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Introduction: 

Since the beginning of written language, humans have wanted to share information secretly.  
The information could be orders from a general in times of war, a message between secret admirers, or 
information regarding some of the world’s most villainous crimes.  It is this need for secrecy and its wide 
applications that gave rise to cryptography and have made it an area of study for thousands of years.  In 
this paper, I will introduce the study of cryptography and some of the weaknesses of classical ciphers by 
looking at the Caesar cipher.  Moving on from this introduction, I will focus on a linear algebra based 
cipher, the Hill cipher, which fixed the main problems associated with ciphers like the Caesar cipher.  I 
will also analyze the shortcomings of the Hill cipher and introduce a method to improve the linear 
algebra behind it in order to make it more secure. 

Caesar Cipher: 

Until recently, encrypting secret messages was performed by hand using relatively trivial 
mechanisms to disguise information.  One of the most well-known ciphers was named after Julius 
Caesar, namely, the Caesar cipher.  The Caesar cipher is an example of a substitution cipher.  Each letter 
of a given plaintext, the information to be encrypted, is substituted with another letter some given 
number of positions from it in the alphabet.  For example, if we had an alphabet comprised of the 
standard 26 letters in the English alphabet and swapped each letter with the letter three places after it 
in the alphabet, we would have the following Caesar cipher (Luciano and Prichett, 3): 

Plaintext: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

 

Cipher text: 

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

 

Using this cipher, the text “TOP SECRET MESSAGE” would encode to “WRS VHFUHW PHVVDJH.” 

 One of the main problems with the Caesar cipher is that if an individual intercepts the cipher 
text and guesses that the Caesar cipher was used for the encryption, he or she could easily go through 
the 25 shift values until they come upon a shift that decodes the cipher text into a meaningful plaintext.  
On a broader scale, simple substitution ciphers all fall victim to simple analysis.  Given any particular 
alphabetic language, certain letters are used more or less frequently than other letters.  In a simple 
substitution cipher, these frequencies with which each letter occurs in an average sentence or 
paragraph are maintained.  For example, if a substitution cipher encoded “e” to “w,” “w” would occur in 
the cipher text with the same frequency as “e” in the original language, allowing for a relatively simple 
analysis to break the substitution cipher (Luciano and Prichett, 6). 

Hill Cipher: 

 As time progressed, the study of cryptography continued to mature and, more recently, began 
to involve higher level mathematics.  With this more advanced math came more advanced ciphers based 



on the idea of encryption and decryption keys.  Encryption keys are a special value or set of values used 
in an encryption algorithm to convert a plaintext into a cipher text.  A decryption key is the opposite.  
Decryption keys are used as part of a decryption algorithm to convert the cipher text back into the 
original plaintext.  One such example of an encryption scheme that utilizes more advanced mathematics, 
as well as encryption and decryption keys is a cipher from 1929 called the Hill cipher.  The Hill cipher is 
based on linear algebra and overcomes the frequency distribution problem of the Caesar cipher that 
was previously discussed.  The rest of this paper will be devoted to an explanation of the Hill cipher, its 
shortcomings, and one way to secure the cipher further. 

For both encryption and decryption, the Hill cipher assigns numerical values to each letter of an 
alphabet.  Throughout this paper, we will use the standard 26 character English alphabet and define the 
following associations between letters in our alphabet and numbers. 

A B C D E F G H I J K L M 

0 1 2 3 4 5 6 7 8 9 10 11 12 

 

N O P Q R S T U V W X Y Z 

13 14 15 16 17 18 19 20 21 22 23 24 25 

 

The computation used in the Hill cipher is based on linear algebra techniques.  Before explaining the 
encryption and decryption procedures, it is important to recognize that the above alphabet is a linear 
space.  Note the following (Hill 306-307): 

1. The alphabet has a zero element.  In this case, the zero element is “A.”  The numerical value of 
any letter α + A = α, just as any number added to 0 equals itself. 

2. The alphabet is closed under modulo addition.  The addition operator “+” is defined as modulo 
addition for use within this alphabet such that for the numerical values of two letters α and β, α 
+ β = γ where γ is the remainder from dividing the sum of α and β by the size of the alphabet (26 
in our case). 

3. The alphabet is closed under modulo scalar multiplication.  Scalar multiplication is defined for 
use within this alphabet such that for all numerical values of two letters α and β, αβ = γ where γ 
is the remainder of the product of α and β divided by the size of the alphabet. 

Encryption with the Hill Cipher: 

Now that we know this alphabet is a linear space, we can perform linear transformations on it.  
Encrypting text using the Hill cipher is accomplished by breaking a given plaintext into blocks of size n 
(where n is an integer), writing these blocks as column vectors, and multiplying these column vectors by 
any invertible nxn matrix.  The encryption matrix must be invertible because its inverse will be used to 
decrypt the cipher texts created with the Hill cipher and this encryption matrix.  The invertibility of the 
encryption matrix allows us to say that its determinant must not be 0.  The determinant of the 
encryption matrix must also be relatively prime to the size of the alphabet.  In our case, any encryption 
matrix we choose must have a determinant that is relatively prime to 26 (Hill, 307-309).  This condition 
allows for a randomized distribution of letters in the cipher text.   

As an example, to encrypt the plaintext “TOP SECRET MESSAGE” with n=2, the process is as follows 
(University of Florida, 7 – 12): 



1. Choose a 2x2 encryption matrix.  For this example, we will use the matrix |
3 2
5 7

|.  This matrix 

has the determinant (3*7) – (2*5) = 21 – 10 = 11.  Since 11 is ≠ 0, this matrix is invertible.  11 is 
also relatively prime to 26.  These two qualities satisfy the requirements listed previously, 
making this encryption matrix a valid choice for use in the Hill cipher. 

2. Split the plaintext into blocks of size 2 (ignoring spaces), determine the letters’ numerical values, 
and align these as column vectors.  If the length of the plaintext is not evenly divisible by 2, add 
a previously decided character to the end of the string until the plaintext is evenly divisible by 2.   

|
𝑇
𝑂

| =  |
19
14

|  |
𝑃
𝑆

| =  |
15
18

| |
𝐸
𝐶

| =  |
4
2

| |
𝑅
𝐸

| =  |
17
4

| |
𝑇
𝑀

| =  |
19
12

| 

|
𝐸
𝑆

| =  |
4

18
|  |

𝑆
𝐴

| =  |
18
0

| |
𝐺
𝐸

| =  |
6
4

| 

3. Multiply each of these column vectors by the encryption matrix and take modulo 26 of the 
result. 

|
3 2
5 7

| |
19
14

| = |
(3 ∗ 19) + (2 ∗ 14)
(5 ∗ 19) + (7 ∗ 14)

| =  |
85

193
| =  |

7
11

|  (modulo 26) 

 

|
3 2
5 7

| |
15
18

| = |
(3 ∗ 15) + (2 ∗ 18)

(5 ∗ 15) + (7 ∗ 18)
| =  |

81
201

| =  |
3

19
|  (modulo 26) 

 

|
3 2
5 7

| |
4
2

| = |
(3 ∗ 4) + (2 ∗ 2)

(5 ∗ 4) + (7 ∗ 2)
| =  |

16
34

| =  |
16
8

|  (modulo 26) 

 

|
3 2
5 7

| |
17
4

| = |
(3 ∗ 17) + (2 ∗ 4)
(5 ∗ 17) + (7 ∗ 4)

| =  |
59

113
| =  |

7
9

|  (modulo 26) 

 

|
3 2
5 7

| |
19
12

| = |
(3 ∗ 19) + (2 ∗ 12)
(5 ∗ 19) + (7 ∗ 12)

| =  |
81

179
| =  |

3
23

|  (modulo 26) 

 

|
3 2
5 7

| |
4

18
| = |

(3 ∗ 4) + (2 ∗ 18)

(5 ∗ 4) + (7 ∗ 18)
| =  |

48
146

| =  |
22
16

|  (modulo 26) 

 

|
3 2
5 7

| |
18
0

| = |
(3 ∗ 18) + (2 ∗ 0)

(5 ∗ 18) + (7 ∗ 0)
| =  |

54
90

| =  |
2

12
|  (modulo 26) 

 

|
3 2
5 7

| |
6
4

| = |
(3 ∗ 6) + (2 ∗ 4)
(5 ∗ 6) + (7 ∗ 4)

| =  |
26
58

| =  |
0
6

|  (modulo 26) 

 
4. Convert each of the matrices obtained in step 3 to their alphabetical vectors and combine them 

to produce the cipher text. 

|
7

11
| =  |

𝐻
𝐿

|  |
3

19
| =  |

𝐷
𝑇

| |
16
8

| =  |
𝑄
𝐼

| |
7
9

| =  |
𝐻
𝐽

| |
3

23
| =  |

𝐷
𝑋

| 

 

|
22
16

| =  |
𝑊
𝑄

|  |
2

12
| =  |

𝐶
𝑀

| |
0
6

| =  |
𝐴
𝐺

| Cipher text: HLDTQIHJDXWQCMAG 

 
This completes the process of the Hill cipher’s encryption by matrix multiplication.  We can see 

that the plaintext “TOP SECRET MESSAGE” encodes to “HLDTQIHJDXWQCMAG.”  It is important to note 



that the Hill cipher overcomes the frequency distribution problem associated with simple substitution 
ciphers, such as the Caesar cipher.  Since the encryption is not simply based on replacing certain 
characters with others but, instead, on linear transformations of blocks of characters, the frequencies of 
each letters’ appearance in the language have been masked.  In fact, the cipher text in the above case 
makes this even easier to see because it has more characters in it than the original plaintext. 

Decryption with the Hill Cipher: 

From here, we are interested in how the party receiving a secret message encoded by the Hill cipher 
can decode it into the original plaintext.  As previously described, the Hill cipher is based on matrix 
multiplication and any encryption matrix used in the Hill cipher must be invertible.  For three nxn 
matrices A, B, and C where AB = C and A is invertible, we know that B = A-1C.  Using this, we know we can 
decrypt an encoded message by multiplying it by the inverse of the encryption matrix.  Due to the 
modulo arithmetic involved in this cipher, we need to find A-1 such that AA-1 = In mod 26.  From here, the 
cipher text is split into blocks of size n and multiplied by the inverse matrix.  The process is the same as 
encryption, but with the inverse matrix instead of the original encryption matrix.  Decryption of the 
cipher text “HLDTQIHJDXWQCMAG” with the 2x2 encryption matrix previously defined would go as 
follows: 

1. Find A-1 

det (|
3 2
5 7

|) = (3*7) – (2*10) = 11 11-1 modulo 26 = 19 

 

19 |
7 −2

−5 3
| =  |

133 −38
−95 57

| =  |
3 14
9 5

|  (modulo 26) 

 
2. Split the cipher text into blocks of 2, determine the letters’ numerical values, and align these as 

column vectors.  

|
𝐻
𝐿

| =  |
7

11
|  |

𝐷
𝑇

| =  |
3

19
| |

𝑄
𝐼

| =  |
16
8

| |
𝐻
𝐽

| =  |
7
9

| |
𝐷
𝑋

| =  |
3

23
| 

 

|
𝑊
𝑄

| =  |
22
16

|  |
𝐶
𝑀

| =  |
2

12
| |

𝐴
𝐺

| =  |
0
6

| 

 
3. Multiply each of these column vectors by the decryption matrix calculated in step 1 and take 

modulo 26 of the result. 

|
3 14
9 5

| |
7

11
| = |

(3 ∗ 7) + (14 ∗ 11)
(9 ∗ 7) + (5 ∗ 11)

| =  |
175
118

| =  |
19
14

|  modulo 26 

 

|
3 14
9 5

| |
3

19
| = |

(3 ∗ 3) + (14 ∗ 19)

(9 ∗ 3) + (5 ∗ 19)
| =  |

275
122

| =  |
15
18

|  modulo 26 

 

|
3 14
9 5

| |
16
8

| = |
(3 ∗ 16) + (14 ∗ 8)

(9 ∗ 16) + (5 ∗ 8)
| =  |

160
184

| =  |
4
2

|  modulo 26 

 

|
3 14
9 5

| |
7
9

| = |
(3 ∗ 7) + (14 ∗ 9)
(9 ∗ 7) + (5 ∗ 9)

| =  |
147
108

| =  |
17
4

|  modulo 26 

 

|
3 14
9 5

| |
3

23
| = |

(3 ∗ 3) + (14 ∗ 23)
(9 ∗ 3) + (5 ∗ 23)

| =  |
331
142

| =  |
19
12

|  modulo 26 

 



|
3 14
9 5

| |
22
16

| = |
(3 ∗ 22) + (14 ∗ 16)
(9 ∗ 22) + (5 ∗ 16)

| =  |
290
278

| =  |
4

18
|  modulo 26 

 

|
3 14
9 5

| |
2

12
| = |

(3 ∗ 2) + (14 ∗ 12)
(9 ∗ 2) + (5 ∗ 12)

| =  |
174
78

| =  |
18
0

|  modulo 26 

 

|
3 14
9 5

| |
0
6

| = |
(3 ∗ 0) + (14 ∗ 6)

(9 ∗ 0) + (5 ∗ 6)
| =  |

84
30

| =  |
6
4

|  modulo 26 

 
4. Convert each of the matrices obtained in step 3 to their alphabetic vectors and combine them to 

produce the original plaintext. 

|
19
14

| =  |
𝑇
𝑂

|  |
15
18

| =  |
𝑃
𝑆

| |
4
2

| =  |
𝐸
𝐶

| |
17
4

| =  |
𝑅
𝐸

| |
19
12

| =  |
𝑇
𝑀

| 

|
4

18
| =  |

𝐸
𝑆

|  |
18
0

| =  |
𝑆
𝐴

| |
6
4

| =  |
𝐺
𝐸

| Original plaintext: TOPSECRETMESSAGE 

 At this point, the cipher text has been decrypted into the original plaintext, minus the original 
spaces.  Spaces can either be added by the recipient or an alphabet could be devised that would include 
a space character.  For example, the character “_“ could be added to our alphabet as having the 
numerical value 26 and all of our modulo functions would change to modulo 27 to adjust for the fact 
there would now be 27 characters in the alphabet.  This modified alphabet would allow for encryption 
of the space character within messages. 

Analysis of the Hill Cipher: 

Since the Hill cipher is strictly based on matrix multiplication and inverses, it is quickly and easily 
computed and it overcomes the frequency distribution problem of earlier algorithms.  This linearity, 
however, is still subject to simple attacks.  If an attacker intercepted enough plaintext and cipher text 
pairs, a linear system could be set up to calculate the encryption matrix (Ismail et. al, 2023).  That is, 
with encryption matrix A, given enough plaintext and cipher text pairs B and C, an attacker could solve 
AB = C for A by manipulating the equation to A = CB-1.  Since this is simply solving a linear system, it is a 
relatively easy task.  After an attacker computes A, he or she could easily compute A-1, the decryption 
matrix, and the entire encryption scheme would be compromised for that particular encryption matrix 
A.  In order to continue using the Hill cipher, the communicating parties would need to meet up and 
mutually agree upon a new encryption matrix A that could, again, be easily computed by an attacker 
with enough plaintext and cipher text pairs. 

 Another problem related to the Hill cipher’s strict linearity is that the Hill cipher encodes every 

identical matrix B to the same matrix C.  For example, in our previous encryption, the block |
𝑇
𝑂

| 

encrypted to |
𝐻
𝐿

|.  For every block |
𝑇
𝑂

| in a plaintext, that block will always be encoded to |
𝐻
𝐿

| when the 

encryption matrix from our example is used. 

The problems that arise from this scenario are more easily demonstrated with images.  Suppose 
that instead of text being encrypted, images were being encrypted.  If an image was made of 
predominantly white pixels with an object in the center, the Hill cipher would encrypt all of the blocks of 

white pixels to the same values, in the same way it encrypted all blocks of |
𝑇
𝑂

| to |
𝐻
𝐿

| using the 

encryption matrix from our example.  Since all of the blocks of white pixels are encrypted to the same 



cipher text blocks, the general shape of the object in the center of the image is preserved.  The following 
images illustrate this point (Ismail et. al, 2026).  It is easy to see that encrypting this image with the Hill 
Cipher did nothing to prevent unwanted eyes from understanding the transmitted data.  That is, the 
Nike symbol is still clearly visible, even if it is slightly distorted. 

 

 

 

 

 

 

 

 

 

 

 

Securing the Hill Cipher: 

Several solutions for these problems have been proposed as means of securing the Hill cipher.  
One such solution, named HillMRIV by its authors, is to systematically alter the encryption matrix for 
every block being encrypted.  Suppose we were working with our previously defined 26 character 

alphabet and were encrypting text using the following 3x3 encryption matrix:  |
3 11 9

13 8 21
3 19 16

|   Note that 

the determinant of this matrix is -401, meaning that this matrix is invertible.  Normally, for use in the Hill 
cipher, a matrix has to be both invertible and have a determinant that is relatively prime to the number 
of letters in the alphabet.  This modified Hill cipher algorithm does not require this feature of the matrix 
for reasons that will become evident later.   

Instead of the communicating parties sharing just this encryption matrix, they can also share a 
random vector with the same length as the rows of the encryption matrix.  For example, the vector v = 
|7 2 15| satisfies this requirement for the 3x3 matrix above.  For each block of information to be 
encrypted by this modified Hill cipher, the encryption matrix is adjusted by multiplying one of its rows by 
v and taking the product modulo 26, in sequential order.  For example: 

|
7 ∗ 3 2 ∗ 11 15 ∗ 9

13 8 21
3 19 16

| =  |
21 22 135
13 8 21
3 19 16

| =  |
21 22 5
13 8 21
3 19 16

|  modulo 26, 

These images illustrate how the Hill cipher does very little to hide the data in a plaintext with many identical blocks.  Note 

that all of the white pixels encrypted to the same pattern, leaving the Nike symbol identifiable.  Source: Ismail et. al, 2026 



 |
21 22 5

7 ∗ 13 2 ∗ 8 15 ∗ 21
3 19 16

| = |
21 22 5
91 16 315
3 19 16

| =  |
21 22 5
13 16 3
3 19 16

|  modulo 26, and  

|
21 22 5
91 16 315

7 ∗ 3 2 ∗ 19 15 ∗ 16
| =  |

21 22 5
13 16 3
21 38 240

| =  |
21 22 5
13 16 3
21 12 6

|   modulo 26 would be used to encrypt  

the first, second, and third blocks, respectively, of a plaintext.  For each of the remaining blocks of 

plaintext, the process would continue, starting once again by multiplying the first row of  |
21 22 5
13 16 3
21 12 6

|  

by v (Ismail et. al, 2023-2024).  Besides this modification of the encryption matrix, the process of 
encryption using this modified Hill cipher is identical to that of the original Hill cipher.  Decryption is also 
similar to the original Hill cipher, with the difference being that the decryption matrix for each block 
must be computed separately to correspond with the varying encryption matrices. 

Performing the encryption with this variation adds a layer of complexity that is much harder to 
crack without knowledge of both the original encryption matrix and the vector v, while maintaining the 
properties of the Hill cipher that overcome the frequency distribution problem previously discussed.  
This system is harder to crack because for any given number of blocks, the blocks will all be encoded 
with a different encryption matrix, preventing this cipher from being broken by solving a simple linear 
system, as was possible with the original Hill cipher.  It should also be noted that since each block is 
encrypted with a different encryption matrix, this modified Hill cipher properly encrypts plaintexts with 
duplicate blocks.  A comparison of results from the original Hill cipher and this modified cipher, 
HillMRIV, are shown below. 

 

 

 

  

 

 

 

 

 

 

 

 

These images show the results of the HillMRIV cipher compared to the results of the original Hill cipher when encrypting 

an image of the Nike logo on a white background.  Source: Ismail et. al, 2026 



Conclusions: 

In this paper, I have demonstrated the importance of linear algebra in cryptography by 
introducing one of the most well-known ciphers, Caesar’s cipher, and demonstrating how its major flaw 
was overcome by Lester. S. Hill’s Hill cipher in 1929.  I then demonstrated a major security flaw in the 
Hill cipher and showed how further linear-algebra based computation can be used to better secure the 
cipher.  All of this shows that cryptography is among the wide range of uses for linear algebra in 
everyday life.  While there are many cryptographic schemes and ciphers currently in production 
environments and being researched around the world, this paper shows that linear algebra has a place 
in cryptography, serving purposes from securing instant messages to protecting email accounts to 
simply hiding a journal from the rest of the world. 
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