see that Bin1 is the result from a previous append operation (not from the latest append
operation), so it will copy the contents of Bin1 to a new binary and reserve extra storage and so on. (We will not
explain here how the run-time system can know that it is not allowed to write into Bin1; it is left as an exercise to the
curious reader to figure out how it is done by reading the emulator sources, primarily erl_bits.c.)

Circumstances that force copying
The optimization of the binary append operation requires that there is a single ProcBin and a single reference to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on a binary will mark it so that any future append operation will be forced to copy the
binary. In most cases, the binary object will be shrunk at the same time to reclaim the extra space allocated for growing.

When appending to a binary

Bin = <<Bin0,...>>

only the binary returned from the latest append operation will support further cheap append operations. In the code
fragment above, appending to Bin will be cheap, while appending to Bin0 will force the creation of a new binary
and copying of the contents of Bin0.

If a binary is sent as a message to a process or port, the binary will be shrunk and any further append operation will
copy the binary data into a new binary. For instance, in the following code fragment

Bin1 = <<Bin0,...>>,
PortOrPid ! Bin1,
Bin = <<Bin1,...>>  %% Bin1 will be COPIED

Bin1 will be copied in the third line.



7.4  Constructing and matching binaries

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The same thing happens if you insert a binary into an ets table or send it to a port using erlang:port_command/2
or pass it to enif_inspect_binary in a NIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Bin1 = <<Bin0,...>>,
<<X,Y,Z,T/binary>> = Bin1,
Bin = <<Bin1,...>>  %% Bin1 will be COPIED

The reason is that a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data" or in the process dictionary), the garbage collector may
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appends to a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

7.4.3  Matching binaries
We will revisit the example shown earlier

DO (in R12B)

my_binary_to_list(<<H,T/binary>>) ->
    [H|my_binary_to_list(T)];
my_binary_to_list(<<>>) -> [].

too see what is happening under the hood.

The very first time my_binary_to_list/1 is called, a match context will be created. The match context will
point to the first byte of the binary. One byte will be matched out and the match context will be updated to point to
the second byte in the binary.

In R11B, at this point a sub binary would be created. In R12B, the compiler sees that there is no point in creating a
sub binary, because there will soon be a call to a function (in this case, to my_binary_to_list/1 itself) that will
immediately create a new match context and discard the sub binary.

Therefore, in R12B, my_binary_to_list/1 will call itself with the match context instead of with a sub binary.
The instruction that initializes the matching operation will basically do nothing when it sees that it was passed a match
context instead of a binary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, since there is no longer any reference to it).

To summarize, my_binary_to_list/1 in R12B only needs to create one match context and no sub binaries. In
R11B, if the binary contains N bytes, N+1 match contexts and N sub binaries will be created.

In R11B, the fastest way to match binaries is:

DO NOT (in R12B)

my_complicated_binary_to_list(Bin) ->
    my_complicated_binary_to_list(Bin, 0).

my_complicated_binary_to_list(Bin, Skip) ->
    case Bin of
 <<_:Skip/binary,Byte,_/binary>> ->
     [Byte|my_complicated_binary_to_list(Bin, Skip+1)];
 <<_:Skip/binary>> ->



7.4  Constructing and matching binaries

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

     []
    end.

This function cleverly avoids building sub binaries, but it cannot avoid building a match context in each recursion step.
Therefore, in both R11B and R12B, my_complicated_binary_to_list/1 builds N+1 match contexts. (In a
future release, the compiler might be able to generate code that reuses the match context, but don't hold your breath.)

Returning to my_binary_to_list/1, note that the match context was discarded when the entire binary had been
traversed. What happens if the iteration stops before it has reached the end of the binary? Will the optimization still
work?

after_zero(<<0,T/binary>>) ->
    T;
after_zero(<<_,T/binary>>) ->
    after_zero(T);
after_zero(<<>>) ->
    <<>>.
  

Yes, it will. The compiler will remove the building of the sub binary in the second clause

.

.

.
after_zero(<<_,T/binary>>) ->
    after_zero(T);
.
.
.

but will generate code that builds a sub binary in the first clause

after_zero(<<0,T/binary>>) ->
    T;
.
.
.

Therefore, after_zero/1 will build one match context and one sub binary (assuming it is passed a binary that
contains a zero byte).

Code like the following will also be optimized:

all_but_zeroes_to_list(Buffer, Acc, 0) ->
    {lists:reverse(Acc),Buffer};
all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
    all_but_zeroes_to_list(T, Acc, Remaining-1);
all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

The compiler will remove building of sub binaries in the second and third clauses, and it will add an instruction to
the first clause that will convert Buffer from a match context to a sub binary (or do nothing if Buffer already
is a binary).



7.4  Constructing and matching binaries

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Before you begin to think that the compiler can optimize any binary patterns, here is a function that the compiler
(currently, at least) is not able to optimize:

non_opt_eq([H|T1], <<H,T2/binary>>) ->
    non_opt_eq(T1, T2);
non_opt_eq([_|_], <<_,_/binary>>) ->
    false;
non_opt_eq([], <<>>) ->
    true.

It was briefly mentioned earlier that the compiler can only delay creation of sub binaries if it can be sure that the binary
will not be shared. In this case, the compiler cannot be sure.

We will soon show how to rewrite non_opt_eq/2 so that the delayed sub binary optimization can be applied, and
more importantly, we will show how you can find out whether your code can be optimized.

The bin_opt_info option
Use the bin_opt_info option to have the compiler print a lot of information about binary optimizations. It can be
given either to the compiler or erlc

erlc +bin_opt_info Mod.erl

or passed via an environment variable

export ERL_COMPILER_OPTIONS=bin_opt_info

Note that the bin_opt_info is not meant to be a permanent option added to your Makefiles, because it is not
possible to eliminate all messages that it generates. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings will look like this:

./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: sub binary is used or returned

./efficiency_guide.erl:62: Warning: OPTIMIZED: creation of sub binary delayed

To make it clearer exactly what code the warnings refer to, in the examples that follow, the warnings are inserted as
comments after the clause they refer to:

after_zero(<<0,T/binary>>) ->
         %% NOT OPTIMIZED: sub binary is used or returned
    T;
after_zero(<<_,T/binary>>) ->
         %% OPTIMIZED: creation of sub binary delayed
    after_zero(T);
after_zero(<<>>) ->
    <<>>.

The warning for the first clause tells us that it is not possible to delay the creation of a sub binary, because it will be
returned. The warning for the second clause tells us that a sub binary will not be created (yet).



7.4  Constructing and matching binaries

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

It is time to revisit the earlier example of the code that could not be optimized and find out why:

non_opt_eq([H|T1], <<H,T2/binary>>) ->
        %% INFO: matching anything else but a plain variable to
 %%    the left of binary pattern will prevent delayed 
 %%    sub binary optimization;
 %%    SUGGEST changing argument order
        %% NOT OPTIMIZED: called function non_opt_eq/2 does not
 %%    begin with a suitable binary matching instruction
    non_opt_eq(T1, T2);
non_opt_eq([_|_], <<_,_/binary>>) ->
    false;
non_opt_eq([], <<>>) ->
    true.

The compiler emitted two warnings. The INFO warning refers to the function non_opt_eq/2 as a callee, indicating
that any functions that call non_opt_eq/2 will not be able to make delayed sub binary optimization. There is also
a suggestion to change argument order. The second warning (that happens to refer to the same line) refers to the
construction of the sub binary itself.

We will soon show another example that should make the distinction between INFO and NOT OPTIMIZED warnings
somewhat clearer, but first we will heed the suggestion to change argument order:

opt_eq(<<H,T1/binary>>, [H|T2]) ->
        %% OPTIMIZED: creation of sub binary delayed
    opt_eq(T1, T2);
opt_eq(<<_,_/binary>>, [_|_]) ->
    false;
opt_eq(<<>>, []) ->
    true.

The compiler gives a warning for the following code fragment:

match_body([0|_], <<H,_/binary>>) ->
        %% INFO: matching anything else but a plain variable to
 %%    the left of binary pattern will prevent delayed 
 %%    sub binary optimization;
 %%    SUGGEST changing argument order
    done;
.
.
.

The warning means that if there is a call to match_body/2 (from another clause in match_body/2 or another
function), the delayed sub binary optimization will not be possible. There will be additional warnings for any place
where a sub binary is matched out at the end of and passed as the second argument to match_body/2. For instance:

match_head(List, <<_:10,Data/binary>>) ->
        %% NOT OPTIMIZED: called function match_body/2 does not
 %%     begin with a suitable binary matching instruction
    match_body(List, Data).



7.5  List handling

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Unused variables
The compiler itself figures out if a variable is unused. The same code is generated for each of the following functions

count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
count1(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
count2(<<>>, Count) -> Count.

count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
count3(<<>>, Count) -> Count.

In each iteration, the first 8 bits in the binary will be skipped, not matched out.

7.5  List handling
7.5.1  Creating a list
Lists can only be built starting from the end and attaching list elements at the beginning. If you use the ++ operator
like this

List1 ++ List2

you will create a new list which is copy of the elements in List1, followed by List2. Looking at how
lists:append/1 or ++ would be implemented in plain Erlang, it can be seen clearly that the first list is copied:

append([H|T], Tail) ->
    [H|append(T, Tail)];
append([], Tail) ->
    Tail.

So the important thing when recursing and building a list is to make sure that you attach the new elements to the
beginning of the list, so that you build a list, and not hundreds or thousands of copies of the growing result list.

Let us first look at how it should not be done:

DO NOT

bad_fib(N) ->
    bad_fib(N, 0, 1, []).

bad_fib(0, _Current, _Next, Fibs) ->
    Fibs;
bad_fib(N, Current, Next, Fibs) -> 
    bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here we are not a building a list; in each iteration step we create a new list that is one element longer than the new
previous list.

To avoid copying the result in each iteration, we must build the list in reverse order and reverse the list when we
are done:



7.5  List handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

DO

tail_recursive_fib(N) ->
    tail_recursive_fib(N, 0, 1, []).

tail_recursive_fib(0, _Current, _Next, Fibs) ->
    lists:reverse(Fibs);
tail_recursive_fib(N, Current, Next, Fibs) -> 
    tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

7.5.2  List comprehensions
Lists comprehensions still have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

In recent Erlang/OTP releases (including R12B), a list comprehension

[Expr(E) || E <- List]

is basically translated to a local function

'lc^0'([E|Tail], Expr) ->
    [Expr(E)|'lc^0'(Tail, Expr)];
'lc^0'([], _Expr) -> [].

In R12B, if the result of the list comprehension will obviously not be used, a list will not be constructed. For instance,
in this code

[io:put_chars(E) || E <- List],
ok.

or in this code

.

.

.
case Var of
    ... ->
        [io:put_chars(E) || E <- List];
    ... ->
end,
some_function(...),
.
.
.

the value is neither assigned to a variable, nor passed to another function, nor returned, so there is no need to construct
a list and the compiler will simplify the code for the list comprehension to



7.5  List handling

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

'lc^0'([E|Tail], Expr) ->
    Expr(E),
    'lc^0'(Tail, Expr);
'lc^0'([], _Expr) -> [].

7.5.3  Deep and flat lists
lists:flatten/1 builds an entirely new list. Therefore, it is expensive, and even more expensive than the ++ (which copies
its left argument, but not its right argument).

In the following situations, you can easily avoid calling lists:flatten/1:

• When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

• When calling BIFs that accept deep lists, such as list_to_binary/1 or iolist_to_binary/1.

• When you know that your list is only one level deep, you can can use lists:append/1.

Port example

DO

      ...
      port_command(Port, DeepList)
      ...

DO NOT

      ...
      port_command(Port, lists:flatten(DeepList))
      ...

A common way to send a zero-terminated string to a port is the following:

DO NOT

      ...
      TerminatedStr = String ++ [0], % String="foo" => [$f, $o, $o, 0]
      port_command(Port, TerminatedStr)
      ...

Instead do like this:

DO

      ...
      TerminatedStr = [String, 0], % String="foo" => [[$f, $o, $o], 0]
      port_command(Port, TerminatedStr) 
      ...

Append example

DO



7.6  Functions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

      > lists:append([[1], [2], [3]]).
      [1,2,3]
      >

DO NOT

      > lists:flatten([[1], [2], [3]]).
      [1,2,3]
      >

7.5.4  Why you should not worry about recursive lists functions
In the performance myth chapter, the following myth was exposed: Tail-recursive functions are MUCH faster than
recursive functions.

To summarize, in R12B there is usually not much difference between a body-recursive list function and tail-recursive
function that reverses the list at the end. Therefore, concentrate on writing beautiful code and forget about the
performance of your list functions. In the time-critical parts of your code (and only there), measure before rewriting
your code.

Important note: This section talks about lists functions that construct lists. A tail-recursive function that does not
construct a list runs in constant space, while the corresponding body-recursive function uses stack space proportional
to the length of the list. For instance, a function that sums a list of integers, should not be written like this

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
recursive_sum([])    -> 0.

but like this

DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum)    -> Sum.

7.6  Functions
7.6.1  Pattern matching
Pattern matching in function head and in case and receive clauses are optimized by the compiler. With a few
exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler will not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last will usually be slightly faster than placing it first.

Here is a rather contrived example to show another exception:

DO NOT



7.6  Functions

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

atom_map1(one) -> 1;
atom_map1(two) -> 2;
atom_map1(three) -> 3;
atom_map1(Int) when is_integer(Int) -> Int;
atom_map1(four) -> 4;
atom_map1(five) -> 5;
atom_map1(six) -> 6.

The problem is the clause with the variable Int. Since a variable can match anything, including the atoms four,
five, and six that the following clauses also will match, the compiler must generate sub-optimal code that will
execute as follows:

First the input value is compared to one, two, and three (using a single instruction that does a binary search; thus,
quite efficient even if there are many values) to select which one of the first three clauses to execute (if any).

If none of the first three clauses matched, the fourth clause will match since a variable always matches. If the guard
test is_integer(Int) succeeds, the fourth clause will be executed.

If the guard test failed, the input value is compared to four, five, and six, and the appropriate clause is selected.
(There will be a function_clause exception if none of the values matched.)

Rewriting to either

DO

atom_map2(one) -> 1;
atom_map2(two) -> 2;
atom_map2(three) -> 3;
atom_map2(four) -> 4;
atom_map2(five) -> 5;
atom_map2(six) -> 6;
atom_map2(Int) when is_integer(Int) -> Int.

or

DO

atom_map3(Int) when is_integer(Int) -> Int;
atom_map3(one) -> 1;
atom_map3(two) -> 2;
atom_map3(three) -> 3;
atom_map3(four) -> 4;
atom_map3(five) -> 5;
atom_map3(six) -> 6.

will give slightly more efficient matching code.

Here is a less contrived example:

DO NOT

map_pairs1(_Map, [], Ys) ->
    Ys;
map_pairs1(_Map, Xs, [] ) ->
    Xs;
map_pairs1(Map, [X|Xs], [Y|Ys]) ->



7.6  Functions

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

    [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

The first argument is not a problem. It is variable, but it is a variable in all clauses. The problem is the variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not allowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten like this

DO

map_pairs2(_Map, [], Ys) ->
    Ys;
map_pairs2(_Map, [_|_]=Xs, [] ) ->
    Xs;
map_pairs2(Map, [X|Xs], [Y|Ys]) ->
    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

the compiler is free to rearrange the clauses. It will generate code similar to this

DO NOT (already done by the compiler)

explicit_map_pairs(Map, Xs0, Ys0) ->
    case Xs0 of
 [X|Xs] ->
     case Ys0 of
  [Y|Ys] ->
      [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
  [] ->
      Xs0
     end;
 [] ->
     Ys0
    end.

which should be slightly faster for presumably the most common case that the input lists are not empty or very short.
(Another advantage is that Dialyzer is able to deduce a better type for the variable Xs.)

7.6.2  Function Calls
Here is an intentionally rough guide to the relative costs of different kinds of calls. It is based on benchmark figures
run on Solaris/Sparc:

• Calls to local or external functions (foo(), m:foo()) are the fastest kind of calls.

• Calling or applying a fun (Fun(), apply(Fun, [])) is about three times as expensive as calling a local
function.

• Applying an exported function (Mod:Name(), apply(Mod, Name, [])) is about twice as expensive as
calling a fun, or about six times as expensive as calling a local function.

Notes and implementation details
Calling and applying a fun does not involve any hash-table lookup. A fun contains an (indirect) pointer to the function
that implements the fun.



7.6  Functions

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Warning:
Tuples are not fun(s). A "tuple fun", {Module,Function}, is not a fun. The cost for calling a "tuple fun" is
similar to that of apply/3 or worse. Using "tuple funs" is strongly discouraged, as they may not be supported
in a future release, and because there exists a superior alternative since the R10B release, namely the fun
Module:Function/Arity syntax.

apply/3 must look up the code for the function to execute in a hash table. Therefore, it will always be slower than
a direct call or a fun call.

It no longer matters (from a performance point of view) whether you write

Module:Function(Arg1, Arg2)

or

apply(Module, Function, [Arg1,Arg2])

(The compiler internally rewrites the latter code into the former.)

The following code

apply(Module, Function, Arguments)

is slightly slower because the shape of the list of arguments is not known at compile time.

7.6.3  Memory usage in recursion
When writing recursive functions it is preferable to make them tail-recursive so that they can execute in constant
memory space.

DO

list_length(List) ->
    list_length(List, 0).

list_length([], AccLen) -> 
    AccLen; % Base case

list_length([_|Tail], AccLen) ->
    list_length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list_length([]) ->
    0. % Base case
list_length([_ | Tail]) ->
    list_length(Tail) + 1. % Not tail-recursive



7.7  Tables and databases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

7.7  Tables and databases
7.7.1  Ets, Dets and Mnesia
Every example using Ets has a corresponding example in Mnesia. In general all Ets examples also apply to Dets tables.

Select/Match operations
Select/Match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. You should try to structure your data so that you minimize the need for select/match operations.
However, if you really need a select/match operation, it will still be more efficient than using tab2list. Examples
of this and also of ways to avoid select/match will be provided in some of the following sections. The functions
ets:select/2 and mnesia:select/3 should be preferred over ets:match/2,ets:match_object/2,
and mnesia:match_object/3.

Note:
There are exceptions when the complete table is not scanned, for instance if part of the key is bound when
searching an ordered_set table, or if it is a Mnesia table and there is a secondary index on the field that is
selected/matched. If the key is fully bound there will, of course, be no point in doing a select/match, unless you
have a bag table and you are only interested in a sub-set of the elements with the specific key.

When creating a record to be used in a select/match operation you want most of the fields to have the value '_'. The
easiest and fastest way to do that is as follows:

#person{age = 42, _ = '_'}. 

Deleting an element
The delete operation is considered successful if the element was not present in the table. Hence all attempts to check that
the element is present in the Ets/Mnesia table before deletion are unnecessary. Here follows an example for Ets tables.

DO

...
ets:delete(Tab, Key),
...

DO NOT

...
case ets:lookup(Tab, Key) of
    [] ->
        ok;
    [_|_] ->
        ets:delete(Tab, Key)
end,
...



7.7  Tables and databases

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Data fetching
Do not fetch data that you already have! Consider that you have a module that handles the abstract data type Person. You
export the interface function print_person/1 that uses the internal functions print_name/1, print_age/1,
print_occupation/1.

Note:
If the functions print_name/1 and so on, had been interface functions the matter comes in to a whole new
light, as you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print_person(PersonId) ->
    %% Look up the person in the named table person,
    case ets:lookup(person, PersonId) of
        [Person] ->
            print_name(Person),
            print_age(Person),
            print_occupation(Person);
        [] ->
            io:format("No person with ID = ~p~n", [PersonID])
    end.

%%% Internal functions
print_name(Person) -> 
    io:format("No person ~p~n", [Person#person.name]).
                      
print_age(Person) -> 
    io:format("No person ~p~n", [Person#person.age]).

print_occupation(Person) -> 
    io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print_person(PersonId) ->
    %% Look up the person in the named table person,
    case ets:lookup(person, PersonId) of
        [Person] ->
            print_name(PersonID),
            print_age(PersonID),
            print_occupation(PersonID);
        [] ->
            io:format("No person with ID = ~p~n", [PersonID])
    end.

%%% Internal functions
print_name(PersonID) -> 
    [Person] = ets:lookup(person, PersonId),
    io:format("No person ~p~n", [Person#person.name]).

print_age(PersonID) -> 
    [Person] = ets:lookup(person, PersonId),



7.7  Tables and databases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

    io:format("No person ~p~n", [Person#person.age]).

print_occupation(PersonID) -> 
    [Person] = ets:lookup(person, PersonId),
    io:format("No person ~p~n", [Person#person.occupation]).

Non-persistent data storage
For non-persistent database storage, prefer Ets tables over Mnesia local_content tables. Even the Mnesia
dirty_write operations carry a fixed overhead compared to Ets writes. Mnesia must check if the table is replicated
or has indices, this involves at least one Ets lookup for each dirty_write. Thus, Ets writes will always be faster
than Mnesia writes.

tab2list
Assume we have an Ets-table, which uses idno as key, and contains:

[#person{idno = 1, name = "Adam",  age = 31, occupation = "mailman"},
 #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
 #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
 #person{idno = 4, name = "Carl",  age = 25, occupation = "mailman"}]

If we must return all data stored in the Ets-table we can use ets:tab2list/1. However, usually we are only
interested in a subset of the information in which case ets:tab2list/1 is expensive. If we only want to extract
one field from each record, e.g., the age of every person, we should use:

DO

...
ets:select(Tab,[{ #person{idno='_', 
                          name='_', 
                          age='$1', 
                          occupation = '_'},
                [],
                ['$1']}]),
...

DO NOT

...
TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TabList),
...

If we are only interested in the age of all persons named Bryan, we should:

DO

...
ets:select(Tab,[{ #person{idno='_', 
                          name="Bryan", 
                          age='$1', 
                          occupation = '_'},
                [],



7.7  Tables and databases

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

                ['$1']}]),
...

DO NOT

...
TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of
                                "Bryan" ->
                                    [X#person.age|Acc];
                                 _ ->
                                     Acc
                           end
             end, [], TabList),
...

REALLY DO NOT

...
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,
                         TabList),
lists:map(fun(X) -> X#person.age end, BryanList),
...

If we need all information stored in the Ets table about persons named Bryan we should:

DO

...
ets:select(Tab, [{#person{idno='_', 
                          name="Bryan", 
                          age='_', 
                          occupation = '_'}, [], ['$_']}]),
...

DO NOT

...
TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),
...

Ordered_set tables
If the data in the table should be accessed so that the order of the keys in the table is significant, the table type
ordered_set could be used instead of the more usual set table type. An ordered_set is always traversed in
Erlang term order with regard to the key field so that return values from functions such as select, match_object,
and foldl are ordered by the key values. Traversing an ordered_set with the first and next operations also
returns the keys ordered.



7.7  Tables and databases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

Note:
An ordered_set only guarantees that objects are processed in key order. Results from functions as
ets:select/2 appear in the key order even if the key is not included in the result.

7.7.2  Ets specific
Utilizing the keys of the Ets table
An Ets table is a single key table (either a hash table or a tree ordered by the key) and should be used as one. In other
words, use the key to look up things whenever possible. A lookup by a known key in a set Ets table is constant and
for a ordered_set Ets table it is O(logN). A key lookup is always preferable to a call where the whole table has to be
scanned. In the examples above, the field idno is the key of the table and all lookups where only the name is known
will result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the name field as the key instead of the idno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with name as key and idno
as data, i.e. to index (invert) the table with regards to the name field. The second table would of course have to be kept
consistent with the master table. Mnesia could do this for you, but a home brew index table could be very efficient
compared to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and could have the following contents:

 
[#index_entry{name="Adam", idno=1},
 #index_entry{name="Bryan", idno=2},
 #index_entry{name="Bryan", idno=3},
 #index_entry{name="Carl", idno=4}]

Given this index table a lookup of the age fields for all persons named "Bryan" could be done like this:

...
MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index_entry{idno = ID}) ->
                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
                 Age
          end,
          MatchingIDs),
...

Note that the code above never uses ets:match/2 but instead utilizes the ets:lookup/2 call. The
lists:map/2 call is only used to traverse the idnos matching the name "Bryan" in the table; therefore the number
of lookups in the master table is minimized.

Keeping an index table introduces some overhead when inserting records in the table, therefore the number of
operations gained from the table has to be weighted against the number of operations inserting objects in the table.
However, note that the gain when the key can be used to lookup elements is significant.



7.8  Processes

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7.3  Mnesia specific
Secondary index
If you frequently do a lookup on a field that is not the key of the table, you will lose performance using "mnesia:select/
match_object" as this function will traverse the whole table. You may create a secondary index instead and use
"mnesia:index_read" to get faster access, however this will require more memory. Example:

-record(person, {idno, name, age, occupation}).
        ...
{atomic, ok} = 
mnesia:create_table(person, [{index,[#person.age]},
                              {attributes,
                                    record_info(fields, person)}]),
{atomic, ok} = mnesia:add_table_index(person, age), 
...

PersonsAge42 =
     mnesia:dirty_index_read(person, 42, #person.age),
...

Transactions
Transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many different
processes update it in parallel. However if you have real time requirements it is recommended to use dirty operations
instead of transactions. When using the dirty operations you lose the consistency guarantee, this is usually solved by
only letting one process update the table. Other processes have to send update requests to that process.

...
% Using transaction

Fun = fun() ->
          [mnesia:read({Table, Key}),
           mnesia:read({Table2, Key2})]
      end, 

{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
...

% Same thing using dirty operations
...

Result1 = mnesia:dirty_read({Table, Key}),
Result2 = mnesia:dirty_read({Table2, Key2}),
...

7.8  Processes
7.8.1  Creation of an Erlang process
An Erlang process is lightweight compared to operating systems threads and processes.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE support. (SMP
support and HiPE support will both add to this size.) The size can be found out like this:



7.8  Processes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

Erlang (BEAM) emulator version 5.6 [async-threads:0] [kernel-poll:false]

Eshell V5.6  (abort with ^G)
1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>
2> {_,Bytes} = process_info(spawn(Fun), memory).
{memory,1232}
3> Bytes div erlang:system_info(wordsize).
309

The size includes 233 words for the heap area (which includes the stack). The garbage collector will increase the heap
as needed.

The main (outer) loop for a process must be tail-recursive. If not, the stack will grow until the process terminates.

DO NOT

loop() -> 
  receive
     {sys, Msg} ->
         handle_sys_msg(Msg),
         loop();
     {From, Msg} ->
          Reply = handle_msg(Msg),
          From ! Reply,
          loop()
  end,
  io:format("Message is processed~n", []).

The call to io:format/2 will never be executed, but a return address will still be pushed to the stack each time
loop/0 is called recursively. The correct tail-recursive version of the function looks like this:

DO

   loop() -> 
      receive
         {sys, Msg} ->
            handle_sys_msg(Msg),
            loop();
         {From, Msg} ->
            Reply = handle_msg(Msg),
            From ! Reply,
            loop()
    end.

Initial heap size
The default initial heap size of 233 words is quite conservative in order to support Erlang systems with hundreds of
thousands or even millions of processes. The garbage collector will grow and shrink the heap as needed.

In a system that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the min_heap_size option for
spawn_opt/4.

The gain is twofold: Firstly, although the garbage collector will grow the heap, it will grow it step by step, which will
be more costly than directly establishing a larger heap when the process is spawned. Secondly, the garbage collector



7.8  Processes

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

may also shrink the heap if it is much larger than the amount of data stored on it; setting the minimum heap size will
prevent that.

Warning:
The emulator will probably use more memory, and because garbage collections occur less frequently, huge
binaries could be kept much longer.

In systems with many processes, computation tasks that run for a short time could be spawned off into a new process
with a higher minimum heap size. When the process is done, it will send the result of the computation to another
process and terminate. If the minimum heap size is calculated properly, the process may not have to do any garbage
collections at all. This optimization should not be attempted without proper measurements.

7.8.2  Process messages
All data in messages between Erlang processes is copied, with the exception of refc binaries on the same Erlang node.

When a message is sent to a process on another Erlang node, it will first be encoded to the Erlang External Format
before being sent via an TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the right
process.

The constant pool
Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module has its own pool. The
following function

DO (in R12B and later)

days_in_month(M) ->
    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

will no longer build the tuple every time it is called (only to have it discarded the next time the garbage collector was
run), but the tuple will be located in the module's constant pool.

But if a constant is sent to another process (or stored in an ETS table), it will be copied. The reason is that the run-time
system must be able to keep track of all references to constants in order to properly unload code containing constants.
(When the code is unloaded, the constants will be copied to the heap of the processes that refer to them.) The copying
of constants might be eliminated in a future release.

Loss of sharing
Shared sub-terms are not preserved when a term is sent to another process, passed as the initial process arguments
in the spawn call, or stored in an ETS table. That is an optimization. Most applications do not send messages with
shared sub-terms.

Here is an example of how a shared sub-term can be created:

kilo_byte() ->
    kilo_byte(10, [42]).

kilo_byte(0, Acc) ->
    Acc;
kilo_byte(N, Acc) ->



7.8  Processes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

    kilo_byte(N-1, [Acc|Acc]).

kilo_byte/0 creates a deep list. If we call list_to_binary/1, we can convert the deep list to a binary of
1024 bytes:

1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
1024

Using the erts_debug:size/1 BIF we can see that the deep list only requires 22 words of heap space:

2> erts_debug:size(efficiency_guide:kilo_byte()).
22

Using the erts_debug:flat_size/1 BIF, we can calculate the size of the deep list if sharing is ignored. It will
be the size of the list when it has been sent to another process or stored in an ETS table:

3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
4094

We can verify that sharing will be lost if we insert the data into an ETS table:

4> T = ets:new(tab, []).
17
5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
true
6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
4094
7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
4094

When the data has passed through an ETS table, erts_debug:size/1 and erts_debug:flat_size/1 return
the same value. Sharing has been lost.

In a future release of Erlang/OTP, we might implement a way to (optionally) preserve sharing. We have no plans to
make preserving of sharing the default behaviour, since that would penalize the vast majority of Erlang applications.

7.8.3  The SMP emulator
The SMP emulator (introduced in R11B) will take advantage of a multi-core or multi-CPU computer by running
several Erlang scheduler threads (typically, the same as the number of cores). Each scheduler thread schedules Erlang
processes in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable Erlang process
most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at the time, but you must still pay
the overhead for locking. Although we try to reduce the locking overhead as much as possible, it will never become
exactly zero.

Benchmarks that may seem to be concurrent are often sequential. The estone benchmark, for instance, is entirely
sequential. So is also the most common implementation of the "ring benchmark"; usually one process is active, while
the others wait in a receive statement.



7.9  Drivers

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The percept application can be used to profile your application to see how much potential (or lack thereof) it has for
concurrency.

7.9  Drivers
This chapter provides a (very) brief overview on how to write efficient drivers. It is assumed that you already have
a good understanding of drivers.

7.9.1  Drivers and concurrency
The run-time system will always take a lock before running any code in a driver.

By default, that lock will be at the driver level, meaning that if several ports have been opened to the same driver, only
code for one port at the same time can be running.

A driver can be configured to instead have one lock for each port.

If a driver is used in a functional way (i.e. it holds no state, but only does some heavy calculation and returns a result),
several ports with registered names can be opened beforehand and the port to be used can be chosen based on the
scheduler ID like this:

-define(PORT_NAMES(),
 {some_driver_01, some_driver_02, some_driver_03, some_driver_04,
  some_driver_05, some_driver_06, some_driver_07, some_driver_08,
  some_driver_09, some_driver_10, some_driver_11, some_driver_12,
  some_driver_13, some_driver_14, some_driver_15, some_driver_16}).

client_port() ->
    element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
     ?PORT_NAMES()).

As long as there are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

7.9.2  Avoiding copying of binaries when calling a driver
There are basically two ways to avoid copying a binary that is sent to a driver.

If the Data argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the binary
and the binary will not be copied. If the Data argument is an iolist (list of binaries and lists), all binaries in the iolist
will be copied.

Therefore, if you want to send both a pre-existing binary and some additional data to a driver without copying the
binary, you must call port_control/3 twice; once with the binary and once with the additional data. However,
that will only work if there is only one process communicating with the port (because otherwise another process could
call the driver in-between the calls).

Another way to avoid copying binaries is to implement an outputv callback (instead of an output callback) in the
driver. If a driver has an outputv callback, refc binaries passed in an iolist in the Data argument for port_command/2
will be passed as references to the driver.

7.9.3  Returning small binaries from a driver
The run-time system can represent binaries up to 64 bytes as heap binaries. They will always be copied when sent in a
messages, but they will require less memory if they are not sent to another process and garbage collection is cheaper.



7.10  Advanced

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

If you know that the binaries you return are always small, you should use driver API calls that do not require a pre-
allocated binary, for instance driver_output() or erl_drv_output_term() using the ERL_DRV_BUF2BINARY format,
to allow the run-time to construct a heap binary.

7.9.4  Returning big binaries without copying from a driver
To avoid copying data when a big binary is sent or returned from the driver to an Erlang process, the driver must first
allocate the binary and then send it to an Erlang process in some way.

Use driver_alloc_binary() to allocate a binary.

There are several ways to send a binary created with driver_alloc_binary().

• From the control callback, a binary can be returned provided that set_port_control_flags() has been called
with the flag value PORT_CONTROL_FLAG_BINARY.

• A single binary can be sent with driver_output_binary().

• Using erl_drv_output_term() or erl_drv_send_term(), a binary can be included in an Erlang term.

7.10  Advanced
7.10.1  Memory
A good start when programming efficiently is to have knowledge about how much memory different data types and
operations require. It is implementation-dependent how much memory the Erlang data types and other items consume,
but here are some figures for the erts-5.2 system (OTP release R9B). (There have been no significant changes in R13.)

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation, and a word is
therefore, 4 bytes or 8 bytes, respectively.

Data type Memory size

Small integer

1 word
On 32-bit architectures: -134217729 < i < 134217728
(28 bits)
On 64-bit architectures: -576460752303423489 < i <
576460752303423488 (60 bits)

Big integer 3..N words

Atom

1 word. Note: an atom refers into an atom table which
also consumes memory. The atom text is stored once
for each unique atom in this table. The atom table is not
garbage-collected.

Float
On 32-bit architectures: 4 words
On 64-bit architectures: 3 words

Binary 3..6 + data (can be shared)

List 1 word + 1 word per element + the size of each element

String (is the same as a list of integers) 1 word + 2 words per character

Tuple 2 words + the size of each element



7.10  Advanced

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Pid

1 word for a process identifier from the current local
node, and 5 words for a process identifier from another
node. Note: a process identifier refers into a process
table and a node table which also consumes memory.

Port

1 word for a port identifier from the current local node,
and 5 words for a port identifier from another node.
Note: a port identifier refers into a port table and a node
table which also consumes memory.

Reference

On 32-bit architectures: 5 words for a reference from
the current local node, and 7 words for a reference from
another node.
On 64-bit architectures: 4 words for a reference from
the current local node, and 6 words for a reference from
another node. Note: a reference refers into a node table
which also consumes memory.

Fun
9..13 words + size of environment. Note: a fun refers
into a fun table which also consumes memory.

Ets table
Initially 768 words + the size of each element (6 words
+ size of Erlang data). The table will grow when
necessary.

Erlang process
327 words when spawned including a heap of 233
words.

Table 10.1:   Memory size of different data types

7.10.2  System limits
The Erlang language specification puts no limits on number of processes, length of atoms etc., but for performance
and memory saving reasons, there will always be limits in a practical implementation of the Erlang language and
execution environment.

Processes

The maximum number of simultaneously alive Erlang processes is by default 32768. This limit can be configured
at startup, for more information see the +P command line flag of erl(1).

Distributed nodes

Known nodes

A remote node Y has to be known to node X if there exist any pids, ports, references, or funs (Erlang data
types) from Y on X, or if X and Y are connected. The maximum number of remote nodes simultaneously/ever
known to a node is limited by the maximum number of atoms available for node names. All data concerning
remote nodes, except for the node name atom, are garbage-collected.

Connected nodes
The maximum number of simultaneously connected nodes is limited by either the maximum number of
simultaneously known remote nodes, the maximum number of (Erlang) ports available, or the maximum
number of sockets available.



7.11  Profiling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

Characters in an atom
255

Atoms
By default, the maximum number of atoms is 1048576. This limit can be raised or lowered using the +t option.

Ets-tables
The default is 1400, can be changed with the environment variable ERL_MAX_ETS_TABLES.

Elements in a tuple
The maximum number of elements in a tuple is 67108863 (26 bit unsigned integer). Other factors such as the
available memory can of course make it hard to create a tuple of that size.

Size of binary
In the 32-bit implementation of Erlang, 536870911 bytes is the largest binary that can be constructed or
matched using the bit syntax. (In the 64-bit implementation, the maximum size is 2305843009213693951
bytes.) If the limit is exceeded, bit syntax construction will fail with a system_limit exception, while any
attempt to match a binary that is too large will fail. This limit is enforced starting with the R11B-4 release; in
earlier releases, operations on too large binaries would in general either fail or give incorrect results. In future
releases of Erlang/OTP, other operations that create binaries (such as list_to_binary/1) will probably
also enforce the same limit.

Total amount of data allocated by an Erlang node
The Erlang runtime system can use the complete 32 (or 64) bit address space, but the operating system often
limits a single process to use less than that.

Length of a node name
An Erlang node name has the form host@shortname or host@longname. The node name is used as an atom
within the system so the maximum size of 255 holds for the node name too.

Open ports

The maximum number of simultaneously open Erlang ports is often by default 16384. This limit can be configured
at startup, for more information see the +Q command line flag of erl(1).

Open files, and sockets
The maximum number of simultaneously open files and sockets depend on the maximum number of Erlang
ports available, and operating system specific settings and limits.

Number of arguments to a function or fun
255

7.11  Profiling
7.11.1  Do not guess about performance - profile
Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs.

Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing them.

Erlang/OTP contains several tools to help finding bottlenecks.

fprof provide the most detailed information about where the time is spent, but it significantly slows down the program
it profiles.

eprof provides time information of each function used in the program. No callgraph is produced but eprof has
considerable less impact on the program profiled.

If the program is too big to be profiled by fprof or eprof, cover and cprof could be used to locate parts of the
code that should be more thoroughly profiled using fprof or eprof.



7.11  Profiling

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

cover provides execution counts per line per process, with less overhead than fprof. Execution counts can with
some caution be used to locate potential performance bottlenecks. The most lightweight tool is cprof, but it only
provides execution counts on a function basis (for all processes, not per process).

7.11.2  Big systems
If you have a big system it might be interesting to run profiling on a simulated and limited scenario to start with.
But bottlenecks have a tendency to only appear or cause problems when there are many things going on at the same
time, and when there are many nodes involved. Therefore it is desirable to also run profiling in a system test plant
on a real target system.

When your system is big you do not want to run the profiling tools on the whole system. You want to concentrate on
processes and modules that you know are central and stand for a big part of the execution.

7.11.3  What to look for
When analyzing the result file from the profiling activity you should look for functions that are called many times and
have a long "own" execution time (time excluding calls to other functions). Functions that just are called very many
times can also be interesting, as even small things can add up to quite a bit if they are repeated often. Then you need
to ask yourself what can I do to reduce this time. Appropriate types of questions to ask yourself are:

• Can I reduce the number of times the function is called?

• Are there tests that can be run less often if I change the order of tests?

• Are there redundant tests that can be removed?

• Is there some expression calculated giving the same result each time?

• Are there other ways of doing this that are equivalent and more efficient?

• Can I use another internal data representation to make things more efficient?

These questions are not always trivial to answer. You might need to do some benchmarks to back up your theory, to
avoid making things slower if your theory is wrong. See benchmarking.

7.11.4  Tools
fprof
fprof measures the execution time for each function, both own time i.e how much time a function has used for its
own execution, and accumulated time i.e. including called functions. The values are displayed per process. You also
get to know how many times each function has been called. fprof is based on trace to file in order to minimize
runtime performance impact. Using fprof is just a matter of calling a few library functions, see fprof manual page
under the application tools. fprof was introduced in version R8 of Erlang/OTP.

eprof
eprof is based on the Erlang trace_info BIFs. Eprof shows how much time has been used by each process, and in
which function calls this time has been spent. Time is shown as percentage of total time and absolute time. See eprof
for additional information.

cover
cover's primary use is coverage analysis to verify test cases, making sure all relevant code is covered. cover counts
how many times each executable line of code is executed when a program is run. This is done on a per module basis.
Of course this information can be used to determine what code is run very frequently and could therefore be subject
for optimization. Using cover is just a matter of calling a few library functions, see cover manual page under the
application tools.



7.11  Profiling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

cprof
cprof is something in between fprof and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cprof has a low performance degradation effect (versus
fprof) and does not need to recompile any modules to profile (versus cover). See cprof manual page for additional
information.

Tool summarization

Tool Results
Size of
result

Effects on
program
execution

time

Records
number
of calls

Records
Execution

time

Records
called by

Records
garbage

collection

fprof
per process
to screen/
file

large
significant
slowdown

yes
total and
own

yes yes

eprof
per process/
function to
screen/file

medium
small
slowdown

yes only total no no

cover
per module
to screen/
file

small
moderate
slowdown

yes, per line no no no

cprof
per module
to caller

small
small
slowdown

yes no no no

Table 11.1:  

7.11.5  Benchmarking
The main purpose of benchmarking is to find out which implementation of a given algorithm or function is the fastest.
Benchmarking is far from an exact science. Today's operating systems generally run background tasks that are difficult
to turn off. Caches and multiple CPU cores doesn't make it any easier. It would be best to run Unix-computers in
single-user mode when benchmarking, but that is inconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

timer:tc/3 measures wall-clock time. The advantage with wall-clock time is that I/O, swapping, and other activities
in the operating-system kernel are included in the measurements. The disadvantage is that the the measurements will
vary wildly. Usually it is best to run the benchmark several times and note the shortest time - that time should be the
minimum time that is possible to achieve under the best of circumstances.

statistics/1 with the argument runtime measures CPU time spent in the Erlang virtual machine. The advantage is
that the results are more consistent from run to run. The disadvantage is that the time spent in the operating system
kernel (such as swapping and I/O) are not included. Therefore, measuring CPU time is misleading if any I/O (file or
socket) is involved.

It is probably a good idea to do both wall-clock measurements and CPU time measurements.

Some additional advice:

• The granularity of both types of measurement could be quite high so you should make sure that each individual
measurement lasts for at least several seconds.



7.11  Profiling

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• To make the test fair, each new test run should run in its own, newly created Erlang process. Otherwise, if all
tests run in the same process, the later tests would start out with larger heap sizes and therefore probably do less
garbage collections. You could also consider restarting the Erlang emulator between each test.

• Do not assume that the fastest implementation of a given algorithm on computer architecture X also is the
fastest on computer architecture Y.



8.1  Introduction

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

8    Interoperability Tutorial

8.1  Introduction
8.1.1  Purpose
The purpose of this tutorial is to give the reader an orientation of the different interoperability mechanisms that can
be used when integrating a program written in Erlang with a program written in another programming language, from
the Erlang programmer's point of view.

8.1.2  Prerequisites
It is assumed that the reader is a skilled Erlang programmer, familiar with concepts such as Erlang data types, processes,
messages and error handling.

To illustrate the interoperability principles C programs running in a UNIX environment have been used. It is assumed
that the reader has enough knowledge to be able to apply these principles to the relevant programming languages and
platforms.

Note:
For the sake of readability, the example code has been kept as simple as possible. It does not include functionality
such as error handling, which might be vital in a real-life system.

8.2  Overview
8.2.1  Built-In Mechanisms
There are two interoperability mechanisms built into the Erlang runtime system. One is distributed Erlang and the
other one is ports. A variation of ports is linked-in drivers.

Distributed Erlang
An Erlang runtime system is made into a distributed Erlang node by giving it a name. A distributed Erlang node
can connect to and monitor other nodes, it is also possible to spawn processes at other nodes. Message passing and
error handling between processes at different nodes are transparent. There exists a number of useful stdlib modules
intended for use in a distributed Erlang system; for example, global which provides global name registration. The
distribution mechanism is implemented using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for communication Erlang-Erlang. It can also be used for
communication between Erlang and C, if the C program is implemented as a C node, see below.

Where to read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.
In the Erlang/OTP documentation there is a chapter about distributed Erlang in "Getting Started" (User's Guide).
Relevant man pages are erlang (describes the BIFs) and global, net_adm, pg2, rpc, pool and slave.



8.2  Overview

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Ports and Linked-In Drivers
Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes (not Erlang terms). This means that the programmer may have to invent a
suitable encoding and decoding scheme.

The actual implementation of the port mechanism depends on the platform. In the Unix case, pipes are used and the
external program should as default read from standard input and write to standard output. Theoretically, the external
program could be written in any programming language as long as it can handle the interprocess communication
mechanism with which the port is implemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable, consider for example drivers with very hard time requirements. It is therefore possible to write a program in
C according to certain principles and dynamically link it to the Erlang runtime system, this is called a linked-in driver.

When to use: Being the basic mechanism, ports can be used for all kinds of interoperability situations where the Erlang
program and the other program runs on the same machine. Programming is fairly straight-forward.
Linked-in drivers involves writing certain call-back functions in C. Very good skills are required as the code is linked
to the Erlang runtime system.

Warning:
An erroneous linked-in driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Where to read more: Ports are described in the "Miscellaneous Items" chapter of the Erlang book. Linked-in drivers
are described in Appendix E.
The BIF open_port/2 is documented in the man page for erlang. For linked-in drivers, the programmer needs
to read the information in the man page for erl_ddll.

Examples:Port example.

8.2.2  C and Java Libraries
Erl_Interface
Very often the program at the other side of a port is a C program. To help the C programmer a library called
Erl_Interface has been developed. It consists of five parts:

• erl_marshal, erl_eterm, erl_format, erl_malloc Handling of the Erlang external term format.

• erl_connect Communication with distributed Erlang, see C nodes below.

• erl_error Error print routines.

• erl_global Access globally registered names.

• Registry Store and backup of key-value pairs.

The Erlang external term format is a representation of an Erlang term as a sequence of bytes, a binary. Conversion
between the two representations is done using BIFs.

Binary = term_to_binary(Term)
Term = binary_to_term(Binary)



8.2  Overview

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into a struct similar to an Erlang term.
Such a struct can be manipulated in different ways and be converted to the Erlang external format and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Where to read more: Read about the Erl_Interface User's Guide; Command Reference and Library Reference. In R5B
and earlier versions the information can be found under the Kernel application.

Examples:erl_interface example.

C Nodes
A C program which uses the Erl_Interface functions for setting up a connection to and communicating with a distributed
Erlang node is called a C node, or a hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's point of view is extremely easy, since the C program behaves as a distributed Erlang node.

When to use: C nodes can typically be used on device processors (as opposed to control processors) where C is a better
choice than Erlang due to memory limitations and/or application characteristics.

Where to read more: In the erl_connect part of the Erl_Interface documentation, see above. The programmer also
needs to be familiar with TCP/IP sockets, see below, and distributed Erlang, see above.

Examples:C node example.

Jinterface
In Erlang/OTP R6B, a library similar to Erl_Interface for Java was added called jinterface.

8.2.3  Standard Protocols
Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets, SNMP, HTTP and IIOP (CORBA). Using one of the latter
three requires good knowledge about the protocol and is not covered by this tutorial. Please refer to the documentation
for the SNMP, Inets and Orber applications, respectively.

Sockets
Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at
a certain host with a certain port number. A connector socket ("client") aware of the initiator's host name and port
number can connect to it and data can be sent between them. Connection-less socket communication (UDP) consists of
an initiator socket at a certain host with a certain port number and a connector socket sending data to it. For a detailed
description of the socket concept, please refer to a suitable book about network programming. A suggestion is UNIX
Network Programming, Volume 1: Networking APIs - Sockets and XTI by W. Richard Stevens, ISBN: 013490012X.

In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the Kernel modules gen_tcp and gen_udp. Both
are easy to use and do not require any deeper knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.

Where to read more: The man pages for gen_tcp and gen_udp.

8.2.4  IC
IC (IDL Compiler) is an interface generator which given an IDL interface specification automatically generates stub
code in Erlang, C or Java. Please refer to the IC User's Guide and IC Reference Manual.



8.3  Problem Example

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.2.5  Old Applications
There are two old applications of interest when talking about interoperability: IG which was removed in Erlang/OTP
R6B and Jive which was removed in Erlang/OTP R7B. Both applications have been replaced by IC and are mentioned
here for reference only.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang program
and a C program, given a C header file with certain keywords. Jive provided a simple interface between an Erlang
program and a Java program.

8.3  Problem Example
8.3.1  Description
A common interoperability situation is when there exists a piece of code solving some complex problem, and we
would like to incorporate this piece of code in our Erlang program. Suppose for example we have the following C
functions that we would like to be able to call from Erlang.

/* complex.c */

int foo(int x) {
  return x+1;
}

int bar(int y) {
  return y*2;
}

(For the sake of keeping the example as simple as possible, the functions are not very complicated in this case).

Preferably we would like to able to call foo and bar without having to bother about them actually being C functions.

% Erlang code
...
Res = complex:foo(X),
...

The communication with C is hidden in the implementation of complex.erl. In the following chapters it is shown
how this module can be implemented using the different interoperability mechanisms.

8.4  Ports
This is an example of how to solve the example problem by using a port.



8.4  Ports

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

Figure 4.1:   Port Communication.

8.4.1  Erlang Program
First of all communication between Erlang and C must be established by creating the port. The Erlang process which
creates a port is said to be the connected process of the port. All communication to and from the port should go via
the connected process. If the connected process terminates, so will the port (and the external program, if it is written
correctly).

The port is created using the BIF open_port/2 with {spawn,ExtPrg} as the first argument. The string ExtPrg
is the name of the external program, including any command line arguments. The second argument is a list of options,
in this case only {packet,2}. This option says that a two byte length indicator will be used to simplify the
communication between C and Erlang. Adding the length indicator will be done automatically by the Erlang port, but
must be done explicitly in the external C program.

The process is also set to trap exits which makes it possible to detect if the external program fails.

-module(complex1).
-export([start/1, init/1]).

start(ExtPrg) ->
  spawn(?MODULE, init, [ExtPrg]).

init(ExtPrg) ->
  register(complex, self()),
  process_flag(trap_exit, true),
  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
  loop(Port).

Now it is possible to implement complex1:foo/1 and complex1:bar/1. They both send a message to the
complex process and receive the reply.

foo(X) ->
  call_port({foo, X}).
bar(Y) ->
  call_port({bar, Y}).



8.4  Ports

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

call_port(Msg) ->
  complex ! {call, self(), Msg},
  receive
    {complex, Result} ->
      Result
  end.

The complex process encodes the message into a sequence of bytes, sends it to the port, waits for a reply, decodes
the reply and sends it back to the caller.

loop(Port) ->
  receive
    {call, Caller, Msg} ->
      Port ! {self(), {command, encode(Msg)}},
      receive
    {Port, {data, Data}} ->
          Caller ! {complex, decode(Data)}
      end,
      loop(Port)
 end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/
decoding scheme is employed where foo is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte as well.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].
      
decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failures is shown below.

-module(complex1).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
    spawn(?MODULE, init, [ExtPrg]).
stop() ->
    complex ! stop.

foo(X) ->
    call_port({foo, X}).
bar(Y) ->
    call_port({bar, Y}).

call_port(Msg) ->
    complex ! {call, self(), Msg},
    receive
 {complex, Result} ->
     Result
    end.

init(ExtPrg) ->
    register(complex, self()),
    process_flag(trap_exit, true),



8.4  Ports

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    loop(Port).

loop(Port) ->
    receive
 {call, Caller, Msg} ->
     Port ! {self(), {command, encode(Msg)}},
     receive
  {Port, {data, Data}} ->
      Caller ! {complex, decode(Data)}
     end,
     loop(Port);
 stop ->
     Port ! {self(), close},
     receive
  {Port, closed} ->
      exit(normal)
     end;
 {'EXIT', Port, Reason} ->
     exit(port_terminated)
    end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.4.2  C Program
On the C side, it is necessary to write functions for receiving and sending data with two byte length indicators from/
to Erlang. By default, the C program should read from standard input (file descriptor 0) and write to standard output
(file descriptor 1). Examples of such functions, read_cmd/1 and write_cmd/2, are shown below.

/* erl_comm.c */

typedef unsigned char byte;

read_cmd(byte *buf)
{
  int len;

  if (read_exact(buf, 2) != 2)
    return(-1);
  len = (buf[0] << 8) | buf[1];
  return read_exact(buf, len);
}

write_cmd(byte *buf, int len)
{
  byte li;

  li = (len >> 8) & 0xff;
  write_exact(&li, 1);
  
  li = len & 0xff;
  write_exact(&li, 1);

  return write_exact(buf, len);
}

read_exact(byte *buf, int len)



8.4  Ports

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

{
  int i, got=0;

  do {
    if ((i = read(0, buf+got, len-got)) <= 0)
      return(i);
    got += i;
  } while (got<len);

  return(len);
}

write_exact(byte *buf, int len)
{
  int i, wrote = 0;

  do {
    if ((i = write(1, buf+wrote, len-wrote)) <= 0)
      return (i);
    wrote += i;
  } while (wrote<len);

  return (len);
}

Note that stdin and stdout are for buffered input/output and should not be used for the communication with Erlang!

In the main function, the C program should listen for a message from Erlang and, according to the selected encoding/
decoding scheme, use the first byte to determine which function to call and the second byte as argument to the function.
The result of calling the function should then be sent back to Erlang.

/* port.c */

typedef unsigned char byte;

int main() {
  int fn, arg, res;
  byte buf[100];

  while (read_cmd(buf) > 0) {
    fn = buf[0];
    arg = buf[1];
    
    if (fn == 1) {
      res = foo(arg);
    } else if (fn == 2) {
      res = bar(arg);
    }

    buf[0] = res;
    write_cmd(buf, 1);
  }
}
      

Note that the C program is in a while-loop checking for the return value of read_cmd/1. The reason for this is
that the C program must detect when the port gets closed and terminate.



8.5  Erl_Interface

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.4.3  Running the Example
1. Compile the C code.

unix> gcc -o extprg complex.c erl_comm.c port.c

2. Start Erlang and compile the Erlang code.

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ^G)
1> c(complex1).
{ok,complex1}

3. Run the example.

2> complex1:start("extprg").
<0.34.0>
3> complex1:foo(3).
4
4> complex1:bar(5).
10
5> complex1:stop().
stop

8.5  Erl_Interface
This is an example of how to solve the example problem by using a port and erl_interface. It is necessary to
read the port example before reading this chapter.

8.5.1  Erlang Program
The example below shows an Erlang program communicating with a C program over a plain port with home made
encoding.

-module(complex1).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
    spawn(?MODULE, init, [ExtPrg]).
stop() ->
    complex ! stop.

foo(X) ->
    call_port({foo, X}).
bar(Y) ->
    call_port({bar, Y}).

call_port(Msg) ->
    complex ! {call, self(), Msg},



8.5  Erl_Interface

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    receive
 {complex, Result} ->
     Result
    end.

init(ExtPrg) ->
    register(complex, self()),
    process_flag(trap_exit, true),
    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    loop(Port).

loop(Port) ->
    receive
 {call, Caller, Msg} ->
     Port ! {self(), {command, encode(Msg)}},
     receive
  {Port, {data, Data}} ->
      Caller ! {complex, decode(Data)}
     end,
     loop(Port);
 stop ->
     Port ! {self(), close},
     receive
  {Port, closed} ->
      exit(normal)
     end;
 {'EXIT', Port, Reason} ->
     exit(port_terminated)
    end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

Compared to the Erlang module above used for the plain port, there are two differences when using Erl_Interface
on the C side: Since Erl_Interface operates on the Erlang external term format the port must be set to use binaries
and, instead of inventing an encoding/decoding scheme, the BIFs term_to_binary/1 and binary_to_term/1
should be used. That is:

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
receive
  {Port, {data, Data}} ->
    Caller ! {complex, decode(Data)}
end

is replaced with:



8.5  Erl_Interface

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

Port ! {self(), {command, term_to_binary(Msg)}},
receive
  {Port, {data, Data}} ->
    Caller ! {complex, binary_to_term(Data)}
end

The resulting Erlang program is shown below.

-module(complex2).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
    spawn(?MODULE, init, [ExtPrg]).
stop() ->
    complex ! stop.

foo(X) ->
    call_port({foo, X}).
bar(Y) ->
    call_port({bar, Y}).

call_port(Msg) ->
    complex ! {call, self(), Msg},
    receive
 {complex, Result} ->
     Result
    end.

init(ExtPrg) ->
    register(complex, self()),
    process_flag(trap_exit, true),
    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
    loop(Port).

loop(Port) ->
    receive
 {call, Caller, Msg} ->
     Port ! {self(), {command, term_to_binary(Msg)}},
     receive
  {Port, {data, Data}} ->
      Caller ! {complex, binary_to_term(Data)}
     end,
     loop(Port);
 stop ->
     Port ! {self(), close},
     receive
  {Port, closed} ->
      exit(normal)
     end;
 {'EXIT', Port, Reason} ->
     exit(port_terminated)
    end.

Note that calling complex2:foo/1 and complex2:bar/1 will result in the tuple {foo,X} or {bar,Y} being
sent to the complex process, which will code them as binaries and send them to the port. This means that the C
program must be able to handle these two tuples.



8.5  Erl_Interface

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5.2  C Program
The example below shows a C program communicating with an Erlang program over a plain port with home made
encoding.

/* port.c */

typedef unsigned char byte;

int main() {
  int fn, arg, res;
  byte buf[100];

  while (read_cmd(buf) > 0) {
    fn = buf[0];
    arg = buf[1];
    
    if (fn == 1) {
      res = foo(arg);
    } else if (fn == 2) {
      res = bar(arg);
    }

    buf[0] = res;
    write_cmd(buf, 1);
  }
}
      

Compared to the C program above used for the plain port the while-loop must be rewritten. Messages coming from
the port will be on the Erlang external term format. They should be converted into an ETERM struct, a C struct similar
to an Erlang term. The result of calling foo() or bar() must be converted to the Erlang external term format before
being sent back to the port. But before calling any other erl_interface function, the memory handling must be
initiated.

erl_init(NULL, 0);

For reading from and writing to the port the functions read_cmd() and write_cmd() from the erl_comm.c
example below can still be used.

/* erl_comm.c */

typedef unsigned char byte;

read_cmd(byte *buf)
{
  int len;

  if (read_exact(buf, 2) != 2)
    return(-1);
  len = (buf[0] << 8) | buf[1];
  return read_exact(buf, len);
}



8.5  Erl_Interface

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

write_cmd(byte *buf, int len)
{
  byte li;

  li = (len >> 8) & 0xff;
  write_exact(&li, 1);
  
  li = len & 0xff;
  write_exact(&li, 1);

  return write_exact(buf, len);
}

read_exact(byte *buf, int len)
{
  int i, got=0;

  do {
    if ((i = read(0, buf+got, len-got)) <= 0)
      return(i);
    got += i;
  } while (got<len);

  return(len);
}

write_exact(byte *buf, int len)
{
  int i, wrote = 0;

  do {
    if ((i = write(1, buf+wrote, len-wrote)) <= 0)
      return (i);
    wrote += i;
  } while (wrote<len);

  return (len);
}

The function erl_decode() from erl_marshal will convert the binary into an ETERM struct.

int main() {
  ETERM *tuplep;

  while (read_cmd(buf) > 0) {
    tuplep = erl_decode(buf);

In this case tuplep now points to an ETERM struct representing a tuple with two elements; the function name (atom)
and the argument (integer). By using the function erl_element() from erl_eterm it is possible to extract these
elements, which also must be declared as pointers to an ETERM struct.

    fnp = erl_element(1, tuplep);
    argp = erl_element(2, tuplep);

The macros ERL_ATOM_PTR and ERL_INT_VALUE from erl_eterm can be used to obtain the actual values of
the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo"
and "bar" it can be decided which function to call.



8.5  Erl_Interface

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
      res = foo(ERL_INT_VALUE(argp));
    } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
      res = bar(ERL_INT_VALUE(argp));
    }

Now an ETERM struct representing the integer result can be constructed using the function erl_mk_int() from
erl_eterm. It is also possible to use the function erl_format() from the module erl_format.

    intp = erl_mk_int(res);

The resulting ETERM struct is converted into the Erlang external term format using the function erl_encode()
from erl_marshal and sent to Erlang using write_cmd().

    erl_encode(intp, buf);
    write_cmd(buf, erl_eterm_len(intp));

Last, the memory allocated by the ETERM creating functions must be freed.

    erl_free_compound(tuplep);
    erl_free_term(fnp);
    erl_free_term(argp);
    erl_free_term(intp);

The resulting C program is shown below:

/* ei.c */

#include "erl_interface.h"
#include "ei.h"

typedef unsigned char byte;

int main() {
  ETERM *tuplep, *intp;
  ETERM *fnp, *argp;
  int res;
  byte buf[100];
  long allocated, freed;

  erl_init(NULL, 0);

  while (read_cmd(buf) > 0) {
    tuplep = erl_decode(buf);
    fnp = erl_element(1, tuplep);
    argp = erl_element(2, tuplep);
    
    if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
      res = foo(ERL_INT_VALUE(argp));
    } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 17) == 0) {
      res = bar(ERL_INT_VALUE(argp));
    }



8.6  Port drivers

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

    intp = erl_mk_int(res);
    erl_encode(intp, buf);
    write_cmd(buf, erl_term_len(intp));

    erl_free_compound(tuplep);
    erl_free_term(fnp);
    erl_free_term(argp);
    erl_free_term(intp);
  }
}
      

8.5.3  Running the Example
1. Compile the C code, providing the paths to the include files erl_interface.h and ei.h, and to the libraries
erl_interface and ei.

unix> gcc -o extprg -I/usr/local/otp/lib/erl_interface-3.2.1/include \\ 
      -L/usr/local/otp/lib/erl_interface-3.2.1/lib \\ 
      complex.c erl_comm.c ei.c -lerl_interface -lei

In R5B and later versions of OTP, the include and lib directories are situated under OTPROOT/lib/
erl_interface-VSN, where OTPROOT is the root directory of the OTP installation (/usr/local/otp in the
example above) and VSN is the version of the erl_interface application (3.2.1 in the example above).
In R4B and earlier versions of OTP, include and lib are situated under OTPROOT/usr.

2. Start Erlang and compile the Erlang code.

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ^G)
1> c(complex2).
{ok,complex2}

3. Run the example.

2> complex2:start("extprg").
<0.34.0>
3> complex2:foo(3).
4
4> complex2:bar(5).
10
5> complex2:bar(352).
704
6> complex2:stop().
stop

8.6  Port drivers
This is an example of how to solve the example problem by using a linked in port driver.



8.6  Port drivers

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Figure 6.1:   Port Driver Communication.

8.6.1  Port Drivers
A port driver is a linked in driver that is accessible as a port from an Erlang program. It is a shared library (SO in Unix,
DLL in Windows), with special entry points. The Erlang runtime calls these entry points, when the driver is started
and when data is sent to the port. The port driver can also send data to Erlang.

Since a port driver is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang. Calling functions in the port driver requires no context switches. But it is also the least safe, because a crash
in the port driver brings the emulator down too.

8.6.2  Erlang Program
Just as with a port program, the port communicates with a Erlang process. All communication goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. This is done with the function erl_dll:load_driver/1,
with the name of the shared library as argument.

The port is then created using the BIF open_port/2 with the tuple {spawn, DriverName} as the first argument.
The string SharedLib is the name of the port driver. The second argument is a list of options, none in this case.

-module(complex5).
-export([start/1, init/1]).

start(SharedLib) ->
    case erl_ddll:load_driver(".", SharedLib) of
        ok -> ok;
        {error, already_loaded} -> ok;
        _ -> exit({error, could_not_load_driver})
    end,
    spawn(?MODULE, init, [SharedLib]).



8.6  Port drivers

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

init(SharedLib) ->
  register(complex, self()),
  Port = open_port({spawn, SharedLib}, []),
  loop(Port).

Now it is possible to implement complex5:foo/1 and complex5:bar/1. They both send a message to the
complex process and receive the reply.

foo(X) ->
    call_port({foo, X}).
bar(Y) ->
    call_port({bar, Y}).

call_port(Msg) ->
    complex ! {call, self(), Msg},
    receive
        {complex, Result} ->
            Result
    end.

The complex process encodes the message into a sequence of bytes, sends it to the port, waits for a reply, decodes
the reply and sends it back to the caller.

loop(Port) ->
    receive
        {call, Caller, Msg} ->
            Port ! {self(), {command, encode(Msg)}},
            receive
                {Port, {data, Data}} ->
                    Caller ! {complex, decode(Data)}
            end,
            loop(Port)
    end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/
decoding scheme is employed where foo is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte as well.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].
      
decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failures is shown below.

-module(complex5).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(SharedLib) ->
    case erl_ddll:load_driver(".", SharedLib) of
 ok -> ok;



8.6  Port drivers

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

 {error, already_loaded} -> ok;
 _ -> exit({error, could_not_load_driver})
    end,
    spawn(?MODULE, init, [SharedLib]).

init(SharedLib) ->
    register(complex, self()),
    Port = open_port({spawn, SharedLib}, []),
    loop(Port).

stop() ->
    complex ! stop.

foo(X) ->
    call_port({foo, X}).
bar(Y) ->
    call_port({bar, Y}).

call_port(Msg) ->
    complex ! {call, self(), Msg},
    receive
 {complex, Result} ->
     Result
    end.

loop(Port) ->
    receive
 {call, Caller, Msg} ->
     Port ! {self(), {command, encode(Msg)}},
     receive
  {Port, {data, Data}} ->
      Caller ! {complex, decode(Data)}
     end,
     loop(Port);
 stop ->
     Port ! {self(), close},
     receive
  {Port, closed} ->
      exit(normal)
     end;
 {'EXIT', Port, Reason} ->
     io:format("~p ~n", [Reason]),
     exit(port_terminated)
    end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.6.3  C Driver
The C driver is a module that is compiled and linked into a shared library. It uses a driver structure, and includes the
header file erl_driver.h.

The driver structure is filled with the driver name and function pointers. It is returned from the special entry point,
declared with the macro DRIVER_INIT(<driver_name>).

The functions for receiving and sending data, are combined into a function, pointed out by the driver structure. The data
sent into the port is given as arguments, and the data the port sends back is sent with the C-function driver_output.

Since the driver is a shared module, not a program, no main function should be present. All function pointers are not
used in our example, and the corresponding fields in the driver_entry structure are set to NULL.



8.6  Port drivers

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

All functions in the driver, takes a handle (returned from start), that is just passed along by the erlang process. This
must in some way refer to the port driver instance.

The example_drv_start, is the only function that is called with a handle to the port instance, so we must save this. It is
customary to use a allocated driver-defined structure for this one, and pass a pointer back as a reference.

It is not a good idea to use a global variable; since the port driver can be spawned by multiple Erlang processes, this
driver-structure should be instantiated multiple times.

/* port_driver.c */

#include <stdio.h>
#include "erl_driver.h"

typedef struct {
    ErlDrvPort port;
} example_data;

static ErlDrvData example_drv_start(ErlDrvPort port, char *buff)
{
    example_data* d = (example_data*)driver_alloc(sizeof(example_data));
    d->port = port;
    return (ErlDrvData)d;
}

static void example_drv_stop(ErlDrvData handle)
{
    driver_free((char*)handle);
}

static void example_drv_output(ErlDrvData handle, char *buff, 
          ErlDrvSizeT bufflen)
{
    example_data* d = (example_data*)handle;
    char fn = buff[0], arg = buff[1], res;
    if (fn == 1) {
      res = foo(arg);
    } else if (fn == 2) {
      res = bar(arg);
    }
    driver_output(d->port, &res, 1);
}

ErlDrvEntry example_driver_entry = {
    NULL,   /* F_PTR init, called when driver is loaded */
    example_drv_start,  /* L_PTR start, called when port is opened */
    example_drv_stop,  /* F_PTR stop, called when port is closed */
    example_drv_output,  /* F_PTR output, called when erlang has sent */
    NULL,   /* F_PTR ready_input, called when input descriptor ready */
    NULL,   /* F_PTR ready_output, called when output descriptor ready */
    "example_drv",  /* char *driver_name, the argument to open_port */
    NULL,   /* F_PTR finish, called when unloaded */
    NULL,                       /* void *handle, Reserved by VM */
    NULL,   /* F_PTR control, port_command callback */
    NULL,   /* F_PTR timeout, reserved */
    NULL,   /* F_PTR outputv, reserved */
    NULL,                       /* F_PTR ready_async, only for async drivers */
    NULL,                       /* F_PTR flush, called when port is about 
       to be closed, but there is data in driver 
       queue */
    NULL,                       /* F_PTR call, much like control, sync call
       to driver */



8.7  C Nodes

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    NULL,                       /* F_PTR event, called when an event selected 
       by driver_event() occurs. */
    ERL_DRV_EXTENDED_MARKER,    /* int extended marker, Should always be 
       set to indicate driver versioning */
    ERL_DRV_EXTENDED_MAJOR_VERSION, /* int major_version, should always be 
           set to this value */
    ERL_DRV_EXTENDED_MINOR_VERSION, /* int minor_version, should always be 
           set to this value */
    0,                          /* int driver_flags, see documentation */
    NULL,                       /* void *handle2, reserved for VM use */
    NULL,                       /* F_PTR process_exit, called when a 
       monitored process dies */
    NULL                        /* F_PTR stop_select, called to close an 
       event object */
};

DRIVER_INIT(example_drv) /* must match name in driver_entry */
{
    return &example_driver_entry;
}

8.6.4  Running the Example
1. Compile the C code.

unix> gcc -o exampledrv -fpic -shared complex.c port_driver.c
windows> cl -LD -MD -Fe exampledrv.dll complex.c port_driver.c

2. Start Erlang and compile the Erlang code.

> erl
Erlang (BEAM) emulator version 5.1

Eshell V5.1 (abort with ^G)
1> c(complex5).
{ok,complex5}

3. Run the example.

2> complex5:start("example_drv").
<0.34.0>
3> complex5:foo(3).
4
4> complex5:bar(5).
10
5> complex5:stop().
stop

8.7  C Nodes
This is an example of how to solve the example problem by using a C node. Note that a C node would not typically
be used for solving a simple problem like this, a port would suffice.



8.7  C Nodes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

8.7.1  Erlang Program
From Erlang's point of view, the C node is treated like a normal Erlang node. Therefore, calling the functions foo
and bar only involves sending a message to the C node asking for the function to be called, and receiving the result.
Sending a message requires a recipient; a process which can be defined using either a pid or a tuple consisting of a
registered name and a node name. In this case a tuple is the only alternative as no pid is known.

{RegName, Node} ! Msg

The node name Node should be the name of the C node. If short node names are used, the plain name of the node will
be cN where N is an integer. If long node names are used, there is no such restriction. An example of a C node name
using short node names is thus c1@idril, an example using long node names is cnode@idril.ericsson.se.

The registered name RegName could be any atom. The name can be ignored by the C code, or it could be used for
example to distinguish between different types of messages. Below is an example of what the Erlang code could look
like when using short node names.

-module(complex3).
-export([foo/1, bar/1]).

foo(X) ->
    call_cnode({foo, X}).
bar(Y) ->
    call_cnode({bar, Y}).

call_cnode(Msg) ->
    {any, c1@idril} ! {call, self(), Msg},
    receive
 {cnode, Result} ->
     Result
    end.

When using long node names the code is slightly different as shown in the following example:

-module(complex4).
-export([foo/1, bar/1]).

foo(X) ->
    call_cnode({foo, X}).
bar(Y) ->
    call_cnode({bar, Y}).

call_cnode(Msg) ->
    {any, 'cnode@idril.du.uab.ericsson.se'} ! {call, self(), Msg},
    receive
 {cnode, Result} ->
     Result
    end.



8.7  C Nodes

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7.2  C Program
Setting Up the Communication
Before calling any other Erl_Interface function, the memory handling must be initiated.

erl_init(NULL, 0);

Now the C node can be initiated. If short node names are used, this is done by calling erl_connect_init().

erl_connect_init(1, "secretcookie", 0);

The first argument is the integer which is used to construct the node name. In the example the plain node name will
be c1.
The second argument is a string defining the magic cookie.
The third argument is an integer which is used to identify a particular instance of a C node.

If long node node names are used, initiation is done by calling erl_connect_xinit().

erl_connect_xinit("idril", "cnode", "cnode@idril.ericsson.se",
                  &addr, "secretcookie", 0);

The first three arguments are the host name, the plain node name, and the full node name. The fourth argument is a
pointer to an in_addr struct with the IP address of the host, and the fifth and sixth arguments are the magic cookie
and instance number.

The C node can act as a server or a client when setting up the communication Erlang-C. If it acts as a client, it connects
to an Erlang node by calling erl_connect(), which will return an open file descriptor at success.

fd = erl_connect("e1@idril");

If the C node acts as a server, it must first create a socket (call bind() and listen()) listening to a certain port
number port. It then publishes its name and port number with epmd (the Erlang port mapper daemon, see the man
page for epmd).

erl_publish(port);

Now the C node server can accept connections from Erlang nodes.

fd = erl_accept(listen, &conn);

The second argument to erl_accept is a struct ErlConnect that will contain useful information when a
connection has been established; for example, the name of the Erlang node.



8.7  C Nodes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

Sending and Receiving Messages
The C node can receive a message from Erlang by calling erl_receive msg(). This function reads data from the
open file descriptor fd into a buffer and puts the result in an ErlMessage struct emsg. ErlMessage has a field
type defining which kind of data was received. In this case the type of interest is ERL_REG_SEND which indicates
that Erlang sent a message to a registered process at the C node. The actual message, an ETERM, will be in the msg field.

It is also necessary to take care of the types ERL_ERROR (an error occurred) and ERL_TICK (alive check from other
node, should be ignored). Other possible types indicate process events such as link/unlink and exit.

  while (loop) {

    got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);
    if (got == ERL_TICK) {
      /* ignore */
    } else if (got == ERL_ERROR) {
      loop = 0; /* exit while loop */
    } else {
      if (emsg.type == ERL_REG_SEND) {

Since the message is an ETERM struct, Erl_Interface functions can be used to manipulate it. In this case, the message
will be a 3-tuple (because that was how the Erlang code was written, see above). The second element will be the
pid of the caller and the third element will be the tuple {Function,Arg} determining which function to call with
which argument. The result of calling the function is made into an ETERM struct as well and sent back to Erlang using
erl_send(), which takes the open file descriptor, a pid and a term as arguments.

        fromp = erl_element(2, emsg.msg);
        tuplep = erl_element(3, emsg.msg);
        fnp = erl_element(1, tuplep);
        argp = erl_element(2, tuplep);

        if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
          res = foo(ERL_INT_VALUE(argp));
        } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
          res = bar(ERL_INT_VALUE(argp));
        }

        resp = erl_format("{cnode, ~i}", res);
        erl_send(fd, fromp, resp);

Finally, the memory allocated by the ETERM creating functions (including erl_receive_msg() must be freed.

        erl_free_term(emsg.from); erl_free_term(emsg.msg);
        erl_free_term(fromp); erl_free_term(tuplep);
        erl_free_term(fnp); erl_free_term(argp);
        erl_free_term(resp);

The resulting C programs can be found in looks like the following examples. First a C node server using short node
names.

/* cnode_s.c */



8.7  C Nodes

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl_interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {
  int port;                                /* Listen port number */
  int listen;                              /* Listen socket */
  int fd;                                  /* fd to Erlang node */
  ErlConnect conn;                         /* Connection data */

  int loop = 1;                            /* Loop flag */
  int got;                                 /* Result of receive */
  unsigned char buf[BUFSIZE];              /* Buffer for incoming message */
  ErlMessage emsg;                         /* Incoming message */

  ETERM *fromp, *tuplep, *fnp, *argp, *resp;
  int res;

  port = atoi(argv[1]);

  erl_init(NULL, 0);

  if (erl_connect_init(1, "secretcookie", 0) == -1)
    erl_err_quit("erl_connect_init");

  /* Make a listen socket */
  if ((listen = my_listen(port)) <= 0)
    erl_err_quit("my_listen");

  if (erl_publish(port) == -1)
    erl_err_quit("erl_publish");

  if ((fd = erl_accept(listen, &conn)) == ERL_ERROR)
    erl_err_quit("erl_accept");
  fprintf(stderr, "Connected to %s\n\r", conn.nodename);

  while (loop) {

    got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);
    if (got == ERL_TICK) {
      /* ignore */
    } else if (got == ERL_ERROR) {
      loop = 0;
    } else {

      if (emsg.type == ERL_REG_SEND) {
 fromp = erl_element(2, emsg.msg);
 tuplep = erl_element(3, emsg.msg);
 fnp = erl_element(1, tuplep);
 argp = erl_element(2, tuplep);

 if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
   res = foo(ERL_INT_VALUE(argp));
 } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
   res = bar(ERL_INT_VALUE(argp));
 }

 resp = erl_format("{cnode, ~i}", res);
 erl_send(fd, fromp, resp);



8.7  C Nodes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

 erl_free_term(emsg.from); erl_free_term(emsg.msg);
 erl_free_term(fromp); erl_free_term(tuplep);
 erl_free_term(fnp); erl_free_term(argp);
 erl_free_term(resp);
      }
    }
  } /* while */
}

  
int my_listen(int port) {
  int listen_fd;
  struct sockaddr_in addr;
  int on = 1;

  if ((listen_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    return (-1);

  setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

  memset((void*) &addr, 0, (size_t) sizeof(addr));
  addr.sin_family = AF_INET;
  addr.sin_port = htons(port);
  addr.sin_addr.s_addr = htonl(INADDR_ANY);

  if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
    return (-1);

  listen(listen_fd, 5);
  return listen_fd;
}

Below follows a C node server using long node names.

/* cnode_s2.c */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl_interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {
  struct in_addr addr;                     /* 32-bit IP number of host */
  int port;                                /* Listen port number */
  int listen;                              /* Listen socket */
  int fd;                                  /* fd to Erlang node */
  ErlConnect conn;                         /* Connection data */

  int loop = 1;                            /* Loop flag */
  int got;                                 /* Result of receive */
  unsigned char buf[BUFSIZE];              /* Buffer for incoming message */
  ErlMessage emsg;                         /* Incoming message */

  ETERM *fromp, *tuplep, *fnp, *argp, *resp;
  int res;



8.7  C Nodes

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

  
  port = atoi(argv[1]);

  erl_init(NULL, 0);

  addr.s_addr = inet_addr("134.138.177.89");
  if (erl_connect_xinit("idril", "cnode", "cnode@idril.du.uab.ericsson.se",
   &addr, "secretcookie", 0) == -1)
    erl_err_quit("erl_connect_xinit");

  /* Make a listen socket */
  if ((listen = my_listen(port)) <= 0)
    erl_err_quit("my_listen");

  if (erl_publish(port) == -1)
    erl_err_quit("erl_publish");

  if ((fd = erl_accept(listen, &conn)) == ERL_ERROR)
    erl_err_quit("erl_accept");
  fprintf(stderr, "Connected to %s\n\r", conn.nodename);

  while (loop) {

    got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);
    if (got == ERL_TICK) {
      /* ignore */
    } else if (got == ERL_ERROR) {
      loop = 0;
    } else {

      if (emsg.type == ERL_REG_SEND) {
 fromp = erl_element(2, emsg.msg);
 tuplep = erl_element(3, emsg.msg);
 fnp = erl_element(1, tuplep);
 argp = erl_element(2, tuplep);

 if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
   res = foo(ERL_INT_VALUE(argp));
 } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
   res = bar(ERL_INT_VALUE(argp));
 }

 resp = erl_format("{cnode, ~i}", res);
 erl_send(fd, fromp, resp);

 erl_free_term(emsg.from); erl_free_term(emsg.msg);
 erl_free_term(fromp); erl_free_term(tuplep);
 erl_free_term(fnp); erl_free_term(argp);
 erl_free_term(resp);
      }
    }
  }
}

  
int my_listen(int port) {
  int listen_fd;
  struct sockaddr_in addr;
  int on = 1;

  if ((listen_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    return (-1);

  setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));



8.7  C Nodes

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

  memset((void*) &addr, 0, (size_t) sizeof(addr));
  addr.sin_family = AF_INET;
  addr.sin_port = htons(port);
  addr.sin_addr.s_addr = htonl(INADDR_ANY);

  if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
    return (-1);

  listen(listen_fd, 5);
  return listen_fd;
}

And finally we have the code for the C node client.

/* cnode_c.c */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl_interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {
  int fd;                                  /* fd to Erlang node */

  int loop = 1;                            /* Loop flag */
  int got;                                 /* Result of receive */
  unsigned char buf[BUFSIZE];              /* Buffer for incoming message */
  ErlMessage emsg;                         /* Incoming message */

  ETERM *fromp, *tuplep, *fnp, *argp, *resp;
  int res;
  
  erl_init(NULL, 0);

  if (erl_connect_init(1, "secretcookie", 0) == -1)
    erl_err_quit("erl_connect_init");

  if ((fd = erl_connect("e1@idril")) < 0)
    erl_err_quit("erl_connect");
  fprintf(stderr, "Connected to ei@idril\n\r");

  while (loop) {

    got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);
    if (got == ERL_TICK) {
      /* ignore */
    } else if (got == ERL_ERROR) {
      loop = 0;
    } else {

      if (emsg.type == ERL_REG_SEND) {
 fromp = erl_element(2, emsg.msg);
 tuplep = erl_element(3, emsg.msg);
 fnp = erl_element(1, tuplep);
 argp = erl_element(2, tuplep);



8.7  C Nodes

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

 if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
   res = foo(ERL_INT_VALUE(argp));
 } else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
   res = bar(ERL_INT_VALUE(argp));
 }

 resp = erl_format("{cnode, ~i}", res);
 erl_send(fd, fromp, resp);

 erl_free_term(emsg.from); erl_free_term(emsg.msg);
 erl_free_term(fromp); erl_free_term(tuplep);
 erl_free_term(fnp); erl_free_term(argp);
 erl_free_term(resp);
      }
    }
  }
}

8.7.3  Running the Example
1. Compile the C code, providing the paths to the Erl_Interface include files and libraries, and to the socket and
nsl libraries.

In R5B and later versions of OTP, the include and lib directories are situated under OTPROOT/lib/
erl_interface-VSN, where OTPROOT is the root directory of the OTP installation (/usr/local/otp in the
example above) and VSN is the version of the erl_interface application (3.2.1 in the example above).
In R4B and earlier versions of OTP, include and lib are situated under OTPROOT/usr.

      
>  gcc -o cserver \\ 
-I/usr/local/otp/lib/erl_interface-3.2.1/include \\ 
-L/usr/local/otp/lib/erl_interface-3.2.1/lib \\ 
complex.c cnode_s.c \\ 
-lerl_interface -lei -lsocket -lnsl

unix> gcc -o cserver2 \\ 
-I/usr/local/otp/lib/erl_interface-3.2.1/include \\ 
-L/usr/local/otp/lib/erl_interface-3.2.1/lib \\ 
complex.c cnode_s2.c \\ 
-lerl_interface -lei -lsocket -lnsl

unix> gcc -o cclient \\ 
-I/usr/local/otp/lib/erl_interface-3.2.1/include \\ 
-L/usr/local/otp/lib/erl_interface-3.2.1/lib \\ 
complex.c cnode_c.c \\ 
-lerl_interface -lei -lsocket -lnsl

2. Compile the Erlang code.

unix> erl -compile complex3 complex4

3. Run the C node server example with short node names.

Start the C program cserver and Erlang in different windows. cserver takes a port number as argument and must
be started before trying to call the Erlang functions. The Erlang node should be given the short name e1 and must be
set to use the same magic cookie as the C node, secretcookie.



8.8  NIFs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

unix> cserver 3456

unix> erl -sname e1 -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2
 
Eshell V4.9.1.2  (abort with ^G)
(e1@idril)1> complex3:foo(3).
4
(e1@idril)2> complex3:bar(5).
10

4. Run the C node client example. Terminate cserver but not Erlang and start cclient. The Erlang node must
be started before the C node client is.

unix> cclient

(e1@idril)3> complex3:foo(3).
4
(e1@idril)4> complex3:bar(5).
10

5. Run the C node server, long node names, example.

unix> cserver2 3456

unix> erl -name e1 -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2
 
Eshell V4.9.1.2  (abort with ^G)
(e1@idril.du.uab.ericsson.se)1> complex4:foo(3).
4
(e1@idril.du.uab.ericsson.se)2> complex4:bar(5).
10

8.8  NIFs
This is an example of how to solve the example problem by using NIFs. NIFs were introduced in R13B03 as an
experimental feature. It is a simpler and more efficient way of calling C-code than using port drivers. NIFs are most
suitable for synchronous functions like foo and bar in the example, that does some relatively short calculations
without side effects and return the result.

8.8.1  NIFs
A NIF (Native Implemented Function) is a function that is implemented in C instead of Erlang. NIFs appear as any
other functions to the callers. They belong to a module and are called like any other Erlang functions. The NIFs of
a module are compiled and linked into a dynamic loadable shared library (SO in Unix, DLL in Windows). The NIF
library must be loaded in runtime by the Erlang code of the module.

Since a NIF library is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang (alongside port drivers). Calling NIFs requires no context switches. But it is also the least safe, because a crash
in a NIF will bring the emulator down too.



8.8  NIFs

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8.2  Erlang Program
Even if all functions of a module will be NIFs, you still need an Erlang module for two reasons. First, the NIF library
must be explicitly loaded by Erlang code in the same module. Second, all NIFs of a module must have an Erlang
implementation as well. Normally these are minimal stub implementations that throw an exception. But it can also be
used as fallback implementations for functions that do not have native implemenations on some architectures.

NIF libraries are loaded by calling erlang:load_nif/2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization.

-module(complex6).
-export([foo/1, bar/1]).
-on_load(init/0).

init() ->
    ok = erlang:load_nif("./complex6_nif", 0).

foo(_X) ->
    exit(nif_library_not_loaded).
bar(_Y) ->
    exit(nif_library_not_loaded).

We use the directive on_load to get function init to be automatically called when the module is loaded. If init
returns anything other than ok, such when the loading of the NIF library fails in this example, the module will be
unloaded and calls to functions within it will fail.

Loading the NIF library will override the stub implementations and cause calls to foo and bar to be dispatched to
the NIF implementations instead.

8.8.3  NIF library code
The NIFs of the module are compiled and linked into a shared library. Each NIF is implemented as a normal C function.
The macro ERL_NIF_INIT together with an array of structures defines the names, arity and function pointers of all
the NIFs in the module. The header file erl_nif.h must be included. Since the library is a shared module, not a
program, no main function should be present.

The function arguments passed to a NIF appears in an array argv, with argc as the length of the array and thus the
arity of the function. The Nth argument of the function can be accessed as argv[N-1]. NIFs also take an environment
argument that serves as an opaque handle that is needed to be passed on to most API functions. The environment
contains information about the calling Erlang process.

#include "erl_nif.h"

extern int foo(int x);
extern int bar(int y);

static ERL_NIF_TERM foo_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
    int x, ret;
    if (!enif_get_int(env, argv[0], &x)) {
 return enif_make_badarg(env);
    }
    ret = foo(x);
    return enif_make_int(env, ret);
}



8.8  NIFs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

static ERL_NIF_TERM bar_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
    int y, ret;
    if (!enif_get_int(env, argv[0], &y)) {
 return enif_make_badarg(env);
    }
    ret = bar(y);
    return enif_make_int(env, ret);
}

static ErlNifFunc nif_funcs[] = {
    {"foo", 1, foo_nif},
    {"bar", 1, bar_nif}
};

ERL_NIF_INIT(complex6, nif_funcs, NULL, NULL, NULL, NULL)

The first argument to ERL_NIF_INIT must be the name of the Erlang module as a C-identifier. It will be stringified
by the macro. The second argument is the array of ErlNifFunc structures containing name, arity and function
pointer of each NIF. The other arguments are pointers to callback functions that can be used to initialize the library.
We do not use them in this simple example so we set them all to NULL.

Function arguments and return values are represented as values of type ERL_NIF_TERM. We use functions like
enif_get_int and enif_make_int to convert between Erlang term and C-type. If the function argument
argv[0] is not an integer then enif_get_int will return false, in which case we return by throwing a badarg-
exception with enif_make_badarg.

8.8.4  Running the Example
1. Compile the C code.

unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c

2. Start Erlang and compile the Erlang code.

> erl
Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.5  (abort with ^G)
1> c(complex6).
{ok,complex6}

3. Run the example.

3> complex6:foo(3).
4
4> complex6:bar(5).
10
5> complex6:foo("not an integer").
** exception error: bad argument
     in function  complex6:foo/1
        called as comlpex6:foo("not an integer")



9.1  Overview

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9    OTP Design Principles

9.1  Overview
The OTP Design Principles is a set of principles for how to structure Erlang code in terms of processes, modules
and directories.

9.1.1  Supervision Trees
A basic concept in Erlang/OTP is the supervision tree. This is a process structuring model based on the idea of workers
and supervisors.

• Workers are processes which perform computations, that is, they do the actual work.

• Supervisors are processes which monitor the behaviour of workers. A supervisor can restart a worker if
something goes wrong.

• The supervision tree is a hierarchical arrangement of code into supervisors and workers, making it possible to
design and program fault-tolerant software.

Figure 1.1:   Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.

9.1.2  Behaviours
In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are very similar in structure. The only difference between them is which child processes they supervise.



9.1  Overview

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

Also, many of the workers are servers in a server-client relation, finite state machines, or event handlers such as error
loggers.

Behaviours are formalizations of these common patterns. The idea is to divide the code for a process in a generic part
(a behaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which should export a pre-defined set of functions, the callback functions.

An example to illustrate how code can be divided into a generic and a specific part: Consider the following code
(written in plain Erlang) for a simple server, which keeps track of a number of "channels". Other processes can allocate
and free the channels by calling the functions alloc/0 and free/1, respectively.

-module(ch1).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0]).

start() ->
    spawn(ch1, init, []).

alloc() ->
    ch1 ! {self(), alloc},
    receive
        {ch1, Res} ->
            Res
    end.

free(Ch) ->
    ch1 ! {free, Ch},
    ok.

init() ->
    register(ch1, self()),
    Chs = channels(),
    loop(Chs).

loop(Chs) ->
    receive
        {From, alloc} ->
            {Ch, Chs2} = alloc(Chs),
            From ! {ch1, Ch},
            loop(Chs2);
        {free, Ch} ->
            Chs2 = free(Ch, Chs),
            loop(Chs2)
    end.

The code for the server can be rewritten into a generic part server.erl:

-module(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start(Mod) ->
    spawn(server, init, [Mod]).

call(Name, Req) ->
    Name ! {call, self(), Req},



9.1  Overview

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    receive
        {Name, Res} ->
            Res
    end.

cast(Name, Req) ->
    Name ! {cast, Req},
    ok.

init(Mod) ->
    register(Mod, self()),
    State = Mod:init(),
    loop(Mod, State).

loop(Mod, State) ->
    receive
        {call, From, Req} ->
            {Res, State2} = Mod:handle_call(Req, State),
            From ! {Mod, Res},
            loop(Mod, State2);
        {cast, Req} ->
            State2 = Mod:handle_cast(Req, State),
            loop(Mod, State2)
    end.

and a callback module ch2.erl:

-module(ch2).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0, handle_call/2, handle_cast/2]).

start() ->
    server:start(ch2).

alloc() ->
    server:call(ch2, alloc).

free(Ch) ->
    server:cast(ch2, {free, Ch}).

init() ->
    channels().

handle_call(alloc, Chs) ->
    alloc(Chs). % => {Ch,Chs2}

handle_cast({free, Ch}, Chs) ->
    free(Ch, Chs). % => Chs2

Note the following:

• The code in server can be re-used to build many different servers.

• The name of the server, in this example the atom ch2, is hidden from the users of the client functions. This
means the name can be changed without affecting them.

• The protcol (messages sent to and received from the server) is hidden as well. This is good programming
practice and allows us to change the protocol without making changes to code using the interface functions.

• We can extend the functionality of server, without having to change ch2 or any other callback module.



9.1  Overview

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

(In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1 and free/2 has been
intentionally left out, as it is not relevant to the example. For completeness, one way to write these functions are given
below. Note that this is an example only, a realistic implementation must be able to handle situations like running
out of channels to allocate etc.)

channels() ->
   {_Allocated = [], _Free = lists:seq(1,100)}.

alloc({Allocated, [H|T] = _Free}) ->
   {H, {[H|Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
   case lists:member(Ch, Alloc) of
      true ->
         {lists:delete(Ch, Alloc), [Ch|Free]};
      false ->
         Channels
   end.        

Code written without making use of behaviours may be more efficient, but the increased efficiency will be at the
expense of generality. The ability to manage all applications in the system in a consistent manner is very important.

Using behaviours also makes it easier to read and understand code written by other programmers. Ad hoc programming
structures, while possibly more efficient, are always more difficult to understand.

The module server corresponds, greatly simplified, to the Erlang/OTP behaviour gen_server.

The standard Erlang/OTP behaviours are:

gen_server
For implementing the server of a client-server relation.

gen_fsm
For implementing finite state machines.

gen_event
For implementing event handling functionality.

supervisor
For implementing a supervisor in a supervision tree.

The compiler understands the module attribute -behaviour(Behaviour) and issues warnings about missing
callback functions. Example:

-module(chs3).
-behaviour(gen_server).
...

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle_call/3
{ok,chs3}

9.1.3  Applications
Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the applications Kernel and STDLIB.

The application concept applies both to program structure (processes) and directory structure (modules).



9.2  Gen_Server Behaviour

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The simplest kind of application does not have any processes, but consists of a collection of functional modules. Such
an application is called a library application. An example of a library application is STDLIB.

An application with processes is easiest implemented as a supervision tree using the standard behaviours.

How to program applications is described in Applications.

9.1.4  Releases
A release is a complete system made out from a subset of the Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.

How to install a release in a target environment is described in the chapter about Target Systems in System Principles.

9.1.5  Release Handling
Release handling is upgrading and downgrading between different versions of a release, in a (possibly) running system.
How to do this is described in Release Handling.

9.2  Gen_Server Behaviour
This chapter should be read in conjunction with gen_server(3), where all interface functions and callback functions
are described in detail.

9.2.1  Client-Server Principles
The client-server model is characterized by a central server and an arbitrary number of clients. The client-server model
is generally used for resource management operations, where several different clients want to share a common resource.
The server is responsible for managing this resource.



9.2  Gen_Server Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

Figure 2.1:   Client-Server Model

9.2.2  Example
An example of a simple server written in plain Erlang was given in Overview. The server can be re-implemented using
gen_server, resulting in this callback module:

-module(ch3).
-behaviour(gen_server).

-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
    gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
    gen_server:call(ch3, alloc).

free(Ch) ->
    gen_server:cast(ch3, {free, Ch}).

init(_Args) ->
    {ok, channels()}.

handle_call(alloc, _From, Chs) ->
    {Ch, Chs2} = alloc(Chs),
    {reply, Ch, Chs2}.



9.2  Gen_Server Behaviour

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

handle_cast({free, Ch}, Chs) ->
    Chs2 = free(Ch, Chs),
    {noreply, Chs2}.

The code is explained in the next sections.

9.2.3  Starting a Gen_Server
In the example in the previous section, the gen_server is started by calling ch3:start_link():

start_link() ->
    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

start_link calls the function gen_server:start_link/4. This function spawns and links to a new process,
a gen_server.

• The first argument {local, ch3} specifies the name. In this case, the gen_server will be locally registered
as ch3.

If the name is omitted, the gen_server is not registered. Instead its pid must be used. The name could also be given
as {global, Name}, in which case the gen_server is registered using global:register_name/2.

• The second argument, ch3, is the name of the callback module, that is the module where the callback functions
are located.

In this case, the interface functions (start_link, alloc and free) are located in the same module as the
callback functions (init, handle_call and handle_cast). This is normally good programming practice,
to have the code corresponding to one process contained in one module.

• The third argument, [], is a term which is passed as-is to the callback function init. Here, init does not need
any indata and ignores the argument.

• The fourth argument, [], is a list of options. See gen_server(3) for available options.

If name registration succeeds, the new gen_server process calls the callback function ch3:init([]). init is
expected to return {ok, State}, where State is the internal state of the gen_server. In this case, the state is the
available channels.

init(_Args) ->
    {ok, channels()}.

Note that gen_server:start_link is synchronous. It does not return until the gen_server has been initialized
and is ready to receive requests.

gen_server:start_link must be used if the gen_server is part of a supervision tree, i.e. is started by a
supervisor. There is another function gen_server:start to start a stand-alone gen_server, i.e. a gen_server which
is not part of a supervision tree.

9.2.4  Synchronous Requests - Call
The synchronous request alloc() is implemented using gen_server:call/2:

alloc() ->
    gen_server:call(ch3, alloc).



9.2  Gen_Server Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

ch3 is the name of the gen_server and must agree with the name used to start it. alloc is the actual request.

The request is made into a message and sent to the gen_server. When the request is received, the gen_server calls
handle_call(Request, From, State) which is expected to return a tuple {reply, Reply, State1}.
Reply is the reply which should be sent back to the client, and State1 is a new value for the state of the gen_server.

handle_call(alloc, _From, Chs) ->
    {Ch, Chs2} = alloc(Chs),
    {reply, Ch, Chs2}.

In this case, the reply is the allocated channel Ch and the new state is the set of remaining available channels Chs2.

Thus, the call ch3:alloc() returns the allocated channel Ch and the gen_server then waits for new requests, now
with an updated list of available channels.

9.2.5  Asynchronous Requests - Cast
The asynchronous request free(Ch) is implemented using gen_server:cast/2:

free(Ch) ->
    gen_server:cast(ch3, {free, Ch}).

ch3 is the name of the gen_server. {free, Ch} is the actual request.

The request is made into a message and sent to the gen_server. cast, and thus free, then returns ok.

When the request is received, the gen_server calls handle_cast(Request, State) which is expected to return
a tuple {noreply, State1}. State1 is a new value for the state of the gen_server.

handle_cast({free, Ch}, Chs) ->
    Chs2 = free(Ch, Chs),
    {noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen_server is now ready for new requests.

9.2.6  Stopping
In a Supervision Tree
If the gen_server is part of a supervision tree, no stop function is needed. The gen_server will automatically be
terminated by its supervisor. Exactly how this is done is defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the gen_server
must be set to trap exit signals in the init function. When ordered to shutdown, the gen_server will then call the
callback function terminate(shutdown, State):

init(Args) ->
    ...,
    process_flag(trap_exit, true),
    ...,
    {ok, State}.

...



9.3  Gen_Fsm Behaviour

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

terminate(shutdown, State) ->
    ..code for cleaning up here..
    ok.

Stand-Alone Gen_Servers
If the gen_server is not part of a supervision tree, a stop function may be useful, for example:

...
export([stop/0]).
...

stop() ->
    gen_server:cast(ch3, stop).
...

handle_cast(stop, State) ->
    {stop, normal, State};
handle_cast({free, Ch}, State) ->
    ....

...

terminate(normal, State) ->
    ok.

The callback function handling the stop request returns a tuple {stop, normal, State1}, where normal
specifies that it is a normal termination and State1 is a new value for the state of the gen_server. This will cause the
gen_server to call terminate(normal,State1) and then terminate gracefully.

9.2.7  Handling Other Messages
If the gen_server should be able to receive other messages than requests, the callback function
handle_info(Info, State) must be implemented to handle them. Examples of other messages are exit
messages, if the gen_server is linked to other processes (than the supervisor) and trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
    ..code to handle exits here..
    {noreply, State1}.

The code_change method also has to be implemented.

code_change(OldVsn, State, Extra) ->
    ..code to convert state (and more) during code change
    {ok, NewState}.

9.3  Gen_Fsm Behaviour
This chapter should be read in conjunction with gen_fsm(3), where all interface functions and callback functions
are described in detail.



9.3  Gen_Fsm Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.3.1  Finite State Machines
A finite state machine, FSM, can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S')

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a transition to the state S'.

For an FSM implemented using the gen_fsm behaviour, the state transition rules are written as a number of Erlang
functions which conform to the following convention:

StateName(Event, StateData) ->
    .. code for actions here ...
    {next_state, StateName', StateData'}

9.3.2  Example
A door with a code lock could be viewed as an FSM. Initially, the door is locked. Anytime someone presses a button,
this generates an event. Depending on what buttons have been pressed before, the sequence so far may be correct,
incomplete or wrong.

If it is correct, the door is unlocked for 30 seconds (30000 ms). If it is incomplete, we wait for another button to be
pressed. If it is is wrong, we start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen_fsm results in this callback module:

-module(code_lock).
-behaviour(gen_fsm).

-export([start_link/1]).
-export([button/1]).
-export([init/1, locked/2, open/2]).

start_link(Code) ->
    gen_fsm:start_link({local, code_lock}, code_lock, lists:reverse(Code), []).

button(Digit) ->
    gen_fsm:send_event(code_lock, {button, Digit}).

init(Code) ->
    {ok, locked, {[], Code}}.

locked({button, Digit}, {SoFar, Code}) ->
    case [Digit|SoFar] of
        Code ->
            do_unlock(),
            {next_state, open, {[], Code}, 30000};
        Incomplete when length(Incomplete)<length(Code) ->
            {next_state, locked, {Incomplete, Code}};
        _Wrong ->
            {next_state, locked, {[], Code}}
    end.

open(timeout, State) ->
    do_lock(),



9.3  Gen_Fsm Behaviour

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    {next_state, locked, State}.

The code is explained in the next sections.

9.3.3  Starting a Gen_Fsm
In the example in the previous section, the gen_fsm is started by calling code_lock:start_link(Code):

start_link(Code) ->
    gen_fsm:start_link({local, code_lock}, code_lock, lists:reverse(Code), []).
    

start_link calls the function gen_fsm:start_link/4. This function spawns and links to a new process, a
gen_fsm.

• The first argument {local, code_lock} specifies the name. In this case, the gen_fsm will be locally
registered as code_lock.

If the name is omitted, the gen_fsm is not registered. Instead its pid must be used. The name could also be given
as {global, Name}, in which case the gen_fsm is registered using global:register_name/2.

• The second argument, code_lock, is the name of the callback module, that is the module where the callback
functions are located.

In this case, the interface functions (start_link and button) are located in the same module as the
callback functions (init, locked and open). This is normally good programming practice, to have the code
corresponding to one process contained in one module.

• The third argument, Code, is a list of digits which is passed reversed to the callback function init. Here, init
gets the correct code for the lock as indata.

• The fourth argument, [], is a list of options. See gen_fsm(3) for available options.

If name registration succeeds, the new gen_fsm process calls the callback function code_lock:init(Code). This
function is expected to return {ok, StateName, StateData}, where StateName is the name of the initial
state of the gen_fsm. In this case locked, assuming the door is locked to begin with. StateData is the internal
state of the gen_fsm. (For gen_fsms, the internal state is often referred to 'state data' to distinguish it from the state
as in states of a state machine.) In this case, the state data is the button sequence so far (empty to begin with) and
the correct code of the lock.

init(Code) ->
    {ok, locked, {[], Code}}.

Note that gen_fsm:start_link is synchronous. It does not return until the gen_fsm has been initialized and is
ready to receive notifications.

gen_fsm:start_link must be used if the gen_fsm is part of a supervision tree, i.e. is started by a supervisor.
There is another function gen_fsm:start to start a stand-alone gen_fsm, i.e. a gen_fsm which is not part of a
supervision tree.

9.3.4  Notifying About Events
The function notifying the code lock about a button event is implemented using gen_fsm:send_event/2:

button(Digit) ->



9.3  Gen_Fsm Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 289

    gen_fsm:send_event(code_lock, {button, Digit}).

code_lock is the name of the gen_fsm and must agree with the name used to start it. {button, Digit} is the
actual event.

The event is made into a message and sent to the gen_fsm. When the event is received, the gen_fsm calls
StateName(Event, StateData) which is expected to return a tuple {next_state, StateName1,
StateData1}. StateName is the name of the current state and StateName1 is the name of the next state to go
to. StateData1 is a new value for the state data of the gen_fsm.

locked({button, Digit}, {SoFar, Code}) ->
    case [Digit|SoFar] of
        Code ->
            do_unlock(),
            {next_state, open, {[], Code}, 30000};
        Incomplete when length(Incomplete)<length(Code) ->
            {next_state, locked, {Incomplete, Code}};
        _Wrong ->
            {next_state, locked, {[], Code}};
    end.

open(timeout, State) ->
    do_lock(),
    {next_state, locked, State}.

If the door is locked and a button is pressed, the complete button sequence so far is compared with the correct code
for the lock and, depending on the result, the door is either unlocked and the gen_fsm goes to state open, or the door
remains in state locked.

9.3.5  Timeouts
When a correct code has been given, the door is unlocked and the following tuple is returned from locked/2:

{next_state, open, {[], Code}, 30000};

30000 is a timeout value in milliseconds. After 30000 ms, i.e. 30 seconds, a timeout occurs. Then
StateName(timeout, StateData) is called. In this case, the timeout occurs when the door has been in state
open for 30 seconds. After that the door is locked again:

open(timeout, State) ->
    do_lock(),
    {next_state, locked, State}.

9.3.6  All State Events
Sometimes an event can arrive at any state of the gen_fsm. Instead of sending the message with
gen_fsm:send_event/2 and writing one clause handling the event for each state function, the message can be
sent with gen_fsm:send_all_state_event/2 and handled with Module:handle_event/3:

-module(code_lock).
...



9.3  Gen_Fsm Behaviour

290 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-export([stop/0]).
...

stop() ->
    gen_fsm:send_all_state_event(code_lock, stop).

...

handle_event(stop, _StateName, StateData) ->
    {stop, normal, StateData}.

9.3.7  Stopping
In a Supervision Tree
If the gen_fsm is part of a supervision tree, no stop function is needed. The gen_fsm will automatically be terminated
by its supervisor. Exactly how this is done is defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the gen_fsm must
be set to trap exit signals in the init function. When ordered to shutdown, the gen_fsm will then call the callback
function terminate(shutdown, StateName, StateData):

init(Args) ->
    ...,
    process_flag(trap_exit, true),
    ...,
    {ok, StateName, StateData}.

...

terminate(shutdown, StateName, StateData) ->
    ..code for cleaning up here..
    ok.

Stand-Alone Gen_Fsms
If the gen_fsm is not part of a supervision tree, a stop function may be useful, for example:

...
-export([stop/0]).
...

stop() ->
    gen_fsm:send_all_state_event(code_lock, stop).
...

handle_event(stop, _StateName, StateData) ->
    {stop, normal, StateData}.

...

terminate(normal, _StateName, _StateData) ->
    ok.

The callback function handling the stop event returns a tuple {stop,normal,StateData1}, where normal
specifies that it is a normal termination and StateData1 is a new value for the state data of the gen_fsm. This will
cause the gen_fsm to call terminate(normal,StateName,StateData1) and then terminate gracefully:



9.4  Gen_Event Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 291

9.3.8  Handling Other Messages
If the gen_fsm should be able to receive other messages than events, the callback function handle_info(Info,
StateName, StateData) must be implemented to handle them. Examples of other messages are exit messages,
if the gen_fsm is linked to other processes (than the supervisor) and trapping exit signals.

handle_info({'EXIT', Pid, Reason}, StateName, StateData) ->
    ..code to handle exits here..
    {next_state, StateName1, StateData1}.

The code_change method also has to be implemented.

code_change(OldVsn, StateName, StateData, Extra) ->
    ..code to convert state (and more) during code change
    {ok, NextStateName, NewStateData}

9.4  Gen_Event Behaviour
This chapter should be read in conjunction with gen_event(3), where all interface functions and callback functions
are described in detail.

9.4.1  Event Handling Principles
In OTP, an event manager is a named object to which events can be sent. An event could be, for example, an error,
an alarm or some information that should be logged.

In the event manager, zero, one or several event handlers are installed. When the event manager is notified about an
event, the event will be processed by all the installed event handlers. For example, an event manager for handling
errors can by default have a handler installed which writes error messages to the terminal. If the error messages during
a certain period should be saved to a file as well, the user adds another event handler which does this. When logging
to file is no longer necessary, this event handler is deleted.

An event manager is implemented as a process and each event handler is implemented as a callback module.

The event manager essentially maintains a list of {Module, State} pairs, where each Module is an event handler,
and State the internal state of that event handler.

9.4.2  Example
The callback module for the event handler writing error messages to the terminal could look like:

-module(terminal_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(_Args) ->
    {ok, []}.

handle_event(ErrorMsg, State) ->
    io:format("***Error*** ~p~n", [ErrorMsg]),
    {ok, State}.

terminate(_Args, _State) ->



9.4  Gen_Event Behaviour

292 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    ok.

The callback module for the event handler writing error messages to a file could look like:

-module(file_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(File) ->
    {ok, Fd} = file:open(File, read),
    {ok, Fd}.

handle_event(ErrorMsg, Fd) ->
    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    {ok, Fd}.

terminate(_Args, Fd) ->
    file:close(Fd).

The code is explained in the next sections.

9.4.3  Starting an Event Manager
To start an event manager for handling errors, as described in the example above, call the following function:

gen_event:start_link({local, error_man})

This function spawns and links to a new process, an event manager.

The argument, {local, error_man} specifies the name. In this case, the event manager will be locally registered
as error_man.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name could also be given
as {global, Name}, in which case the event manager is registered using global:register_name/2.

gen_event:start_link must be used if the event manager is part of a supervision tree, i.e. is started by a
supervisor. There is another function gen_event:start to start a stand-alone event manager, i.e. an event manager
which is not part of a supervision tree.

9.4.4  Adding an Event Handler
Here is an example using the shell on how to start an event manager and add an event handler to it:

1> gen_event:start({local, error_man}).
{ok,<0.31.0>}
2> gen_event:add_handler(error_man, terminal_logger, []).
ok

This function sends a message to the event manager registered as error_man, telling it to add the event handler
terminal_logger. The event manager will call the callback function terminal_logger:init([]), where
the argument [] is the third argument to add_handler. init is expected to return {ok, State}, where State
is the internal state of the event handler.



9.4  Gen_Event Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 293

init(_Args) ->
    {ok, []}.

Here, init does not need any input data and ignores its argument. Also, for terminal_logger the internal state
is not used. For file_logger, the internal state is used to save the open file descriptor.

init(File) ->
    {ok, Fd} = file:open(File, read),
    {ok, Fd}.

9.4.5  Notifying About Events

3> gen_event:notify(error_man, no_reply).
***Error*** no_reply
ok

error_man is the name of the event manager and no_reply is the event.

The event is made into a message and sent to the event manager. When the event is received, the event manager calls
handle_event(Event, State) for each installed event handler, in the same order as they were added. The
function is expected to return a tuple {ok, State1}, where State1 is a new value for the state of the event handler.

In terminal_logger:

handle_event(ErrorMsg, State) ->
    io:format("***Error*** ~p~n", [ErrorMsg]),
    {ok, State}.

In file_logger:

handle_event(ErrorMsg, Fd) ->
    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    {ok, Fd}.

9.4.6  Deleting an Event Handler

4> gen_event:delete_handler(error_man, terminal_logger, []).
ok

This function sends a message to the event manager registered as error_man, telling it to delete the event handler
terminal_logger. The event manager will call the callback function terminal_logger:terminate([],
State), where the argument [] is the third argument to delete_handler. terminate should be the opposite
of init and do any necessary cleaning up. Its return value is ignored.

For terminal_logger, no cleaning up is necessary:



9.5  Supervisor Behaviour

294 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

terminate(_Args, _State) ->
    ok.

For file_logger, the file descriptor opened in init needs to be closed:

terminate(_Args, Fd) ->
    file:close(Fd).

9.4.7  Stopping
When an event manager is stopped, it will give each of the installed event handlers the chance to clean up by calling
terminate/2, the same way as when deleting a handler.

In a Supervision Tree
If the event manager is part of a supervision tree, no stop function is needed. The event manager will automatically be
terminated by its supervisor. Exactly how this is done is defined by a shutdown strategy set in the supervisor.

Stand-Alone Event Managers
An event manager can also be stopped by calling:

> gen_event:stop(error_man).
ok

9.4.8  Handling Other Messages
If the gen_event should be able to receive other messages than events, the callback function handle_info(Info,
StateName, StateData) must be implemented to handle them. Examples of other messages are exit messages,
if the gen_event is linked to other processes (than the supervisor) and trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
    ..code to handle exits here..
    {ok, NewState}.

The code_change method also has to be implemented.

code_change(OldVsn, State, Extra) ->
    ..code to convert state (and more) during code change
    {ok, NewState}

9.5  Supervisor Behaviour
This section should be read in conjunction with supervisor(3), where all details about the supervisor behaviour
is given.

9.5.1  Supervision Principles
A supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor is
that it should keep its child processes alive by restarting them when necessary.



9.5  Supervisor Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 295

Which child processes to start and monitor is specified by a list of child specifications. The child processes are started
in the order specified by this list, and terminated in the reversed order.

9.5.2  Example
The callback module for a supervisor starting the server from the gen_server chapter could look like this:

-module(ch_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
    supervisor:start_link(ch_sup, []).

init(_Args) ->
    {ok, {{one_for_one, 1, 60},
          [{ch3, {ch3, start_link, []},
            permanent, brutal_kill, worker, [ch3]}]}}.

one_for_one is the restart strategy.

1 and 60 defines the maximum restart frequency.

The tuple {ch3, ...} is a child specification.

9.5.3  Restart Strategy
one_for_one
If a child process terminates, only that process is restarted.

Figure 5.1:   One_For_One Supervision

one_for_all
If a child process terminates, all other child processes are terminated and then all child processes, including the
terminated one, are restarted.



9.5  Supervisor Behaviour

296 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Figure 5.2:   One_For_All Supervision

rest_for_one
If a child process terminates, the 'rest' of the child processes -- i.e. the child processes after the terminated process in
start order -- are terminated. Then the terminated child process and the rest of the child processes are restarted.

9.5.4  Maximum Restart Frequency
The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given time interval.
This is determined by the values of the two parameters MaxR and MaxT in the start specification returned by the
callback function init:

init(...) ->
    {ok, {{RestartStrategy, MaxR, MaxT},
          [ChildSpec, ...]}}.

If more than MaxR number of restarts occur in the last MaxT seconds, then the supervisor terminates all the child
processes and then itself.

When the supervisor terminates, then the next higher level supervisor takes some action. It either restarts the terminated
supervisor, or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the same reason,
only to be restarted again.

9.5.5  Child Specification
This is the type definition for a child specification:

{Id, StartFunc, Restart, Shutdown, Type, Modules}
    Id = term()
    StartFunc = {M, F, A}
        M = F = atom()
        A = [term()]
    Restart = permanent | transient | temporary



9.5  Supervisor Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 297

    Shutdown = brutal_kill | integer()>0 | infinity
    Type = worker | supervisor
    Modules = [Module] | dynamic
        Module = atom()

• Id is a name that is used to identify the child specification internally by the supervisor.

• StartFunc defines the function call used to start the child process. It is a module-function-arguments tuple
used as apply(M, F, A).

It should be (or result in) a call to supervisor:start_link, gen_server:start_link,
gen_fsm:start_link or gen_event:start_link. (Or a function compliant with these functions, see
supervisor(3) for details.

• Restart defines when a terminated child process should be restarted.

• A permanent child process is always restarted.

• A temporary child process is never restarted (not even when the supervisor's restart strategy is
rest_for_one or one_for_all and a sibling's death causes the temporary process to be terminated).

• A transient child process is restarted only if it terminates abnormally, i.e. with another exit reason than
normal, shutdown or {shutdown,Term}.

• Shutdown defines how a child process should be terminated.

• brutal_kill means the child process is unconditionally terminated using exit(Child, kill).

• An integer timeout value means that the supervisor tells the child process to terminate by calling
exit(Child, shutdown) and then waits for an exit signal back. If no exit signal is received within
the specified time, the child process is unconditionally terminated using exit(Child, kill).

• If the child process is another supervisor, it should be set to infinity to give the subtree enough time to
shutdown. It is also allowed to set it to infinity, if the child process is a worker.

Warning:
Be careful by setting the Shutdown strategy to infinity when the child process is a worker. Because, in
this situation, the termination of the supervision tree depends on the child process, it must be implemented
in a safe way and its cleanup procedure must always return.

• Type specifies if the child process is a supervisor or a worker.

• Modules should be a list with one element [Module], where Module is the name of the callback module, if
the child process is a supervisor, gen_server or gen_fsm. If the child process is a gen_event, Modules should
be dynamic.

This information is used by the release handler during upgrades and downgrades, see Release Handling.

Example: The child specification to start the server ch3 in the example above looks like:

{ch3,
 {ch3, start_link, []},
 permanent, brutal_kill, worker, [ch3]}

Example: A child specification to start the event manager from the chapter about gen_event:

{error_man,
 {gen_event, start_link, [{local, error_man}]},



9.5  Supervisor Behaviour

298 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

 permanent, 5000, worker, dynamic}

Both the server and event manager are registered processes which can be expected to be accessible at all times, thus
they are specified to be permanent.

ch3 does not need to do any cleaning up before termination, thus no shutdown time is needed but brutal_kill
should be sufficient. error_man may need some time for the event handlers to clean up, thus Shutdown is set
to 5000 ms.

Example: A child specification to start another supervisor:

{sup,
 {sup, start_link, []},
 transient, infinity, supervisor, [sup]}

9.5.6  Starting a Supervisor
In the example above, the supervisor is started by calling ch_sup:start_link():

start_link() ->
    supervisor:start_link(ch_sup, []).

ch_sup:start_link calls the function supervisor:start_link/2. This function spawns and links to a
new process, a supervisor.

• The first argument, ch_sup, is the name of the callback module, that is the module where the init callback
function is located.

• The second argument, [], is a term which is passed as-is to the callback function init. Here, init does not
need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be
specified by calling supervisor:start_link({local, Name}, Module, Args) or
supervisor:start_link({global, Name}, Module, Args).

The new supervisor process calls the callback function ch_sup:init([]). init is expected to return {ok,
StartSpec}:

init(_Args) ->
    {ok, {{one_for_one, 1, 60},
          [{ch3, {ch3, start_link, []},
            permanent, brutal_kill, worker, [ch3]}]}}.

The supervisor then starts all its child processes according to the child specifications in the start specification. In this
case there is one child process, ch3.

Note that supervisor:start_link is synchronous. It does not return until all child processes have been started.

9.5.7  Adding a Child Process
In addition to the static supervision tree, we can also add dynamic child processes to an existing supervisor with the
following call:



9.5  Supervisor Behaviour

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 299

supervisor:start_child(Sup, ChildSpec)

Sup is the pid, or name, of the supervisor. ChildSpec is a child specification.

Child processes added using start_child/2 behave in the same manner as the other child processes, with the
following important exception: If a supervisor dies and is re-created, then all child processes which were dynamically
added to the supervisor will be lost.

9.5.8  Stopping a Child Process
Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervisor:terminate_child(Sup, Id)

The child specification for a stopped child process is deleted with the following call:

supervisor:delete_child(Sup, Id)

Sup is the pid, or name, of the supervisor. Id is the id specified in the child specification.

As with dynamically added child processes, the effects of deleting a static child process is lost if the supervisor itself
restarts.

9.5.9  Simple-One-For-One Supervisors
A supervisor with restart strategy simple_one_for_one is a simplified one_for_one supervisor, where all child
processes are dynamically added instances of the same process.

Example of a callback module for a simple_one_for_one supervisor:

-module(simple_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
    supervisor:start_link(simple_sup, []).

init(_Args) ->
    {ok, {{simple_one_for_one, 0, 1},
          [{call, {call, start_link, []},
            temporary, brutal_kill, worker, [call]}]}}.

When started, the supervisor will not start any child processes. Instead, all child processes are added dynamically by
calling:

supervisor:start_child(Sup, List)

Sup is the pid, or name, of the supervisor. List is an arbitrary list of terms which will be added to the list of arguments
specified in the child specification. If the start function is specified as {M, F, A}, then the child process is started
by calling apply(M, F, A++List).



9.6  Sys and Proc_Lib

300 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

For example, adding a child to simple_sup above:

supervisor:start_child(Pid, [id1])

results in the child process being started by calling apply(call, start_link, []++[id1]), or actually:

call:start_link(id1)

A child under a simple_one_for_one supervisor can be terminated with

supervisor:terminate_child(Sup, Pid)

where Sup is the pid, or name, of the supervisor and Pid is the pid of the child.

Because a simple_one_for_one supervisor could have many children, it shuts them all down at same time. So,
order in which they are stopped is not defined. For the same reason, it could have an overhead with regards to the
Shutdown strategy.

9.5.10  Stopping
Since the supervisor is part of a supervision tree, it will automatically be terminated by its supervisor. When asked
to shutdown, it will terminate all child processes in reversed start order according to the respective shutdown
specifications, and then terminate itself.

9.6  Sys and Proc_Lib
The module sys contains functions for simple debugging of processes implemented using behaviours.

There are also functions that, together with functions in the module proc_lib, can be used to implement a special
process, a process which comply to the OTP design principles without making use of a standard behaviour. They can
also be used to implement user defined (non-standard) behaviours.

Both sys and proc_lib belong to the STDLIB application.

9.6.1  Simple Debugging
The module sys contains some functions for simple debugging of processes implemented using behaviours. We use
the code_lock example from the gen_fsm chapter to illustrate this:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6  (abort with ^G)
1> code_lock:start_link([1,2,3,4]).
{ok,<0.32.0>}
2> sys:statistics(code_lock, true).
ok
3> sys:trace(code_lock, true).
ok
4> code_lock:button(4).
*DBG* code_lock got event {button,4} in state closed
ok



9.6  Sys and Proc_Lib

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 301

*DBG* code_lock switched to state closed
5> code_lock:button(3).
*DBG* code_lock got event {button,3} in state closed
ok
*DBG* code_lock switched to state closed
6> code_lock:button(2).
*DBG* code_lock got event {button,2} in state closed
ok
*DBG* code_lock switched to state closed
7> code_lock:button(1).
*DBG* code_lock got event {button,1} in state closed
ok
OPEN DOOR
*DBG* code_lock switched to state open
*DBG* code_lock got event timeout in state open
CLOSE DOOR
*DBG* code_lock switched to state closed
8> sys:statistics(code_lock, get). 
{ok,[{start_time,{{2003,6,12},{14,11,40}}},
     {current_time,{{2003,6,12},{14,12,14}}},
     {reductions,333},
     {messages_in,5},
     {messages_out,0}]}
9> sys:statistics(code_lock, false).
ok
10> sys:trace(code_lock, false).     
ok
11> sys:get_status(code_lock).
{status,<0.32.0>,
        {module,gen_fsm},
        [[{'$ancestors',[<0.30.0>]},
          {'$initial_call',{gen,init_it,
                                [gen_fsm,<0.30.0>,<0.30.0>,
                                 {local,code_lock},
                                 code_lock,
                                 [1,2,3,4],
                                 []]}}],
         running,<0.30.0>,[],
         [code_lock,closed,{[],[1,2,3,4]},code_lock,infinity]]}

9.6.2  Special Processes
This section describes how to write a process which comply to the OTP design principles, without making use of a
standard behaviour. Such a process should:

• be started in a way that makes the process fit into a supervision tree,

• support the sys debug facilities, and

• take care of system messages.

System messages are messages with special meaning, used in the supervision tree. Typical system messages are
requests for trace output, and requests to suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

Example
The simple server from the Overview chapter, implemented using sys and proc_lib so it fits into a supervision tree:

-module(ch4).
-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1]).



9.6  Sys and Proc_Lib

302 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-export([system_continue/3, system_terminate/4,
         write_debug/3,
         system_get_state/1, system_replace_state/2]).

start_link() ->
    proc_lib:start_link(ch4, init, [self()]).

alloc() ->
    ch4 ! {self(), alloc},
    receive
        {ch4, Res} ->
            Res
    end.

free(Ch) ->
    ch4 ! {free, Ch},
    ok.

init(Parent) ->
    register(ch4, self()),
    Chs = channels(),
    Deb = sys:debug_options([]),
    proc_lib:init_ack(Parent, {ok, self()}),
    loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
    receive
        {From, alloc} ->
            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
                                    ch4, {in, alloc, From}),
            {Ch, Chs2} = alloc(Chs),
            From ! {ch4, Ch},
            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
                                    ch4, {out, {ch4, Ch}, From}),
            loop(Chs2, Parent, Deb3);
        {free, Ch} ->
            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
                                    ch4, {in, {free, Ch}}),
            Chs2 = free(Ch, Chs),
            loop(Chs2, Parent, Deb2);

        {system, From, Request} ->
            sys:handle_system_msg(Request, From, Parent,
                                  ch4, Deb, Chs)
    end.

system_continue(Parent, Deb, Chs) ->
    loop(Chs, Parent, Deb).

system_terminate(Reason, _Parent, _Deb, _Chs) ->
    exit(Reason).

system_get_state(Chs) ->
    {ok, Chs}.

system_replace_state(StateFun, Chs) ->
    NChs = StateFun(Chs),
    {ok, NChs, NChs}.

write_debug(Dev, Event, Name) ->
    io:format(Dev, "~p event = ~p~n", [Name, Event]).

Example on how the simple debugging functions in sys can be used for ch4 as well:



9.6  Sys and Proc_Lib

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 303

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6  (abort with ^G)
1> ch4:start_link().
{ok,<0.30.0>}
2> sys:statistics(ch4, true).
ok
3> sys:trace(ch4, true).
ok
4> ch4:alloc().
ch4 event = {in,alloc,<0.25.0>}
ch4 event = {out,{ch4,ch1},<0.25.0>}
ch1
5> ch4:free(ch1).
ch4 event = {in,{free,ch1}}
ok
6> sys:statistics(ch4, get).
{ok,[{start_time,{{2003,6,13},{9,47,5}}},
     {current_time,{{2003,6,13},{9,47,56}}},
     {reductions,109},
     {messages_in,2},
     {messages_out,1}]}
7> sys:statistics(ch4, false).
ok
8> sys:trace(ch4, false).
ok
9> sys:get_status(ch4).
{status,<0.30.0>,
        {module,ch4},
        [[{'$ancestors',[<0.25.0>]},{'$initial_call',{ch4,init,[<0.25.0>]}}],
         running,<0.25.0>,[],
         [ch1,ch2,ch3]]}

Starting the Process
A function in the proc_lib module should be used to start the process. There are several possible functions, for
example spawn_link/3,4 for asynchronous start and start_link/3,4,5 for synchronous start.

A process started using one of these functions will store information that is needed for a process in a supervision tree,
for example about the ancestors and initial call.

Also, if the process terminates with another reason than normal or shutdown, a crash report (see SASL User's
Guide) is generated.

In the example, synchronous start is used. The process is started by calling ch4:start_link():

start_link() ->
    proc_lib:start_link(ch4, init, [self()]).

ch4:start_link calls the function proc_lib:start_link. This function takes a module name, a function
name and an argument list as arguments and spawns and links to a new process. The new process starts by executing
the given function, in this case ch4:init(Pid), where Pid is the pid (self()) of the first process, that is the
parent process.

In init, all initialization including name registration is done. The new process must also acknowledge that it has
been started to the parent:



9.6  Sys and Proc_Lib

304 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

init(Parent) ->
    ...
    proc_lib:init_ack(Parent, {ok, self()}),
    loop(...).

proc_lib:start_link is synchronous and does not return until proc_lib:init_ack has been called.

Debugging
To support the debug facilites in sys, we need a debug structure, a term Deb which is initialized using
sys:debug_options/1:

init(Parent) ->
    ...
    Deb = sys:debug_options([]),
    ...
    loop(Chs, Parent, Deb).

sys:debug_options/1 takes a list of options as argument. Here the list is empty, which means no debugging is
enabled initially. See sys(3) for information about possible options.

Then for each system event that we want to be logged or traced, the following function should be called.

sys:handle_debug(Deb, Func, Info, Event) => Deb1

• Deb is the debug structure.

• Func is a fun specifying a (user defined) function used to format trace output. For each system event, the format
function is called as Func(Dev, Event, Info), where:

• Dev is the IO device to which the output should be printed. See io(3).

• Event and Info are passed as-is from handle_debug.

• Info is used to pass additional information to Func, it can be any term and is passed as-is.

• Event is the system event. It is up to the user to define what a system event is and how it should be represented,
but typically at least incoming and outgoing messages are considered system events and represented by the tuples
{in,Msg[,From]} and {out,Msg,To}, respectively.

handle_debug returns an updated debug structure Deb1.

In the example, handle_debug is called for each incoming and outgoing message. The format function Func is
the function ch4:write_debug/3 which prints the message using io:format/3.

loop(Chs, Parent, Deb) ->
    receive
        {From, alloc} ->
            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
                                    ch4, {in, alloc, From}),
            {Ch, Chs2} = alloc(Chs),
            From ! {ch4, Ch},
            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
                                    ch4, {out, {ch4, Ch}, From}),
            loop(Chs2, Parent, Deb3);
        {free, Ch} ->
            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
                                    ch4, {in, {free, Ch}}),
            Chs2 = free(Ch, Chs),



9.6  Sys and Proc_Lib

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 305

            loop(Chs2, Parent, Deb2);
        ...
    end.

write_debug(Dev, Event, Name) ->
    io:format(Dev, "~p event = ~p~n", [Name, Event]).

Handling System Messages
System messages are received as:

{system, From, Request}

The content and meaning of these messages do not need to be interpreted by the process. Instead the following function
should be called:

sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

This function does not return. It will handle the system message and then call:

Module:system_continue(Parent, Deb, State)

if process execution should continue, or:

Module:system_terminate(Reason, Parent, Deb, State)

if the process should terminate. Note that a process in a supervision tree is expected to terminate with the same reason
as its parent.

• Request and From should be passed as-is from the system message to the call to handle_system_msg.

• Parent is the pid of the parent.

• Module is the name of the module.

• Deb is the debug structure.

• State is a term describing the internal state and is passed to system_continue/system_terminate/
system_get_state/system_replace_state.

If the process should return its state handle_system_msg will call:

Module:system_get_state(State)

or if the process should replace its state using the fun StateFun:

Module:system_replace_state(StateFun, State)

In the example:



9.6  Sys and Proc_Lib

306 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

loop(Chs, Parent, Deb) ->
    receive
        ...

        {system, From, Request} ->
            sys:handle_system_msg(Request, From, Parent,
                                  ch4, Deb, Chs)
    end.

system_continue(Parent, Deb, Chs) ->
    loop(Chs, Parent, Deb).

system_terminate(Reason, Parent, Deb, Chs) ->
    exit(Reason).

system_get_state(Chs) ->
    {ok, Chs, Chs}.

system_replace_state(StateFun, Chs) ->
    NChs = StateFun(Chs),
    {ok, NChs, NChs}.

If the special process is set to trap exits, note that if the parent process terminates, the expected behavior is to terminate
with the same reason:

init(...) ->
    ...,
    process_flag(trap_exit, true),
    ...,
    loop(...).

loop(...) ->
    receive
        ...

        {'EXIT', Parent, Reason} ->
            ..maybe some cleaning up here..
            exit(Reason);
        ...
    end.

9.6.3  User-Defined Behaviours
To implement a user-defined behaviour, write code similar to code for a special process but calling functions in a
callback module for handling specific tasks.

If it is desired that the compiler should warn for missing callback functions, as it does for the OTP behaviours, add -
callback attributes in the behaviour module to describe the expected callbacks:

-callback Name1(Arg1_1, Arg1_2, ..., Arg1_N1) -> Res1.
-callback Name2(Arg2_1, Arg2_2, ..., Arg2_N2) -> Res2.
...
-callback NameM(ArgM_1, ArgM_2, ..., ArgM_NM) -> ResM.



9.6  Sys and Proc_Lib

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 307

where NameX are the names of the expected callbacks and ArgX_Y, ResX are types as they are described in
Specifications for functions in Types and Function Specifications. The whole syntax of -spec attribute is supported
by -callback attribute.

Alternatively you may directly implement and export the function:

behaviour_info(callbacks) ->
    [{Name1, Arity1},...,{NameN, ArityN}].

where each {Name, Arity} specifies the name and arity of a callback function. This function is otherwise
automatically generated by the compiler using the -callback attributes.

When the compiler encounters the module attribute -behaviour(Behaviour). in a module Mod, it will call
Behaviour:behaviour_info(callbacks) and compare the result with the set of functions actually exported
from Mod, and issue a warning if any callback function is missing.

Example:

%% User-defined behaviour module
-module(simple_server).
-export([start_link/2,...]).

-callback init(State :: term()) -> 'ok'.
-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
-callback terminate() -> 'ok'.

%% Alternatively you may define:
%%
%% -export([behaviour_info/1]).
%% behaviour_info(callbacks) ->
%%     [{init,1},
%%      {handle_req,2},
%%      {terminate,0}].

start_link(Name, Module) ->
    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).

init(Parent, Name, Module) ->
    register(Name, self()),
    ...,
    Dbg = sys:debug_options([]),
    proc_lib:init_ack(Parent, {ok, self()}),
    loop(Parent, Module, Deb, ...).

...

In a callback module:

-module(db).
-behaviour(simple_server).

-export([init/0, handle_req/2, terminate/0]).

...



9.7  Applications

308 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7  Applications
This chapter should be read in conjunction with app(4) and application(3).

9.7.1  Application Concept
When we have written code implementing some specific functionality, we might want to make the code into an
application, that is a component that can be started and stopped as a unit, and which can be re-used in other systems
as well.

To do this, we create an application callback module, where we describe how the application should be started and
stopped.

Then, an application specification is needed, which is put in an application resource file. Among other things, we
specify which modules the application consists of and the name of the callback module.

If we use systools, the Erlang/OTP tools for packaging code (see Releases), the code for each application is placed
in a separate directory following a pre-defined directory structure.

9.7.2  Application Callback Module
How to start and stop the code for the application, i.e. the supervision tree, is described by two callback functions:

start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)

start is called when starting the application and should create the supervision tree by starting the top supervisor.
It is expected to return the pid of the top supervisor and an optional term State, which defaults to []. This term is
passed as-is to stop.

StartType is usually the atom normal. It has other values only in the case of a takeover or failover, see Distributed
Applications. StartArgs is defined by the key mod in the application resource file file.

stop/1 is called after the application has been stopped and should do any necessary cleaning up. Note that the
actual stopping of the application, that is the shutdown of the supervision tree, is handled automatically as described
in Starting and Stopping Applications.

Example of an application callback module for packaging the supervision tree from the Supervisor chapter:

-module(ch_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_Type, _Args) ->
    ch_sup:start_link().

stop(_State) ->
    ok.

A library application, which can not be started or stopped, does not need any application callback module.

9.7.3  Application Resource File
To define an application, we create an application specification which is put in an application resource file, or in
short .app file:



9.7  Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 309

{application, Application, [Opt1,...,OptN]}.

Application, an atom, is the name of the application. The file must be named Application.app.

Each Opt is a tuple {Key, Value} which define a certain property of the application. All keys are optional. Default
values are used for any omitted keys.

The contents of a minimal .app file for a library application libapp looks like this:

{application, libapp, []}.

The contents of a minimal .app file ch_app.app for a supervision tree application like ch_app looks like this:

{application, ch_app,
 [{mod, {ch_app,[]}}]}.

The key mod defines the callback module and start argument of the application, in this case ch_app and [],
respectively. This means that

ch_app:start(normal, [])

will be called when the application should be started and

ch_app:stop([])

will be called when the application has been stopped.

When using systools, the Erlang/OTP tools for packaging code (see Releases), the keys description, vsn,
modules, registered and applications should also be specified:

{application, ch_app,
 [{description, "Channel allocator"},
  {vsn, "1"},
  {modules, [ch_app, ch_sup, ch3]},
  {registered, [ch3]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {ch_app,[]}}
 ]}.

description
A short description, a string. Defaults to "".

vsn
Version number, a string. Defaults to "".

modules
All modules introduced by this application. systools uses this list when generating boot scripts and tar files.
A module must be defined in one and only one application. Defaults to [].



9.7  Applications

310 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

registered
All names of registered processes in the application. systools uses this list to detect name clashes between
applications. Defaults to [].

applications
All applications which must be started before this application is started. systools uses this list to generate
correct boot scripts. Defaults to [], but note that all applications have dependencies to at least kernel and
stdlib.

Note:
The syntax and contents of of the application resource file are described in detail in the Application resource
file reference.

9.7.4  Directory Structure
When packaging code using systools, the code for each application is placed in a separate directory lib/
Application-Vsn, where Vsn is the version number.

This may be useful to know, even if systools is not used, since Erlang/OTP itself is packaged according to the OTP
principles and thus comes with this directory structure. The code server (see code(3)) will automatically use code
from the directory with the highest version number, if there are more than one version of an application present.

The application directory structure can of course be used in the development environment as well. The version number
may then be omitted from the name.

The application directory have the following sub-directories:

• src

• ebin

• priv

• include

src
Contains the Erlang source code.

ebin
Contains the Erlang object code, the beam files. The .app file is also placed here.

priv
Used for application specific files. For example, C executables are placed here. The function
code:priv_dir/1 should be used to access this directory.

include
Used for include files.

9.7.5  Application Controller
When an Erlang runtime system is started, a number of processes are started as part of the Kernel application. One of
these processes is the application controller process, registered as application_controller.

All operations on applications are coordinated by the application controller. It is interfaced through the functions in
the module application, see application(3). In particular, applications can be loaded, unloaded, started and
stopped.



9.7  Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 311

9.7.6  Loading and Unloading Applications
Before an application can be started, it must be loaded. The application controller reads and stores the information
from the .app file.

1> application:load(ch_app).
ok
2> application:loaded_applications().
[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
 {ch_app,"Channel allocator","1"}]

An application that has been stopped, or has never been started, can be unloaded. The information about the application
is erased from the internal database of the application controller.

3> application:unload(ch_app).
ok
4> application:loaded_applications().
[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS  CXC 138 10","1.11.4.3"}]

Note:
Loading/unloading an application does not load/unload the code used by the application. Code loading is done
the usual way.

9.7.7  Starting and Stopping Applications
An application is started by calling:

5> application:start(ch_app).
ok
6> application:which_applications().
[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
 {ch_app,"Channel allocator","1"}]

If the application is not already loaded, the application controller will first load it using application:load/1.
It will check the value of the applications key, to ensure that all applications that should be started before this
application are running.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function start/2 in the module, and with the start argument, defined by the mod key in the .app file.

An application is stopped, but not unloaded, by calling:

7> application:stop(ch_app).
ok



9.7  Applications

312 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The application master stops the application by telling the top supervisor to shutdown. The top supervisor tells all its
child processes to shutdown etc. and the entire tree is terminated in reversed start order. The application master then
calls the application callback function stop/1 in the module defined by the mod key.

9.7.8  Configuring an Application
An application can be configured using configuration parameters. These are a list of {Par, Val} tuples specified
by a key env in the .app file.

{application, ch_app,
 [{description, "Channel allocator"},
  {vsn, "1"},
  {modules, [ch_app, ch_sup, ch3]},
  {registered, [ch3]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {ch_app,[]}},
  {env, [{file, "/usr/local/log"}]}
 ]}.

Par should be an atom, Val is any term. The application can retrieve the value of a configuration parameter by calling
application:get_env(App, Par) or a number of similar functions, see application(3).

Example:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6  (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"/usr/local/log"}

The values in the .app file can be overridden by values in a system configuration file. This is a file which contains
configuration parameters for relevant applications:

[{Application1, [{Par11,Val11},...]},
 ...,
 {ApplicationN, [{ParN1,ValN1},...]}].

The system configuration should be called Name.config and Erlang should be started with the command line
argument -config Name. See config(4) for more information.

Example: A file test.config is created with the following contents:

[{ch_app, [{file, "testlog"}]}].

The value of file will override the value of file as defined in the .app file:

% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]



9.7  Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 313

Eshell V5.2.3.6  (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"testlog"}

If release handling is used, exactly one system configuration file should be used and that file should be called
sys.config

The values in the .app file, as well as the values in a system configuration file, can be overridden directly from the
command line:

% erl -ApplName Par1 Val1 ... ParN ValN

Example:

% erl -ch_app file '"testlog"'
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6  (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"testlog"}

9.7.9  Application Start Types
A start type is defined when starting the application:

application:start(Application, Type)

application:start(Application) is the same as calling application:start(Application,
temporary). The type can also be permanent or transient:

• If a permanent application terminates, all other applications and the runtime system are also terminated.

• If a transient application terminates with reason normal, this is reported but no other applications are
terminated. If a transient application terminates abnormally, that is with any other reason than normal, all
other applications and the runtime system are also terminated.

• If a temporary application terminates, this is reported but no other applications are terminated.

It is always possible to stop an application explicitly by calling application:stop/1. Regardless of the mode,
no other applications will be affected.

Note that transient mode is of little practical use, since when a supervision tree terminates, the reason is set to
shutdown, not normal.



9.8  Included Applications

314 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.8  Included Applications
9.8.1  Definition
An application can include other applications. An included application has its own application directory and .app
file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.

An included application can include other applications.

An application which is not included by any other application is called a primary application.

Figure 8.1:   Primary Application and Included Applications.

The application controller will automatically load any included applications when loading a primary application, but
not start them. Instead, the top supervisor of the included application must be started by a supervisor in the including
application.

This means that when running, an included application is in fact part of the primary application and a process in an
included application will consider itself belonging to the primary application.

9.8.2  Specifying Included Applications
Which applications to include is defined by the included_applications key in the .app file.

{application, prim_app,
 [{description, "Tree application"},
  {vsn, "1"},
  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
  {registered, [prim_app_server]},
  {included_applications, [incl_app]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {prim_app_cb,[]}},
  {env, [{file, "/usr/local/log"}]}
 ]}.



9.8  Included Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 315

9.8.3  Synchronizing Processes During Startup
The supervisor tree of an included application is started as part of the supervisor tree of the including application. If
there is a need for synchronization between processes in the including and included applications, this can be achieved
by using start phases.

Start phases are defined by the start_phases key in the .app file as a list of tuples {Phase,PhaseArgs},
where Phase is an atom and PhaseArgs is a term. Also, the value of the mod key of the including application
must be set to {application_starter,[Module,StartArgs]}, where Module as usual is the application
callback module and StartArgs a term provided as argument to the callback function Module:start/2.

{application, prim_app,
 [{description, "Tree application"},
  {vsn, "1"},
  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
  {registered, [prim_app_server]},
  {included_applications, [incl_app]},
  {start_phases, [{init,[]}, {go,[]}]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {application_starter,[prim_app_cb,[]]}},
  {env, [{file, "/usr/local/log"}]}
 ]}.

{application, incl_app,
 [{description, "Included application"},
  {vsn, "1"},
  {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
  {registered, []},
  {start_phases, [{go,[]}]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {incl_app_cb,[]}}
 ]}.

When starting a primary application with included applications, the primary application is started the normal
way: The application controller creates an application master for the application, and the application master calls
Module:start(normal, StartArgs) to start the top supervisor.

Then, for the primary application and each included application in top-down, left-to-right order, the application
master calls Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for for the primary
application, in that order. Note that if a phase is not defined for an included application, the function is not called for
this phase and application.

The following requirements apply to the .app file for an included application:

• The {mod, {Module,StartArgs}} option must be included. This option is used to find the callback
module Module of the application. StartArgs is ignored, as Module:start/2 is called only for the
primary application.

• If the included application itself contains included applications, instead the option {mod,
{application_starter, [Module,StartArgs]}} must be included.

• The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting prim_app as defined above, the application controller will call the following callback functions, before
application:start(prim_app) returns a value:

application:start(prim_app)
 => prim_app_cb:start(normal, [])



9.9  Distributed Applications

316 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

 => prim_app_cb:start_phase(init, normal, [])
 => prim_app_cb:start_phase(go, normal, [])
 => incl_app_cb:start_phase(go, normal, [])
ok

9.9  Distributed Applications
9.9.1  Definition
In a distributed system with several Erlang nodes, there may be a need to control applications in a distributed manner.
If the node, where a certain application is running, goes down, the application should be restarted at another node.

Such an application is called a distributed application. Note that it is the control of the application which is distributed,
all applications can of course be distributed in the sense that they, for example, use services on other nodes.

Because a distributed application may move between nodes, some addressing mechanism is required to ensure that
it can be addressed by other applications, regardless on which node it currently executes. This issue is not addressed
here, but the Kernel module global or STDLIB module pg can be used for this purpose.

9.9.2  Specifying Distributed Applications
Distributed applications are controlled by both the application controller and a distributed application controller
process, dist_ac. Both these processes are part of the kernel application. Therefore, distributed applications
are specified by configuring the kernel application, using the following configuration parameter (see also
kernel(6)):

distributed = [{Application, [Timeout,] NodeDesc}]

Specifies where the application Application = atom() may execute. NodeDesc = [Node |
{Node,...,Node}] is a list of node names in priority order. The order between nodes in a tuple is undefined.

Timeout = integer() specifies how many milliseconds to wait before restarting the application at another
node. Defaults to 0.

For distribution of application control to work properly, the nodes where a distributed application may run must
contact each other and negotiate where to start the application. This is done using the following kernel configuration
parameters:

sync_nodes_mandatory = [Node]
Specifies which other nodes must be started (within the timeout specified by sync_nodes_timeout.

sync_nodes_optional = [Node]
Specifies which other nodes can be started (within the timeout specified by sync_nodes_timeout.

sync_nodes_timeout = integer() | infinity
Specifies how many milliseconds to wait for the other nodes to start.

When started, the node will wait for all nodes specified by sync_nodes_mandatory and
sync_nodes_optional to come up. When all nodes have come up, or when all mandatory nodes have come up
and the time specified by sync_nodes_timeout has elapsed, all applications will be started. If not all mandatory
nodes have come up, the node will terminate.

Example: An application myapp should run at the node cp1@cave. If this node goes down, myapp should be
restarted at cp2@cave or cp3@cave. A system configuration file cp1.config for cp1@cave could look like:

[{kernel,
  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
   {sync_nodes_timeout, 5000}



9.9  Distributed Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 317

  ]
 }
].

The system configuration files for cp2@cave and cp3@cave are identical, except for the list of mandatory nodes
which should be [cp1@cave, cp3@cave] for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.

Note:
All involved nodes must have the same value for distributed and sync_nodes_timeout, or the
behaviour of the system is undefined.

9.9.3  Starting and Stopping Distributed Applications
When all involved (mandatory) nodes have been started, the distributed application can be started by calling
application:start(Application) at all of these nodes.

It is of course also possible to use a boot script (see Releases) which automatically starts the application.

The application will be started at the first node, specified by the distributed configuration parameter, which is
up and running. The application is started as usual. That is, an application master is created and calls the application
callback function:

Module:start(normal, StartArgs)

Example: Continuing the example from the previous section, the three nodes are started, specifying the system
configuration file:

> erl -sname cp1 -config cp1
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3

When all nodes are up and running, myapp can be started. This is achieved by calling
application:start(myapp) at all three nodes. It is then started at cp1, as shown in the figure below.

Figure 9.1:   Application myapp - Situation 1

Similarly, the application must be stopped by calling application:stop(Application) at all involved nodes.



9.9  Distributed Applications

318 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9.4  Failover
If the node where the application is running goes down, the application is restarted (after the specified timeout) at the
first node, specified by the distributed configuration parameter, which is up and running. This is called a failover.

The application is started the normal way at the new node, that is, by the application master calling:

Module:start(normal, StartArgs)

Exception: If the application has the start_phases key defined (see Included Applications), then the application
is instead started by calling:

Module:start({failover, Node}, StartArgs)

where Node is the terminated node.

Example: If cp1 goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of
running applications, but waits for 5 seconds for cp1 to restart. If cp1 does not restart and cp2 runs fewer applications
than cp3, then myapp is restarted on cp2.

Figure 9.2:   Application myapp - Situation 2

Suppose now that cp2 goes down as well and does not restart within 5 seconds. myapp is now restarted on cp3.



9.9  Distributed Applications

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 319

Figure 9.3:   Application myapp - Situation 3

9.9.5  Takeover
If a node is started, which has higher priority according to distributed, than the node where a distributed
application is currently running, the application will be restarted at the new node and stopped at the old node. This
is called a takeover.

The application is started by the application master calling:

Module:start({takeover, Node}, StartArgs)

where Node is the old node.

Example: If myapp is running at cp3, and if cp2 now restarts, it will not restart myapp, because the order between
nodes cp2 and cp3 is undefined.

Figure 9.4:   Application myapp - Situation 4



9.10  Releases

320 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

However, if cp1 restarts as well, the function application:takeover/2 moves myapp to cp1, because cp1
has a higher priority than cp3 for this application. In this case, Module:start({takeover, cp3@cave},
StartArgs) is executed at cp1 to start the application.

Figure 9.5:   Application myapp - Situation 5

9.10  Releases
This chapter should be read in conjuction with rel(4), systools(3) and script(4).

9.10.1  Release Concept
When we have written one or more applications, we might want to create a complete system consisting of these
applications and a subset of the Erlang/OTP applications. This is called a release.

To do this, we create a release resource file which defines which applications are included in the release.

The release resource file is used to generate boot scripts and release packages. A system which is transfered to and
installed at another site is called a target system. How to use a release package to create a target system is described
in System Principles.

9.10.2  Release Resource File
To define a release, we create a release resource file, or in short .rel file, where we specify the name and version
of the release, which ERTS version it is based on, and which applications it consists of:

{release, {Name,Vsn}, {erts, EVsn},
 [{Application1, AppVsn1},
   ...
  {ApplicationN, AppVsnN}]}.



9.10  Releases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 321

The file must be named Rel.rel, where Rel is a unique name.

Name, Vsn and EVsn are strings.

Each Application (atom) and AppVsn (string) is the name and version of an application included in the release.
Note that the minimal release based on Erlang/OTP consists of the kernel and stdlib applications, so these
applications must be included in the list.

If the release is to be upgraded, it must also include the sasl application.

Example: We want to make a release of ch_app from the Applications chapter. It has the following .app file:

{application, ch_app,
 [{description, "Channel allocator"},
  {vsn, "1"},
  {modules, [ch_app, ch_sup, ch3]},
  {registered, [ch3]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {ch_app,[]}}
 ]}.

The .rel file must also contain kernel, stdlib and sasl, since these applications are required by ch_app.
We call the file ch_rel-1.rel:

{release,
 {"ch_rel", "A"},
 {erts, "5.3"},
 [{kernel, "2.9"},
  {stdlib, "1.12"},
  {sasl, "1.10"},
  {ch_app, "1"}]
}.

9.10.3  Generating Boot Scripts
There are tools in the SASL module systools available to build and check releases. The functions read the .rel
and .app files and performs syntax and dependency checks. The function systools:make_script/1,2 is used
to generate a boot script (see System Principles).

1> systools:make_script("ch_rel-1", [local]).
ok

This creates a boot script, both the readable version ch_rel-1.script and the binary version used by the runtime
system, ch_rel-1.boot. "ch_rel-1" is the name of the .rel file, minus the extension. local is an option
that means that the directories where the applications are found are used in the boot script, instead of $ROOT/lib.
($ROOT is the root directory of the installed release.) This is a useful way to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the .rel file are automatically loaded and
started:

% erl -boot ch_rel-1
Erlang (BEAM) emulator version 5.3

Eshell V5.3  (abort with ^G)



9.10  Releases

322 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1> 
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.33.0>},
                       {name,alarm_handler},
                       {mfa,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

...

=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
         application: sasl
          started_at: nonode@nohost

...
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
         application: ch_app
          started_at: nonode@nohost

9.10.4  Creating a Release Package
There is a function systools:make_tar/1,2 which takes a .rel file as input and creates a zipped tar-file with
the code for the specified applications, a release package.

1> systools:make_script("ch_rel-1").
ok
2> systools:make_tar("ch_rel-1").
ok

The release package by default contains the .app files and object code for all applications, structured according to
the application directory structure, the binary boot script renamed to start.boot, and the .rel file.

% tar tf ch_rel-1.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam
...
lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam_lib.beam
...
lib/sasl-1.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam
...
lib/ch_app-1/ebin/ch_app.app
lib/ch_app-1/ebin/ch_app.beam
lib/ch_app-1/ebin/ch_sup.beam
lib/ch_app-1/ebin/ch3.beam
releases/A/start.boot
releases/A/ch_rel-1.rel
releases/ch_rel-1.rel

Note that a new boot script was generated, without the local option set, before the release package was made. In the
release package, all application directories are placed under lib. Also, we do not know where the release package
will be installed, so we do not want any hardcoded absolute paths in the boot script here.



9.10  Releases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 323

The release resource file mysystem.rel is duplicated in the tar file. Originally, this file was only stored in the
releases directory in order to make it possible for the release_handler to extract this file separately. After
unpacking the tar file, release_handler would automatically copy the file to releases/FIRST. However,
sometimes the tar file is unpacked without involving the release_handler (e.g. when unpacking the first target
system) and therefore the file is now instead duplicated in the tar file so no manual copying is necessary.

If a relup file and/or a system configuration file called sys.config is found, these files are included in the release
package as well. See Release Handling.

Options can be set to make the release package include source code and the ERTS binary as well.

Refer to System Principles for how to install the first target system, using a release package, and to Release Handling
for how to install a new release package in an existing system.

9.10.5  Directory Structure
Directory structure for the code installed by the release handler from a release package:

$ROOT/lib/App1-AVsn1/ebin
                    /priv
         /App2-AVsn2/ebin
                    /priv
         ...
         /AppN-AVsnN/ebin
                    /priv
     /erts-EVsn/bin
     /releases/Vsn
     /bin

lib
Application directories.

erts-EVsn/bin
Erlang runtime system executables.

releases/Vsn
.rel file and boot script start.boot.
If present in the release package,
relup and/or sys.config.

bin
Top level Erlang runtime system executables.

Applications are not required to be located under the $ROOT/lib directory. Accordingly, several installation
directories may exist which contain different parts of a system. For example, the previous example could be extended
as follows:

$SECOND_ROOT/.../SApp1-SAVsn1/ebin
                             /priv
                /SApp2-SAVsn2/ebin
                             /priv
                ...
                /SAppN-SAVsnN/ebin
                             /priv

$THIRD_ROOT/TApp1-TAVsn1/ebin
                        /priv
           /TApp2-TAVsn2/ebin
                        /priv
           ...



9.11  Release Handling

324 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

           /TAppN-TAVsnN/ebin
                        /priv

The $SECOND_ROOT and $THIRD_ROOT are introduced as variables in the call to the
systools:make_script/2 function.

Disk-Less and/or Read-Only Clients
If a complete system consists of some disk-less and/or read-only client nodes, a clients directory should be added
to the $ROOT directory. By a read-only node we mean a node with a read-only file system.

The clients directory should have one sub-directory per supported client node. The name of each client directory
should be the name of the corresponding client node. As a minimum, each client directory should contain the bin and
releases sub-directories. These directories are used to store information about installed releases and to appoint the
current release to the client. Accordingly, the $ROOT directory contains the following:

$ROOT/...
    /clients/ClientName1/bin
                        /releases/Vsn
            /ClientName2/bin
                        /releases/Vsn
            ...
            /ClientNameN/bin
                        /releases/Vsn

This structure should be used if all clients are running the same type of Erlang machine. If there are clients running
different types of Erlang machines, or on different operating systems, the clients directory could be divided into
one sub-directory per type of Erlang machine. Alternatively, you can set up one $ROOT per type of machine. For each
type, some of the directories specified for the $ROOT directory should be included:

$ROOT/...
    /clients/Type1/lib
                  /erts-EVsn
                  /bin
                  /ClientName1/bin
                              /releases/Vsn
                  /ClientName2/bin
                              /releases/Vsn
                  ...
                  /ClientNameN/bin
                              /releases/Vsn
            ...
            /TypeN/lib
                  /erts-EVsn
                  /bin
                  ...

With this structure, the root directory for clients of Type1 is $ROOT/clients/Type1.

9.11  Release Handling
9.11.1  Release Handling Principles
An important feature of the Erlang programming language is the ability to change module code in run-time, code
replacement, as described in Erlang Reference Manual.



9.11  Release Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 325

Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading between
different versions of an entire release in run-time. This is what we call release handling.

The framework consists of off-line support (systools) for generating scripts and building release packages, and on-
line support (release_handler) for unpacking and installing release packages.

Note that the minimal system based on Erlang/OTP, enabling release handling, thus consists of Kernel, STDLIB and
SASL.

• A release is created as described in the previous chapter Releases. The release is transferred to and installed at
target environment. Refer to System Principles for information of how to install the first target system.

• Modifications, for example error corrections, are made to the code in the development environment.

• At some point it is time to make a new version of release. The relevant .app files are updated and a new .rel
file is written.

• For each modified application, an application upgrade file, .appup, is created. In this file, it is described how
to upgrade and/or downgrade between the old and new version of the application.

• Based on the .appup files, a release upgrade file called relup, is created. This file describes how to upgrade
and/or downgrade between the old and new version of the entire release.

• A new release package is made and transferred to the target system.

• The new release package is unpacked using the release handler.

• The new version of the release is installed, also using the release handler. This is done by evaluating the instructions
in relup. Modules may be added, deleted or re-loaded, applications may be started, stopped or re-started etc. In
some cases, it is even necessary to restart the entire emulator.

If the installation fails, the system may be rebooted. The old release version is then automatically used.

• If the installation succeeds, the new version is made the default version, which should now be used in case of
a system reboot.

The next chapter, Appup Cookbook, contains examples of .appup files for typical cases of upgrades/downgrades that
are normally easy to handle in run-time. However, there are a many aspects that can make release handling complicated.
To name a few examples:

• Complicated or circular dependencies can make it difficult or even impossible to decide in which order things
must be done without risking run-time errors during an upgrade or downgrade. Dependencies may be:

• between nodes,

• between processes, and

• between modules.

• During release handling, non-affected processes continue normal execution. This may lead to timeouts or other
problems. For example, new processes created in the time window between suspending processes using a certain
module and loading a new version of this module, may execute old code.

It is therefore recommended that code is changed in as small steps as possible, and always kept backwards compatible.

9.11.2  Requirements
For release handling to work properly, the runtime system needs to have knowledge about which release it is currently
running. It must also be able to change (in run-time) which boot script and system configuration file should be used
if the system is rebooted, for example by heart after a failure. Therefore, Erlang must be started as an embedded
system, see Embedded System for information on how to do this.

For system reboots to work properly, it is also required that the system is started with heart beat monitoring, see
erl(1) and heart(3).

Other requirements:



9.11  Release Handling

326 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

• The boot script included in a release package must be generated from the same .rel file as the release package
itself.

Information about applications are fetched from the script when an upgrade or downgrade is performed.

• The system must be configured using one and only one system configuration file, called sys.config.

If found, this file is automatically included when a release package is created.

• All versions of a release, except the first one, must contain a relup file.

If found, this file is automatically included when a release package is created.

9.11.3  Distributed Systems
If the system consists of several Erlang nodes, each node may use its own version of the release. The release handler
is a locally registered process and must be called at each node where an upgrade or downgrade is required. There
is a release handling instruction that can be used to synchronize the release handler processes at a number of nodes:
sync_nodes. See appup(4).

9.11.4  Release Handling Instructions
OTP supports a set of release handling instructions that are used when creating .appup files. The release handler
understands a subset of these, the low-level instructions. To make it easier for the user, there are also a number of high-
level instructions, which are translated to low-level instructions by systools:make_relup.

Here, some of the most frequently used instructions are described. The complete list of instructions can be found in
appup(4).

First, some definitions:

Residence module

The module where a process has its tail-recursive loop function(s). If the tail-recursive loop functions are
implemented in several modules, all those modules are residence modules for the process.

Functional module

A module which is not a residence module for any process.

Note that for a process implemented using an OTP behaviour, the behaviour module is the residence module for that
process. The callback module is a functional module.

load_module
If a simple extension has been made to a functional module, it is sufficient to simply load the new version of the
module into the system, and remove the old version. This is called simple code replacement and for this the following
instruction is used:

{load_module, Module}

update
If a more complex change has been made, for example a change to the format of the internal state of a gen_server,
simple code replacement is not sufficient. Instead it is necessary to suspend the processes using the module (to avoid
that they try to handle any requests before the code replacement is completed), ask them to transform the internal state
format and switch to the new version of the module, remove the old version and last, resume the processes. This is
called synchronized code replacement and for this the following instructions are used:



9.11  Release Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 327

{update, Module, {advanced, Extra}}
{update, Module, supervisor}

update with argument {advanced,Extra} is used when changing the internal state of a behaviour as described
above. It will cause behaviour processes to call the callback function code_change, passing the term Extra and
some other information as arguments. See the man pages for the respective behaviours and Appup Cookbook.

update with argument supervisor is used when changing the start specification of a supervisor. See Appup
Cookbook.

When a module is to be updated, the release handler finds which processes that are using the module by traversing the
supervision tree of each running application and checking all the child specifications:

{Id, StartFunc, Restart, Shutdown, Type, Modules}

A process is using a module if the name is listed in Modules in the child specification for the process.

If Modules=dynamic, which is the case for event managers, the event manager process informs the release handler
about the list of currently installed event handlers (gen_fsm) and it is checked if the module name is in this list instead.

The release handler suspends, asks for code change, and resumes processes by calling the functions
sys:suspend/1,2, sys:change_code/4,5 and sys:resume/1,2 respectively.

add_module and delete_module
If a new module is introduced, the following instruction is used:

{add_module, Module}

The instruction loads the module and is absolutely necessary when running Erlang in embedded mode. It is not strictly
required when running Erlang in interactive (default) mode, since the code server then automatically searches for and
loads unloaded modules.

The opposite of add_module is delete_module which unloads a module:

{delete_module, Module}

Note that any process, in any application, with Module as residence module, is killed when the instruction is evaluated.
The user should therefore ensure that all such processes are terminated before deleting the module, to avoid a possible
situation with failing supervisor restarts.

Application Instructions
Instruction for adding an application:

{add_application, Application}

Adding an application means that the modules defined by the modules key in the .app file are loaded using a
number of add_module instructions, then the application is started.

Instruction for removing an application:



9.11  Release Handling

328 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

{remove_application, Application}

Removing an application means that the application is stopped, the modules are unloaded using a number of
delete_module instructions and then the application specification is unloaded from the application controller.

Instruction for restarting an application:

{restart_application, Application}

Restarting an application means that the application is stopped and then started again similar to using the instructions
remove_application and add_application in sequence.

apply (low-level)
To call an arbitrary function from the release handler, the following instruction is used:

{apply, {M, F, A}}

The release handler will evaluate apply(M, F, A).

restart_new_emulator (low-level)
This instruction is used when changing to a new emulator version, or when any of the core applications kernel, stdlib
or sasl is upgraded. If a system reboot is needed for some other reason, the restart_emulator instruction should
be used instead.

Requires that the system is started with heart beat monitoring, see erl(1) and heart(3).

The restart_new_emulator instruction shall always be the very first instruction in a relup. If the relup is
generated by systools:make_relup/3,4 this is automatically ensured.

When the release handler encounters the instruction, it first generates a temporary boot file, which starts the new
versions of the emulator and the core applications, and the old version of all other applications. Then it shuts down the
current emulator by calling init:reboot(), see init(3). All processes are terminated gracefully and the system
is rebooted by the heart program, using the temporary boot file. After the reboot, the rest of the relup instructions are
executed. This is done as a part of the temporary boot script.

Warning:
Since this mechanism causes the new versions of the emulator and core applications to run with the old version of
other applications during startup, extra care must be taken to avoid incompatibility. Incompatible changes in the
core applications may in some situations be necessary. If possible, such changes are preceded by deprecation over
two major releases before the actual change. To make sure your application is not crashed by an incompatible
change, always remove any call to deprecated functions as soon as possible.

An info report is written when the upgrade is completed. To programmatically find out if the upgrade is complete, call
release_handler:which_releases(current) and check if it returns the expected (i.e. the new) release.

The new release version must be made permanent when the new emulator is up and running. Otherwise, the old version
will be used in case of a new system reboot.



9.11  Release Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 329

On UNIX, the release handler tells the heart program which command to use to reboot the system. Note that the
environment variable HEART_COMMAND, normally used by the heart program, in this case is ignored. The command
instead defaults to $ROOT/bin/start. Another command can be set by using the SASL configuration parameter
start_prg, see sasl(6).

restart_emulator (low-level)
This instruction is not related to upgrades of erts or any of the core applications. It can be used by any application to
force a restart of the emulator after all upgrade instructions are executed.

There can only be one restart_emulator instruction in a relup script, and it shall always be placed at the end. If
the relup is generated by systools:make_relup/3,4 this is automatically ensured.

When the release handler encounters the instruction, it shuts down the emulator by calling init:reboot(), see
init(3). All processes are terminated gracefully and the system can then be rebooted by the heart program using
the new release version. No more upgrade instruction will be executed after the restart.

9.11.5  Application Upgrade File
To define how to upgrade/downgrade between the current version and previous versions of an application, we create
an application upgrade file, or in short .appup file. The file should be called Application.appup, where
Application is the name of the application:

{Vsn,
 [{UpFromVsn1, InstructionsU1},
  ...,
  {UpFromVsnK, InstructionsUK}],
 [{DownToVsn1, InstructionsD1},
  ...,
  {DownToVsnK, InstructionsDK}]}.

Vsn, a string, is the current version of the application, as defined in the .app file. Each UpFromVsn is a previous
version of the application to upgrade from, and each DownToVsn is a previous version of the application to downgrade
to. Each Instructions is a list of release handling instructions.

The syntax and contents of the appup file are described in detail in appup(4).

In the chapter Appup Cookbook, examples of .appup files for typical upgrade/downgrade cases are given.

Example: Consider the release ch_rel-1 from the Releases chapter. Assume we want to add a function
available/0 to the server ch3 which returns the number of available channels:

(Hint: When trying out the example, make the changes in a copy of the original directory, so that the first versions
are still available.)

-module(ch3).
-behaviour(gen_server).

-export([start_link/0]).
-export([alloc/0, free/1]).
-export([available/0]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
    gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
    gen_server:call(ch3, alloc).



9.11  Release Handling

330 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

free(Ch) ->
    gen_server:cast(ch3, {free, Ch}).

available() ->
    gen_server:call(ch3, available).

init(_Args) ->
    {ok, channels()}.

handle_call(alloc, _From, Chs) ->
    {Ch, Chs2} = alloc(Chs),
    {reply, Ch, Chs2};
handle_call(available, _From, Chs) ->
    N = available(Chs),
    {reply, N, Chs}.

handle_cast({free, Ch}, Chs) ->
    Chs2 = free(Ch, Chs),
    {noreply, Chs2}.

A new version of the ch_app.app file must now be created, where the version is updated:

{application, ch_app,
 [{description, "Channel allocator"},
  {vsn, "2"},
  {modules, [ch_app, ch_sup, ch3]},
  {registered, [ch3]},
  {applications, [kernel, stdlib, sasl]},
  {mod, {ch_app,[]}}
 ]}.

To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), we simply need to load the new (old)
version of the ch3 callback module. We create the application upgrade file ch_app.appup in the ebin directory:

{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.

9.11.6  Release Upgrade File
To define how to upgrade/downgrade between the new version and previous versions of a release, we create a release
upgrade file, or in short relup file.

This file does not need to be created manually, it can be generated by systools:make_relup/3,4. The relevant
versions of the .rel file, .app files and .appup files are used as input. It is deducted which applications should
be added and deleted, and which applications that need to be upgraded and/or downgraded. The instructions for this
is fetched from the .appup files and transformed into a single list of low-level instructions in the right order.

If the relup file is relatively simple, it can be created manually. Remember that it should only contain low-level
instructions.

The syntax and contents of the release upgrade file are described in detail in relup(4).



9.11  Release Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 331

Example, continued from the previous section. We have a new version "2" of ch_app and an .appup file. We also
need a new version of the .rel file. This time the file is called ch_rel-2.rel and the release version string is
changed changed from "A" to "B":

{release,
 {"ch_rel", "B"},
 {erts, "5.3"},
 [{kernel, "2.9"},
  {stdlib, "1.12"},
  {sasl, "1.10"},
  {ch_app, "2"}]
}.

Now the relup file can be generated:

1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
ok

This will generate a relup file with instructions for how to upgrade from version "A" ("ch_rel-1") to version
"B" ("ch_rel-2") and how to downgrade from version "B" to version "A".

Note that both the old and new versions of the .app and .rel files must be in the code path, as well as the .appup
and (new) .beam files. It is possible to extend the code path by using the option path:

1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
[{path,["../ch_rel-1",
"../ch_rel-1/lib/ch_app-1/ebin"]}]).
ok

9.11.7  Installing a Release
When we have made a new version of a release, a release package can be created with this new version and transferred
to the target environment.

To install the new version of the release in run-time, the release handler is used. This is a process belonging to the
SASL application, that handles unpacking, installation, and removal of release packages. It is interfaced through the
module release_handler, which is described in detail in release_handler(3).

Assuming there is a target system up and running with installation root directory $ROOT, the release package with the
new version of the release should be copied to $ROOT/releases.

The first action is to unpack the release package, the files are then extracted from the package:

release_handler:unpack_release(ReleaseName) => {ok, Vsn}

ReleaseName is the name of the release package except the .tar.gz extension. Vsn is the version of the unpacked
release, as defined in its .rel file.

A directory $ROOT/lib/releases/Vsn will be created, where the .rel file, the boot script start.boot,
the system configuration file sys.config and relup are placed. For applications with new version numbers, the
application directories will be placed under $ROOT/lib. Unchanged applications are not affected.

An unpacked release can be installed. The release handler then evaluates the instructions in relup, step by step:



9.11  Release Handling

332 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

release_handler:install_release(Vsn) => {ok, FromVsn, []}

If an error occurs during the installation, the system is rebooted using the old version of the release. If installation
succeeds, the system is afterwards using the new version of the release, but should anything happen and the system is
rebooted, it would start using the previous version again. To be made the default version, the newly installed release
must be made permanent, which means the previous version becomes old:

release_handler:make_permanent(Vsn) => ok

The system keeps information about which versions are old and permanent in the files $ROOT/releases/
RELEASES and $ROOT/releases/start_erl.data.

To downgrade from Vsn to FromVsn, install_release must be called again:

release_handler:install_release(FromVsn) => {ok, Vsn, []}

An installed, but not permanent, release can be removed. Information about the release is then deleted from $ROOT/
releases/RELEASES and the release specific code, that is the new application directories and the $ROOT/
releases/Vsn directory, are removed.

release_handler:remove_release(Vsn) => ok

Example, continued from the previous sections:

1) Create a target system as described in System Principles of the first version "A" of ch_rel from the Releases
chapter. This time sys.config must be included in the release package. If no configuration is needed, the file should
contain the empty list:

[].

2) Start the system as a simple target system. Note that in reality, it should be started as an embedded system. However,
using erl with the correct boot script and config file is enough for illustration purposes:

% cd $ROOT
% bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
...

$ROOT is the installation directory of the target system.

3) In another Erlang shell, generate start scripts and create a release package for the new version "B". Remember to
include (a possible updated) sys.config and the relup file, see Release Upgrade File above.

1> systools:make_script("ch_rel-2").
ok
2> systools:make_tar("ch_rel-2").
ok



9.11  Release Handling

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 333

The new release package now contains version "2" of ch_app and the relup file as well:

% tar tf ch_rel-2.tar 
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam
...
lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam_lib.beam
...      
lib/sasl-1.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam
...
lib/ch_app-2/ebin/ch_app.app
lib/ch_app-2/ebin/ch_app.beam
lib/ch_app-2/ebin/ch_sup.beam
lib/ch_app-2/ebin/ch3.beam
releases/B/start.boot
releases/B/relup
releases/B/sys.config
releases/B/ch_rel-2.rel
releases/ch_rel-2.rel

4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases directory.

5) In the running target system, unpack the release package:

1> release_handler:unpack_release("ch_rel-2").
{ok,"B"}

The new application version ch_app-2 is installed under $ROOT/lib next to ch_app-1. The kernel, stdlib
and sasl directories are not affected, as they have not changed.

Under $ROOT/releases, a new directory B is created, containing ch_rel-2.rel, start.boot,
sys.config and relup.

6) Check if the function ch3:available/0 is available:

2> ch3:available().
** exception error: undefined function ch3:available/0

7) Install the new release. The instructions in $ROOT/releases/B/relup are executed one by one, resulting in
the new version of ch3 being loaded. The function ch3:available/0 is now available:

3> release_handler:install_release("B").
{ok,"A",[]}
4> ch3:available().
3
5> code:which(ch3).
".../lib/ch_app-2/ebin/ch3.beam"
6> code:which(ch_sup).
".../lib/ch_app-1/ebin/ch_sup.beam"

Note that processes in ch_app for which code have not been updated, for example the supervisor, are still evaluating
code from ch_app-1.



9.12  Appup Cookbook

334 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8) If the target system is now rebooted, it will use version "A" again. The "B" version must be made permanent, in
order to be used when the system is rebooted.

7> release_handler:make_permanent("B").
ok

9.11.8  Updating Application Specifications
When a new version of a release is installed, the application specifications are automatically updated for all loaded
applications.

Note:
The information about the new application specifications are fetched from the boot script included in the release
package. It is therefore important that the boot script is generated from the same .rel file as is used to build
the release package itself.

Specifically, the application configuration parameters are automatically updated according to (in increasing priority
order):

• The data in the boot script, fetched from the new application resource file App.app

• The new sys.config

• Command line arguments -App Par Val

This means that parameter values set in the other system configuration files, as well as values set using
application:set_env/3, are disregarded.

When an installed release is made permanent, the system process init is set to point out the new sys.config.

After the installation, the application controller will compare the old and new configuration parameters for all running
applications and call the callback function:

Module:config_change(Changed, New, Removed)

Module is the application callback module as defined by the mod key in the .app file. Changed and New are lists
of {Par,Val} for all changed and added configuration parameters, respectively. Removed is a list of all parameters
Par that have been removed.

The function is optional and may be omitted when implementing an application callback module.

9.12  Appup Cookbook
This chapter contains examples of .appup files for typical cases of upgrades/downgrades done in run-time.

9.12.1  Changing a Functional Module
When a change has been made to a functional module, for example if a new function has been added or a bug has
been corrected, simple code replacement is sufficient.

Example:



9.12  Appup Cookbook

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 335

{"2",
 [{"1", [{load_module, m}]}],
 [{"1", [{load_module, m}]}]
}.

9.12.2  Changing a Residence Module
In a system implemented according to the OTP Design Principles, all processes, except system processes and special
processes, reside in one of the behaviours supervisor, gen_server, gen_fsm or gen_event. These belong
to the STDLIB application and upgrading/downgrading normally requires an emulator restart.

OTP thus provides no support for changing residence modules except in the case of special processes.

9.12.3  Changing a Callback Module
A callback module is a functional module, and for code extensions simple code replacement is sufficient.

Example: When adding a function to ch3 as described in the example in Release Handling, ch_app.appup looks
as follows:

{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.

OTP also supports changing the internal state of behaviour processes, see Changing Internal State below.

9.12.4  Changing Internal State
In this case, simple code replacement is not sufficient. The process must explicitly transform its state using the
callback function code_change before switching to the new version of the callback module. Thus synchronized
code replacement is used.

Example: Consider the gen_server ch3 from the chapter about the gen_server behaviour. The internal state is a term
Chs representing the available channels. Assume we want add a counter N which keeps track of the number of alloc
requests so far. This means we need to change the format to {Chs,N}.

The .appup file could look as follows:

{"2",
 [{"1", [{update, ch3, {advanced, []}}]}],
 [{"1", [{update, ch3, {advanced, []}}]}]
}.

The third element of the update instruction is a tuple {advanced,Extra} which says that the affected processes
should do a state transformation before loading the new version of the module. This is done by the processes calling
the callback function code_change (see gen_server(3)). The term Extra, in this case [], is passed as-is to
the function:

-module(ch3).
...
-export([code_change/3]).
...



9.12  Appup Cookbook

336 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

code_change({down, _Vsn}, {Chs, N}, _Extra) ->
    {ok, Chs};
code_change(_Vsn, Chs, _Extra) ->
    {ok, {Chs, 0}}.

The first argument is {down,Vsn} in case of a downgrade, or Vsn in case of an upgrade. The term Vsn is fetched
from the 'original' version of the module, i.e. the version we are upgrading from, or downgrading to.

The version is defined by the module attribute vsn, if any. There is no such attribute in ch3, so in this case the version
is the checksum (a huge integer) of the BEAM file, an uninteresting value which is ignored.

(The other callback functions of ch3 need to be modified as well and perhaps a new interface function added, this
is not shown here).

9.12.5  Module Dependencies
Assume we extend a module by adding a new interface function, as in the example in Release Handling, where a
function available/0 is added to ch3.

If we also add a call to this function, say in the module m1, a run-time error could occur during release upgrade if the
new version of m1 is loaded first and calls ch3:available/0 before the new version of ch3 is loaded.

Thus, ch3 must be loaded before m1 is, in the upgrade case, and vice versa in the downgrade case. We say that m1is
dependent onch3. In a release handling instruction, this is expressed by the element DepMods:

{load_module, Module, DepMods}
{update, Module, {advanced, Extra}, DepMods}

DepMods is a list of modules, on which Module is dependent.

Example: The module m1 in the application myapp is dependent on ch3 when upgrading from "1" to "2", or
downgrading from "2" to "1":

myapp.appup:

{"2",
 [{"1", [{load_module, m1, [ch3]}]}],
 [{"1", [{load_module, m1, [ch3]}]}]
}.

ch_app.appup:

{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.

If m1 and ch3 had belonged to the same application, the .appup file could have looked like this:

{"2",
 [{"1",
   [{load_module, ch3},
    {load_module, m1, [ch3]}]}],
 [{"1",
   [{load_module, ch3},
    {load_module, m1, [ch3]}]}]



9.12  Appup Cookbook

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 337

}.

Note that it is m1 that is dependent on ch3 also when downgrading. systools knows the difference between up-
and downgrading and will generate a correct relup, where ch3 is loaded before m1 when upgrading but m1 is loaded
before ch3 when downgrading.

9.12.6  Changing Code For a Special Process
In this case, simple code replacement is not sufficient. When a new version of a residence module for a special process
is loaded, the process must make a fully qualified call to its loop function to switch to the new code. Thus synchronized
code replacement must be used.

Note:
The name(s) of the user-defined residence module(s) must be listed in the Modules part of the child specification
for the special process, in order for the release handler to find the process.

Example. Consider the example ch4 from the chapter about sys and proc_lib. When started by a supervisor, the child
specification could look like this:

{ch4, {ch4, start_link, []},
 permanent, brutal_kill, worker, [ch4]}

If ch4 is part of the application sp_app and a new version of the module should be loaded when upgrading from
version "1" to "2" of this application, sp_app.appup could look like this:

{"2",
 [{"1", [{update, ch4, {advanced, []}}]}],
 [{"1", [{update, ch4, {advanced, []}}]}]
}.

The update instruction must contain the tuple {advanced,Extra}. The instruction will make the special process
call the callback function system_code_change/4, a function the user must implement. The term Extra, in this
case [], is passed as-is to system_code_change/4:

-module(ch4).
...
-export([system_code_change/4]).
...

system_code_change(Chs, _Module, _OldVsn, _Extra) ->
    {ok, Chs}.

The first argument is the internal state State passed from the function sys:handle_system_msg(Request,
From, Parent, Module, Deb, State), called by the special process when a system message is received.
In ch4, the internal state is the set of available channels Chs.

The second argument is the name of the module (ch4).

The third argument is Vsn or {down,Vsn} as described for gen_server:code_change/3.



9.12  Appup Cookbook

338 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

In this case, all arguments but the first are ignored and the function simply returns the internal state again. This is
enough if the code only has been extended. If we had wanted to change the internal state (similar to the example in
Changing Internal State), it would have been done in this function and {ok,Chs2} returned.

9.12.7  Changing a Supervisor
The supervisor behaviour supports changing the internal state, i.e. changing restart strategy and maximum restart
frequency properties, as well as changing existing child specifications.

Adding and deleting child processes are also possible, but not handled automatically. Instructions must be given by
in the .appup file.

Changing Properties
Since the supervisor should change its internal state, synchronized code replacement is required. However, a special
update instruction must be used.

The new version of the callback module must be loaded first both in the case of upgrade and downgrade. Then the
new return value of init/1 can be checked and the internal state be changed accordingly.

The following upgrade instruction is used for supervisors:

{update, Module, supervisor}

Example: Assume we want to change the restart strategy of ch_sup from the Supervisor Behaviour chapter from
one_for_one to one_for_all. We change the callback function init/1 in ch_sup.erl:

-module(ch_sup).
...

init(_Args) ->
    {ok, {{one_for_all, 1, 60}, ...}}.

The file ch_app.appup:

{"2",
 [{"1", [{update, ch_sup, supervisor}]}],
 [{"1", [{update, ch_sup, supervisor}]}]
}.

Changing Child Specifications
The instruction, and thus the .appup file, when changing an existing child specification, is the same as when changing
properties as described above:

{"2",
 [{"1", [{update, ch_sup, supervisor}]}],
 [{"1", [{update, ch_sup, supervisor}]}]
}.

The changes do not affect existing child processes. For example, changing the start function only specifies how the
child process should be restarted, if needed later on.



9.12  Appup Cookbook

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 339

Note that the id of the child specification cannot be changed.

Note also that changing the Modules field of the child specification may affect the release handling process itself, as
this field is used to identify which processes are affected when doing a synchronized code replacement.

Adding And Deleting Child Processes
As stated above, changing child specifications does not affect existing child processes. New child specifications are
automatically added, but not deleted. Also, child processes are not automatically started or terminated. Instead, this
must be done explicitly using apply instructions.

Example: Assume we want to add a new child process m1 to ch_sup when upgrading ch_app from "1" to "2". This
means m1 should be deleted when downgrading from "2" to "1":

{"2",
 [{"1",
   [{update, ch_sup, supervisor},
    {apply, {supervisor, restart_child, [ch_sup, m1]}}
   ]}],
 [{"1",
   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    {update, ch_sup, supervisor}
   ]}]
}.

Note that the order of the instructions is important.

Note also that the supervisor must be registered as ch_sup for the script to work. If the supervisor is not registered,
it cannot be accessed directly from the script. Instead a help function that finds the pid of the supervisor and calls
supervisor:restart_child etc. must be written, and it is this function that should be called from the script
using the apply instruction.

If the module m1 is introduced in version "2" of ch_app, it must also be loaded when upgrading and deleted when
downgrading:

{"2",
 [{"1",
   [{add_module, m1},
    {update, ch_sup, supervisor},
    {apply, {supervisor, restart_child, [ch_sup, m1]}}
   ]}],
 [{"1",
   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    {update, ch_sup, supervisor},
    {delete_module, m1}
   ]}]
}.

Note again that the order of the instructions is important. When upgrading, m1 must be loaded and the supervisor's
child specification changed, before the new child process can be started. When downgrading, the child process must
be terminated before child specification is changed and the module is deleted.

9.12.8  Adding or Deleting a Module
Example: A new functional module m is added to ch_app:



9.12  Appup Cookbook

340 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

{"2",
 [{"1", [{add_module, m}]}],
 [{"1", [{delete_module, m}]}]

9.12.9  Starting or Terminating a Process
In a system structured according to the OTP design principles, any process would be a child process belonging to a
supervisor, see Adding and Deleting Child Processes above.

9.12.10  Adding or Removing an Application
When adding or removing an application, no .appup file is needed. When generating relup, the .rel files are
compared and add_application and remove_application instructions are added automatically.

9.12.11  Restarting an Application
Restarting an application is useful when a change is too complicated to be made without restarting the processes, for
example if the supervisor hierarchy has been restructured.

Example: When adding a new child m1 to ch_sup, as in the example above, an alternative to updating the supervisor
is to restart the entire application:

{"2",
 [{"1", [{restart_application, ch_app}]}],
 [{"1", [{restart_application, ch_app}]}]
}.

9.12.12  Changing an Application Specification
When installing a release, the application specifications are automatically updated before evaluating the relup script.
Hence, no instructions are needed in the .appup file:

{"2",
 [{"1", []}],
 [{"1", []}]
}.

9.12.13  Changing Application Configuration
Changing an application configuration by updating the env key in the .app file is an instance of changing an
application specification, see above.

Alternatively, application configuration parameters can be added or updated in sys.config.

9.12.14  Changing Included Applications
The release handling instructions for adding, removing and restarting applications apply to primary applications only.
There are no corresponding instructions for included applications. However, since an included application is really a
supervision tree with a topmost supervisor, started as a child process to a supervisor in the including application, a
relup file can be manually created.

Example: Assume we have a release containing an application prim_app which have a supervisor prim_sup in
its supervision tree.



9.12  Appup Cookbook

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 341

In a new version of the release, our example application ch_app should be included in prim_app. That is, its
topmost supervisor ch_sup should be started as a child process to prim_sup.

1) Edit the code for prim_sup:

init(...) ->
    {ok, {...supervisor flags...,
          [...,
           {ch_sup, {ch_sup,start_link,[]},
            permanent,infinity,supervisor,[ch_sup]},
           ...]}}.

2) Edit the .app file for prim_app:

{application, prim_app,
 [...,
  {vsn, "2"},
  ...,
  {included_applications, [ch_app]},
  ...
 ]}.

3) Create a new .rel file, including ch_app:

{release,
 ...,
 [...,
  {prim_app, "2"},
  {ch_app, "1"}]}.

Application Restart
4a) One way to start the included application is to restart the entire prim_app application. Normally, we would then
use the restart_application instruction in the .appup file for prim_app.

However, if we did this and then generated a relup file, not only would it contain instructions for restarting (i.e.
removing and adding) prim_app, it would also contain instructions for starting ch_app (and stopping it, in the case
of downgrade). This is due to the fact that ch_app is included in the new .rel file, but not in the old one.

Instead, a correct relup file can be created manually, either from scratch or by editing the generated version. The
instructions for starting/stopping ch_app are replaced by instructions for loading/unloading the application:

{"B",
 [{"A",
   [],
   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    {load_object_code,{prim_app,"2",[prim_app,prim_sup]}},
    point_of_no_return,
    {apply,{application,stop,[prim_app]}},
    {remove,{prim_app,brutal_purge,brutal_purge}},
    {remove,{prim_sup,brutal_purge,brutal_purge}},
    {purge,[prim_app,prim_sup]},
    {load,{prim_app,brutal_purge,brutal_purge}},
    {load,{prim_sup,brutal_purge,brutal_purge}},
    {load,{ch_sup,brutal_purge,brutal_purge}},



9.12  Appup Cookbook

342 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

    {load,{ch3,brutal_purge,brutal_purge}},
    {apply,{application,load,[ch_app]}},
    {apply,{application,start,[prim_app,permanent]}}]}],
 [{"A",
   [],
   [{load_object_code,{prim_app,"1",[prim_app,prim_sup]}},
    point_of_no_return,
    {apply,{application,stop,[prim_app]}},
    {apply,{application,unload,[ch_app]}},
    {remove,{ch_sup,brutal_purge,brutal_purge}},
    {remove,{ch3,brutal_purge,brutal_purge}},
    {purge,[ch_sup,ch3]},
    {remove,{prim_app,brutal_purge,brutal_purge}},
    {remove,{prim_sup,brutal_purge,brutal_purge}},
    {purge,[prim_app,prim_sup]},
    {load,{prim_app,brutal_purge,brutal_purge}},
    {load,{prim_sup,brutal_purge,brutal_purge}},
    {apply,{application,start,[prim_app,permanent]}}]}]
}.

Supervisor Change
4b) Another way to start the included application (or stop it in the case of downgrade) is by combining instructions for
adding and removing child processes to/from prim_sup with instructions for loading/unloading all ch_app code
and its application specification.

Again, the relup file is created manually. Either from scratch or by editing a generated version. Load all code
for ch_app first, and also load the application specification, before prim_sup is updated. When downgrading,
prim_sup should be updated first, before the code for ch_app and its application specification are unloaded.

{"B",
 [{"A",
   [],
   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    {load_object_code,{prim_app,"2",[prim_sup]}},
    point_of_no_return,
    {load,{ch_sup,brutal_purge,brutal_purge}},
    {load,{ch3,brutal_purge,brutal_purge}},
    {apply,{application,load,[ch_app]}},
    {suspend,[prim_sup]},
    {load,{prim_sup,brutal_purge,brutal_purge}},
    {code_change,up,[{prim_sup,[]}]},
    {resume,[prim_sup]},
    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
 [{"A",
   [],
   [{load_object_code,{prim_app,"1",[prim_sup]}},
    point_of_no_return,
    {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
    {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
    {suspend,[prim_sup]},
    {load,{prim_sup,brutal_purge,brutal_purge}},
    {code_change,down,[{prim_sup,[]}]},
    {resume,[prim_sup]},
    {remove,{ch_sup,brutal_purge,brutal_purge}},
    {remove,{ch3,brutal_purge,brutal_purge}},
    {purge,[ch_sup,ch3]},
    {apply,{application,unload,[ch_app]}}]}]
}.



9.12  Appup Cookbook

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 343

9.12.15  Changing Non-Erlang Code
Changing code for a program written in another programming language than Erlang, for example a port program, is
very application dependent and OTP provides no special support for it.

Example, changing code for a port program: Assume that the Erlang process controlling the port is a gen_server portc
and that the port is opened in the callback function init/1:

init(...) ->
    ...,
    PortPrg = filename:join(code:priv_dir(App), "portc"),
    Port = open_port({spawn,PortPrg}, [...]),
    ...,
    {ok, #state{port=Port, ...}}.

If the port program should be updated, we can extend the code for the gen_server with a code_change function
which closes the old port and opens a new port. (If necessary, the gen_server may first request data that needs to be
saved from the port program and pass this data to the new port):

code_change(_OldVsn, State, port) ->
    State#state.port ! close,
    receive
        {Port,close} ->
            true
    end,
    PortPrg = filename:join(code:priv_dir(App), "portc"),
    Port = open_port({spawn,PortPrg}, [...]),
    {ok, #state{port=Port, ...}}.

Update the application version number in the .app file and write an .appup file:

["2",
 [{"1", [{update, portc, {advanced,port}}]}],
 [{"1", [{update, portc, {advanced,port}}]}]
].

Make sure the priv directory where the C program is located is included in the new release package:

1> systools:make_tar("my_release", [{dirs,[priv]}]).
...

9.12.16  Emulator Restart and Upgrade
There are two upgrade instructions that will restart the emulator:

restart_new_emulator
Intended for when erts, kernel, stdlib or sasl is upgraded. It is automatically added when the relup file is
generated by systools:make_relup/3,4. It is executed before all other upgrade instructions. See
Release Handling for more information about this instruction.

restart_emulator
Used when a restart of the emulator is required after all other upgrade instructions are executed. See Release
Handling for more information about this instruction.



9.12  Appup Cookbook

344 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

If an emulator restart is necessary and no upgrade instructions are needed, i.e. if the restart itself is enough for the
upgraded applications to start running the new versions, a very simple .relup file can be created manually:

{"B",
 [{"A",
   [],
   [restart_emulator]}],
 [{"A",
   [],
   [restart_emulator]}]
}.

In this case, the release handler framework with automatic packing and unpacking of release packages, automatic path
updates etc. can be used without having to specify .appup files.

9.12.17  Emulator Upgrade from pre OTP R15
From OTP R15, an emulator upgrade is performed by restarting the emulator with new versions of the core applications
(kernel, stdlib and sasl) before loading code and running upgrade instruction for other applications. For this
to work, the release to upgrade from must includes OTP R15 or later. For the case where the release to upgrade from
includes an earlier emulator version, systools:make_relup will create a backwards compatible relup file. This
means that all upgrade instructions will be executed before the emulator is restarted. The new application code will
therefore be loaded into the old emulator. If the new code is compiled with the new emulator, there might be cases
where the beam format has changed and beam files can not be loaded. To overcome this problem, the new code should
be compiled with the old emulator.



10.1  Introduction

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 345

10    OAM Principles

10.1  Introduction
The operation and maintenance support in OTP consists of a generic model for management subsystems in OTP, and
some components to be used in these subsystems. This document describes the model.

The main idea in the model is that it is management protocol independent. Thus, it is not tied to any specific
management protocol. An API is defined which can be used to write adaptations for specific management protocols.

Each OAM component in OTP is implemented as one sub application, which can be included in a management
application for the system. Note that such a complete management application is not in the scope of this generic
functionality. Examples illustrating how such an application can be built are included however.

10.1.1  Terminology
The protocol independent architectural model on the network level is the well-known Client-Server model for
management operations. This model is based on the client-server principle, where the manager (client) sends A request
is sent from a manager to an agent when it accesses management information.to the agent (server), the agent sends
A reply is sent from the agent as a response to a request from a manager.back to the manager. There are two main
differences to the normal client-server model. First, there are usually a few managers that communicate with many
agents; and second, the agent may spontaneously send A notification is sent spontaneously from an agent to a manager,
e.g. an alarm.to the manager. The picture below illustrates the idea.

Figure 1.1:   Terminology

The manager is often referred to as the , to emphasize that it usually is realized as a program that presents data to
an operator.



10.1  Introduction

346 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

The agent is an entity that executes within a . In OTP, the network element may be a distributed system, meaning that
the distributed system is managed as one entity. Of course, the agent may be configured to be able to run on one of
several nodes, making it a distributed OTP application.

The management information is defined in an . It is a formal definition of which information the agent makes available
to the manager. The manager accesses the MIB through a management protocol, such as SNMP, CMIP, HTTP or
CORBA. Each of these protocols have their own MIB definition language. In SNMP, it is a subset of ASN.1, in CMIP
it is GDMO, in HTTP it is implicit, and using CORBA, it is IDL. Usually, the entities defined in the MIB are called ,
although these objects do not have to be objects in the OO way,for example, a simple scalar variable defined in an
MIB is called a Managed Object. The Managed Objects are logical objects, not necessarily with a one-to-one mapping
to the resources.

10.1.2  Model
In this section, the generic protocol independent model for use within an OTP based network element is presented.
This model is used by all operation and maintenance components, and may be used by the applications. The advantage
of the model is that it clearly separates the resources from the management protocol. The resources do not need to
be aware of which management protocol is used to manage the system. This makes it possible to manage the same
resources with different protocols.

The different entities involved in this model are the which terminates the management protocol, and the which
is to be managed, i.e. the actual application entities. The resources should in general have no knowledge of the
management protocol used, and the agent should have no knowledge of the managed resources. This implies that some
sort of translation mechanism must be used, to translate the management operations to operations on the resources.
This translation mechanism is usually called instrumentation, and the function that implements it is called . The
instrumentation functions are written for each combination of management protocol and resource to be managed. For
example, if an application is to be managed by SNMP and HTTP, two sets of instrumentation functions are defined;
one that maps SNMP requests to the resources, and one that e.g. generates an HTML page for some resources.

When a manager makes a request to the agent, we have the following picture:



10.1  Introduction

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 347

Figure 1.2:   Request to an agent by a manager

Note that the mapping between instrumentation function and resource is not necessarily 1-1. It is also possible to write
one instrumentation function for each resource, and use that function from different protocols.

The agent receives a request and maps this request to calls to one or several instrumentation functions. The
instrumentation functions perform operations on the resources to implement the semantics associated with the managed
object.

For example, a system that is managed with SNMP and HTTP may be structured in the following way:



10.1  Introduction

348 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Figure 1.3:   Structure of a system managed with SNMP and HTTP

The resources may send notifications to the manager as well. Examples of notifications are events and alarms. There
is a need for the resource to generate protocol independent notifications. The following picture illustrates how this
is achieved:



10.1  Introduction

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 349

Figure 1.4:   Notification handling

The main idea is that the resource sends the notfications as Erlang terms to a dedicated gen_event process. Into this
process, handlers for the different management protocols are installed. When an event is received by this process, it
is forwarded to each installed handler. The handlers are responsible for translating the event into a notification to be
sent over the management protocol. For example, a handler for SNMP would translate each event into an SNMP trap.

10.1.3  SNMP based OAM
For all OAM components, SNMP adaptations are provided. Other adaptations may be defined in the future.

The OAM components, and some other OTP applications, define SNMP MIBs. All these MIBs are written in SNMPv2
SMI syntax, as defined in RFC1902. For convenience we also deliver the SNMPv1 SMI equivalent. All MIBs are
designed to be v1/v2 compatible, i.e. the v2 MIBs do not use any construct not available in v1.

MIB structure
The top-level OTP MIB is called OTP-REG, and it is included in the sasl application. All other OTP mibs import
some objects from this MIB.



10.1  Introduction

350 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

Each MIB is contained in one application. The MIB text files are stored under mibs/<MIB>.mib in the application
directory. The generated .hrl files with constant declarations are stored under include/<MIB>.hrl, and the
compiled MIBs are stored under priv/mibs/<MIB>.bin. For example, the OTP-MIB is included in the sasl
application:

sasl-1.3/mibs/OTP-MIB.mib
         include/OTP-MIB.hrl
         priv/mibs/OTP-MIB.bin

An application that needs to IMPORT this mib into another MIB, should use the il option to the snmp mib compiler:

snmp:c("MY-MIB", [{il, ["sasl/priv/mibs"]}]).

If the application needs to include the generated .hrl file, it should use the -include_lib directive to the Erlang
compiler.

-module(my_mib).

-include_lib("sasl/include/OTP-MIB.hrl").

The following MIBs are defined in the OTP system:

OTP-REG (sasl)

This MIB contains the top-level OTP registration objects, used by all other MIBs.

OTP-TC (sasl)

This MIB contains the general Textual Conventions, which can be used by any other MIB.

OTP-MIB (sasl)

This MIB contains objects for instrumentation of the Erlang nodes, the Erlang machines and the applications in
the system.

OTP-OS-MON-MIB (os_mon)

This MIB contains objects for instrumentation of disk, memory and cpu usage of the nodes in the system.

OTP-SNMPEA-MIB (snmp)

This MIB contains objects for instrumentation and control of the extensible snmp agent itself. Note that the agent
also implements the standard SNMPv2-MIB (or v1 part of MIB-II, if SNMPv1 is used).

OTP-EVA-MIB (eva)

This MIB contains objects for instrumentation and control of the events and alarms in the system.

OTP-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the logs and FTP transfer of logs.

OTP-EVA-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the events and alarm logs in the system.

OTP-SNMPEA-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the snmp audit trail log in the system.



10.1  Introduction

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 351

The different applications use different strategies for loading the MIBs into the agent. Some MIB implementations are
code-only, while others need a server. One way, used by the code-only mib implementations, is for the user to call a
function such as otp_mib:init(Agent) to load the MIB, and otp_mib:stop(Agent) to unload the MIB.
See the application manual page for each application for a description of how to load each MIB.


	Erlang/OTP System Documentation
	Installation Guide
	Installing the Binary Release
	Windows
	Introduction
	Installation
	Verification


	Building and Installing Erlang/OTP
	Introduction
	Required Utilities
	Unpacking
	Building
	Installing

	Optional Utilities
	Building
	Building Documentation

	How to Build and Install Erlang/OTP
	Unpacking
	Configuring
	Building
	Testing
	Installing
	Running
	How to Build the Documentation
	How to Install the Documentation
	Accessing the Documentation
	How to Install the Pre-formatted Documentation

	Advanced configuration and build of Erlang/OTP
	make and $ERL_TOP
	otp_build vs configure/make
	Configuring
	Building
	Installing
	Running

	Known platform issues
	Daily Build and Test
	Authors
	Copyright and License

	Cross Compiling Erlang/OTP
	Introduction
	otp_build Versus configure/make
	Cross Configuration
	What can be Cross Compiled?
	Compatibility
	Patches

	Build and Install Procedure
	Building With configure/make Directly
	Building With the otp_build Script

	Building and Installing the Documentation
	Testing the cross compiled system
	Currently Used Configuration Variables
	Variables for otp_build Only
	Cross Compiler and Other Tools
	Cross System Root Locations
	Optional Feature, and Bug Tests

	Copyright and License

	How to Build Erlang/OTP on Windows
	Introduction
	Frequently Asked Questions
	Tools you Need and Their Environment
	The Shell Environment
	Building and Installing
	Development
	Using GIT
	Final Words
	Copyright and License


	System Principles
	System Principles
	Starting the System
	Restarting and Stopping the System
	Boot Scripts
	Default Boot Scripts
	User-Defined Boot Scripts

	Code Loading Strategy
	File Types

	Error Logging
	Error Information From the Runtime System
	SASL Error Logging

	Creating and Upgrading a Target System
	Introduction
	Creating a Target System
	Installing a Target System
	Starting a Target System
	System Configuration Parameters
	Differences from the Install Script
	Creating the Next Version
	Upgrading the Target System
	Listing of target_system.erl

	Upgrade when Erlang/OTP has Changed
	Introduction
	Upgrade of core applications
	Applications that still do not allow code upgrade

	Versions
	OTP Version
	Retrieving Current OTP Version
	OTP Versions Table

	Application Version
	Version Scheme
	Order of Versions

	OTP 17.0 Application Versions


	Embedded Systems User's Guide
	Embedded Solaris
	Memory Usage
	Disk Space Usage
	Installation
	Creation of User and Installation Directory
	Installation of an Embedded System
	Configuration for Automatic Start at Boot
	Hardware Watchdog
	Changing Permissions for Reboot
	The TERM Environment Variable
	Patches
	Installation of Module os_sup in Application OS_Mon
	Installation
	Testing the Application Configuration File
	Related Documents

	Installation Problems

	Starting Erlang
	Programs
	start
	run_erl
	to_erl
	start_erl


	Windows NT
	Introduction
	Memory Usage
	Disk Space Usage
	Installation
	Hardware Watchdog

	Starting Erlang


	Getting Started With Erlang
	Introduction
	Introduction
	Things Left Out

	Sequential Programming
	The Erlang Shell
	Modules and Functions
	Atoms
	Tuples
	Lists
	Maps
	Standard Modules and Manual Pages
	Writing Output to a Terminal
	A Larger Example
	Matching, Guards and Scope of Variables
	More About Lists
	If and Case
	Built In Functions (BIFs)
	Higher Order Functions (Funs)

	Concurrent Programming
	Processes
	Message Passing
	Registered Process Names
	Distributed Programming
	A Larger Example

	Robustness
	Timeouts
	Error Handling
	The Larger Example with Robustness Added

	Records and Macros
	The Larger Example Divided into Several Files
	Header Files
	Records
	Macros


	Erlang Reference Manual
	Introduction
	Purpose
	Prerequisites
	Document Conventions
	Complete List of BIFs
	Reserved Words

	Character Set and Source File Encoding
	Character Set
	Source File Encoding

	Data Types
	Terms
	Number
	Atom
	Bit Strings and Binaries
	Reference
	Fun
	Port Identifier
	Pid
	Tuple
	Map
	List
	String
	Record
	Boolean
	Escape Sequences
	Type Conversions

	Pattern Matching
	Pattern Matching

	Modules
	Module Syntax
	Module Attributes
	Pre-Defined Module Attributes
	Behaviour Module Attribute
	Record Definitions
	The Preprocessor
	Setting File and Line
	Types and function specifications

	Comments
	The module_info/0 and module_info/1 functions
	module_info/0
	module_info/1


	Functions
	Function Declaration Syntax
	Function Evaluation
	Tail recursion
	Built-In Functions, BIFs

	Types and Function Specifications
	The Erlang Type Language
	Types and their Syntax
	Type declarations of user-defined types
	Type information in record declarations
	Specifications for functions

	Expressions
	Expression Evaluation
	Terms
	Variables
	Patterns
	Match Operator = in Patterns
	String Prefix in Patterns
	Expressions in Patterns

	Match
	Function Calls
	Local Function Names Clashing With  Auto-imported BIFs

	If
	Case
	Send
	Receive
	Term Comparisons
	Arithmetic Expressions
	Boolean Expressions
	Short-Circuit Expressions
	List Operations
	Map Expressions
	Creating Maps
	Updating Maps
	Maps in Patterns
	Matching syntax: Example with literals in function heads

	Maps in Guards

	Bit Syntax Expressions
	Fun Expressions
	Catch and Throw
	Try
	Parenthesized Expressions
	Block Expressions
	List Comprehensions
	Bit String Comprehensions
	Guard Sequences
	Operator Precedence

	The Preprocessor
	File Inclusion
	Defining and Using Macros
	Predefined Macros
	Macros Overloading
	Flow Control in Macros
	Stringifying Macro Arguments

	Records
	Defining Records
	Creating Records
	Accessing Record Fields
	Updating Records
	Records in Guards
	Records in Patterns
	Nested records
	Internal Representation of Records

	Errors and Error Handling
	Terminology
	Exceptions
	Handling of Run-Time Errors in Erlang
	Error Handling Within Processes
	Error Handling Between Processes

	Exit Reasons

	Processes
	Processes
	Process Creation
	Registered Processes
	Process Termination
	Message Sending
	Links
	Error Handling
	Emitting Exit Signals
	Receiving Exit Signals

	Monitors
	Process Dictionary

	Distributed Erlang
	Distributed Erlang System
	Nodes
	Node Connections
	epmd
	Hidden Nodes
	C Nodes
	Security
	Distribution BIFs
	Distribution Command Line Flags
	Distribution Modules

	Compilation and Code Loading
	Compilation
	Code Loading
	Code Replacement
	Running a function when a module is loaded

	Ports and Port Drivers
	Ports
	Port Drivers
	Port BIFs


	Programming Examples
	Records
	Records vs Tuples
	Defining a Record
	Creating a Record
	Accessing a Record Field
	Updating a Record
	Type Testing
	Pattern Matching
	Nested Records
	Example

	Funs
	Example 1 - map
	Example 2 - foreach
	The Syntax of Funs
	Variable Bindings Within a Fun
	Funs and the Module Lists
	map
	any
	all
	foreach
	foldl
	mapfoldl
	filter
	takewhile
	dropwhile
	splitwith

	Funs Which Return Funs
	Simple Higher Order Functions
	Infinite Lists
	Parsing


	List Comprehensions
	Simple Examples
	Quick Sort
	Permutations
	Pythagorean Triplets
	Simplifications with List Comprehensions
	Variable Bindings in List Comprehensions

	Bit Syntax
	Introduction
	Examples

	A Lexical Note
	Segments
	Defaults
	Constructing Binaries and Bitstrings
	Including Literal Strings

	Matching Binaries
	Getting the Rest of the Binary or Bitstring

	Appending to a Binary


	Efficiency Guide 
	Introduction
	Purpose
	Prerequisites

	The Eight Myths of Erlang Performance
	Myth: Funs are slow
	Myth: List comprehensions are slow
	Myth: Tail-recursive functions are MUCH faster
    than recursive functions
	Myth: '++' is always bad
	Myth: Strings are slow
	Myth: Repairing a Dets file is very slow
	Myth: BEAM is a stack-based byte-code virtual machine (and therefore slow)
	Myth: Use '_' to speed up your program when a variable is not used

	Common Caveats
	The timer module
	list_to_atom/1
	length/1
	setelement/3
	size/1
	split_binary/2
	The '--' operator

	Constructing and matching binaries
	How binaries are implemented
	Constructing binaries
	Circumstances that force copying

	Matching binaries
	The bin_opt_info option
	Unused variables


	List handling
	Creating a list
	List comprehensions
	Deep and flat lists
	Why you should not worry about recursive lists functions

	Functions
	Pattern matching
	Function Calls 
	Notes and implementation details

	Memory usage in recursion

	Tables and databases
	Ets, Dets and Mnesia
	Select/Match operations
	Deleting an element
	Data fetching
	Non-persistent data storage 
	tab2list
	Ordered_set tables

	Ets specific
	Utilizing the keys of the Ets table

	Mnesia specific
	Secondary index
	Transactions 


	Processes
	Creation of an Erlang process
	Initial heap size

	Process messages
	The constant pool
	Loss of sharing

	The SMP emulator

	Drivers
	Drivers and concurrency
	Avoiding copying of binaries when calling a driver
	Returning small binaries from a driver
	Returning big binaries without copying from a driver

	Advanced
	Memory
	System limits

	Profiling
	Do not guess about performance - profile
	Big systems
	What to look for
	Tools
	fprof
	eprof
	cover
	cprof
	Tool summarization

	Benchmarking


	Interoperability Tutorial
	Introduction
	Purpose
	Prerequisites

	Overview
	Built-In Mechanisms
	Distributed Erlang
	Ports and Linked-In Drivers

	C and Java Libraries
	Erl_Interface
	C Nodes
	Jinterface

	Standard Protocols
	Sockets

	IC
	Old Applications

	Problem Example
	Description

	Ports
	Erlang Program
	C Program
	Running the Example

	Erl_Interface
	Erlang Program
	C Program
	Running the Example

	Port drivers
	Port Drivers
	Erlang Program
	C Driver
	Running the Example

	C Nodes
	Erlang Program
	C Program
	Setting Up the Communication
	Sending and Receiving Messages

	Running the Example

	NIFs
	NIFs
	Erlang Program
	NIF library code
	Running the Example


	OTP Design Principles
	Overview
	Supervision Trees
	Behaviours
	Applications
	Releases
	Release Handling

	Gen_Server Behaviour
	Client-Server Principles
	Example
	Starting a Gen_Server
	Synchronous Requests - Call
	Asynchronous Requests - Cast
	Stopping
	In a Supervision Tree
	Stand-Alone Gen_Servers

	Handling Other Messages

	Gen_Fsm Behaviour
	Finite State Machines
	Example
	Starting a Gen_Fsm
	Notifying About Events
	Timeouts
	All State Events
	Stopping
	In a Supervision Tree
	Stand-Alone Gen_Fsms

	Handling Other Messages

	Gen_Event Behaviour
	Event Handling Principles
	Example
	Starting an Event Manager
	Adding an Event Handler
	Notifying About Events
	Deleting an Event Handler
	Stopping
	In a Supervision Tree
	Stand-Alone Event Managers

	Handling Other Messages

	Supervisor Behaviour
	Supervision Principles
	Example
	Restart Strategy
	one_for_one
	one_for_all
	rest_for_one

	Maximum Restart Frequency
	Child Specification
	Starting a Supervisor
	Adding a Child Process
	Stopping a Child Process
	Simple-One-For-One Supervisors
	Stopping

	Sys and Proc_Lib
	Simple Debugging
	Special Processes
	Example
	Starting the Process
	Debugging
	Handling System Messages

	User-Defined Behaviours

	Applications
	Application Concept
	Application Callback Module
	Application Resource File
	Directory Structure
	Application Controller
	Loading and Unloading Applications
	Starting and Stopping Applications
	Configuring an Application
	Application Start Types

	Included Applications
	Definition
	Specifying Included Applications
	Synchronizing Processes During Startup

	Distributed Applications
	Definition
	Specifying Distributed Applications
	Starting and Stopping Distributed Applications
	Failover
	Takeover

	Releases
	Release Concept
	Release Resource File
	Generating Boot Scripts
	Creating a Release Package
	Directory Structure
	Disk-Less and/or Read-Only Clients


	Release Handling
	Release Handling Principles
	Requirements
	Distributed Systems
	Release Handling Instructions
	load_module
	update
	add_module and delete_module
	Application Instructions
	apply (low-level)
	restart_new_emulator (low-level)
	restart_emulator (low-level)

	Application Upgrade File
	Release Upgrade File
	Installing a Release
	Updating Application Specifications

	Appup Cookbook
	Changing a Functional Module
	Changing a Residence Module
	Changing a Callback Module
	Changing Internal State
	Module Dependencies
	Changing Code For a Special Process
	Changing a Supervisor
	Changing Properties
	Changing Child Specifications
	Adding And Deleting Child Processes

	Adding or Deleting a Module
	Starting or Terminating a Process
	Adding or Removing an Application
	Restarting an Application
	Changing an Application Specification
	Changing Application Configuration
	Changing Included Applications
	Application Restart
	Supervisor Change

	Changing Non-Erlang Code
	Emulator Restart and Upgrade
	Emulator Upgrade from pre OTP R15


	OAM Principles
	Introduction
	Terminology
	Model
	SNMP based OAM
	MIB structure





