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Westinghouse Electric Company strives to 
educate students on a variety of topics that deal 

with energy and engineering.  
This booklet is aimed to give high school 

students a glimpse into the careers in 
engineering and basic knowledge of energy and 

its history. We hope you find this educational 
booklet beneficial.

Best of luck in your 
educational journey!
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Preparing to Become an Engineer
Before we can discuss preparing to become an engineer, we first need to understand what engineering is.  
The Merriam-Webster Dictionary defines engineering as:

en•gi•neer•ing 
2a: the application of science and mathematics by which the properties of matter and the sources of energy in nature 
are made useful to people
2b: the design and manufacture of complex products

As we can see, a person who studies and practices engineering (an engineer) typically enjoys doing math and science.  
Most often they are creative, forward thinkers who enjoy finding solutions and answers to problems. Let’s see if a 
career in engineering might be the right path for you. Try asking yourself these simple questions (there is no right or 
wrong answer):

	 1.   Do you always wonder how things work?
	 2.   Do you enjoy your math and/or science classes?
	 3.   Do you like playing with Legos®, K’NEX™ or any other type of building toys?
	 4.   Do you like watching the Discovery or Science Channel?
	 5.   Do you look at things you can buy today and see ways that they could be better?

If you answered yes to any of these questions, you may have the qualities suitable for a career in 
engineering. Let’s look at how you can prepare during high school for a future as an engineer. Since 
there are more degrees and careers in engineering than we could ever fully cover in this pamphlet, 
we will also provide you with several references and resources for you to research if you’d like to 
learn more.

Lego® is a registerd trademark of the Lego Group.
K’NEX™  is a trademark of K’NEX Industries, Inc.



In order to become an engineer, you’re going to have to go to college. If you want to be able to go to the college or 
university of your choosing, you’ll have to show that you’ll make a valuable addition to their campus. So how are you 
going to do that? Take a look at the recommendations below:

George’s Tips for High School Success 
Show those colleges/universities you would be a valuable addition to their institution.

• Make Math and Science Count

If you’re applying to schools for engineering, they’re going to pay particularly close attention to your math 
and science grades as well as the number of classes and advanced classes you’ve taken in those areas.

• Study, Study, Study…

It doesn’t have to be your life, and it shouldn’t be, but developing a good understanding of how you learn best will be 
crucial when you start your higher education. In this case, good habits do start young.

• Get Involved and Stay Involved 

Consider joining some clubs, sports or any extracurricular activity. Employers  are looking for well-educated people 
who are also involved and can communicate with their peers. Colleges and universities have recognized this and are 
encouraging students to branch out from their fields of study and get involved on the campus. Yes, good grades are a 
very important step to your engineering career, but knowing how to interact with people socially is extremely valuable.
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• Have Quality Recommendation Letters 

Develop good student-teacher relations with your math and science teachers. Glowing letters from them when 	   
applying to a school for engineering will be helpful.

• Visit the Campus
  
Be sure to visit the campus of the college or university you are interested in, as well as others, to compare. A college 
or university may look great in print, but you may get there and realize the place isn’t a good fit for you and your 
ambitions. Don’t just take the standard tour, ask to meet with the dean or the professors of the engineering school.

• Reach Outside Your Comfort Zone
  
You have goals for your future, right? Try identifying the qualities you may need to have to reach those goals. 
Do any of those qualities make you uncomfortable (e.g., speaking in public)? If so, try to find ways to defeat those 
shortcomings and make them your strengths. A person who is willing to go after a challenge will stand out 
to employers.
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Straight Talk … with Two Westinghouse Engineers 

Wonder what it’s like to be an engineer? Well, we interviewed two Westinghouse engineers 
for you to learn more about their schooling, what their daily routine is and if they like being 
an engineer.  
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   Name:................................................Kelly Semanco
   Job Title:..........................................Proposal Engineer
   Type of Engineer:.........................Mechanical Engineer
   Years at Westinghouse:............ Five
   Education:.......................................Bachelor of Science in Mechanical 		

					       Engineering from Penn State University
   					       Masters of Business Administration (MBA) 	

				                    in progress at Katz School of Business

   Salary:...............................................$70,000 - $100,000

KELLY …



What was/is your career path?

I began my career at Westinghouse as a mechanical engineer. I worked on the small bore instrumentation piece of 
the Steam Generator Replacement (SGR) project for Comanche Peak. After completing the engineering stage, I went 
to the site for four months as a resident engineer. I had the opportunity to go into the plant and work with the people 
installing what I designed. 

After completing this project, I did the same type of work for San Onofre Nuclear Generating Station (SONGS) units 
two and three, but I had more of a lead role because I had the opportunity to be involved in the project from the start. 
After the engineering phase was complete, I became the operations lead for Plant Engineering US. In this role, I 
worked with the director to track the groups’ metrics and current projects and was involved in strategic planning. I then 
returned to the SONGS SGR project to be a resident engineer at the site during the outage. 

Upon returning to Pittsburgh, I became a proposal engineer for the group. Currently, I work with our internal and 
external customers to determine if our group can fulfill their needs by interfacing with personnel in many groups 
at Westinghouse. In addition to my main responsibilities, I am the current secretary for Women In Nuclear and the 
treasurer for North American Young Generation in Nuclear. These additional experiences help me network within the 
company and give me the chance to advocate nuclear power in the community. All of these roles have helped me 
proceed along the business leader path. 

What did you do in high school to prepare for an engineering career and to 
prepare for college?

In high school, I took many advance placement courses in the math and science areas because I excelled in 
these areas.
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What college courses did you take? And why?

My college courses mainly consisted of required courses for my engineering major and for my bioengineering minor. 
Examples included: chemistry, fluid dynamics, thermodynamics, computer programming, economics, English, speech 
communications, material science and many advanced biology-related courses to coincide with my minor. I chose to 
enter mechanical engineering because it is one of the broadest disciplines and engineers in this field are using in the 
forefront of technology development and applications. I was unsure what specific career field I would be entering, but I 
knew that I would have a lot of opportunity since mechanical engineers work in so many fields. After being employed at 
Westinghouse for several years, I realized that I was most interested in the business aspect of the company. I am now 
taking MBA classes. 

Beyond your engineering skills, what career advice would you give?

I would advise new engineers to sit down with their managers and discuss their interests. There are so many 
opportunities at Westinghouse and each job is a little different. Your manager can help direct you on a path to 
success. In addition, be open and willing to accept new assignments outside of your comfort zone. I have learned 
the most in the opportunities that were unexpected. You grow professionally by challenging yourself. Finally, get 
involved in organizations where you have the opportunity to network outside your group. It is so easy to get caught 
up with the projects, but a lot can be learned from all the other groups at Westinghouse. 



What is the future of the type of engineering you majored or currently work in at 
Westinghouse?

The future of mechanical engineering is extremely bright here at Westinghouse. Because the profession enables you to 
perform functions in a range of areas, mechanical engineers can become a part of many groups within Westinghouse. 
Having a background with a balance in engineering applications and theory with an emphasis on design will allow you 
to complete work on either existing plants or new plant design. 

What factors can affect a typical engineer’s salary?   

A typical engineer’s salary can be affected by many things: if you had any prior experience before coming to 
Westinghouse, if you completed assignments while at Westinghouse, if you accepted any project management roles, if 
you are in a leadership position, if you are willing to travel, if you take an international assignment, if you have a higher 
education degree applicable to your job, if you excelled at your previous assignment, if you take a special assignment 
and many other factors. 
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KOREY …
Name:................................................   Korey Hosack
Job Title:..........................................   Project Controls Engineer
Type of Engineer:.........................   I am a Nuclear Engineer by education, 		
				                 although I now “engineer” various business 	
				                 aspects for our AP1000® reactor design.
Years at Westinghouse:...........    Over one year   
Education:.......................................   Bachelor of Science in Nuclear Engineering 
					     with a Minor in Applied Math from the 
					     University of New Mexico, 2009.  Working on 	
					     an MBA and Masters of  Science in Industrial 	
					     Engineering 
Salary:...............................................   $60,000 - $90,000

AP1000® is a registered trademark of Westinghouse Electric Company LLC.



What was/is your career path?  

Despite a technical education that focused on nuclear fuels and core design, I’ve found myself becoming more and 
more interested in business strategy, operations and logistics. Although I stay up to date with the technical material, I 
am on a more business-oriented career path than has been conventional for others with my degree.  

What did you do in high school to prepare for an engineering career and to 
prepare for college?  

To prepare myself for an engineering degree, I took as many advanced placement math and science courses in high 
school as I could. Although I knew that I wanted to be an engineer, I didn’t know exactly which discipline I would be 
pursuing. A strong background in math and science, however, is important to all of the engineering fields. I therefore 
tried to expose myself to as many areas of science as I could.

What college courses did you take? And why?  

As previously mentioned, any engineering degree is going to be heavy on the math and science classes (calculus, 
differential equations and general physics and chemistry). You’ll have some time to decide which discipline you 
ultimately want to pursue while you satisfy these general course requirements, but the sooner you decide the better.  
When I really got deep into my program, however, I found myself taking classes like radiation protection and shielding, 
advanced numerical analysis and transport phenomena. These were much more specific to my degree.

Beyond your engineering skills, what career advice would you give?  

Beyond coursework and technical know-how, it is extremely beneficial to be involved in the professional organizations 
related to your engineering discipline. In fact, become an officer of the student section, if you can. This will give 
you important leadership experience and insight into the various career paths your degree can take.  This will also 
help expose you to others in your area of interest, some of whom may have internship or employment opportunities 
available when you graduate. Finally, this involvement outside of class shows graduate schools and potential 
employers that you are self-motivated and truly care about the work you are doing. This could really give you an 
advantage over other interviewees.
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Finally, although numbers are generally the engineer’s tools, don’t neglect the power of words and the ability to write.  
Being an effective writer and communicator can help in any job, engineering included.

What is the future of the type of engineering you majored or currently work in at 
Westinghouse?  

With the resurgence of the nuclear industry, there are plenty of opportunities for nuclear engineers. There are two 
nuclear engineers retiring for every graduate produced; this is a very positive job outlook for nuclear engineering 
students. In fact, this is partly what motivated me to pursue a degree in nuclear engineering: I saw the need and knew I 
could fill it. As for the different fields nuclear engineers go into, there is obviously a lot of opportunity in the commercial 
power sector (like Westinghouse, for example).      

What factors can affect a typical engineer’s salary? 

Right out of college, you probably won’t have much room for salary negotiation.  However, you can certainly increase 
the chances of a higher base pay by bolstering your resume with experience, awards and memberships. Look online at 
typical up-to-date salaries for various engineering fields; this will give you an idea of how much 
to expect.



Where do we get ... energy?
U.S. Electricity Generation 
Fuel Shares

Fossil Fuels:	 69.6%
Nuclear:	 19.6%
Hydro:	 6.1%
Solar/Wind:	 2.3%
Geothermal,
Wood/Waste,
Other Gases:	 2.1%

www.nei.org14



Before we speak about the nuclear core itself, we need some 
background on the basics of a nuclear power plant’s nuclear 
steam supply system (NSSS). This is what separates a nuclear 
plant from other thermal power plants, such as coal or oil plants. 
This is the system that provides the heat to make steam needed 
to drive the turbine generator. 

The reactor vessel houses the core, lower internals, upper 
internals, core barrel, control rod drive mechanisms (CRDMs), 
control rods and neutron flux sensors at the very high 
pressures necessary to keep the water from boiling at high 
temperatures. The lower internals mostly serve to direct the flow 
of the coolant water evenly into the reactor core and support 
the weight of the fuel. The upper internals stabilize the top of 
the fuel and stabilize/house the control rods and neutron flux 
sensors. The CRDMs raise and lower the control rods by using 
magnetically activated claws. This allows for the electromagnets 
to be outside the pressure boundary and the control rods 
inside the pressure boundary. Therefore, there is no need for 
complicated seals or to place the electromagnets inside the 
vessel. The neutron flux sensors monitor the nuclear reactions 
within the fuel. Lastly, the core barrel helps do three things.  
First, it holds the fuel in the reactor vessel. Second, it reflects 
neutrons back into the core allowing for more even fuel burnup 
and less neutron leakage. Through doing this, it also helps 
preserve the vessel from neutron embrittlement, which slowly 
makes the metal of the reactor vessel brittle by bombarding it 
with neutrons.  
 

energy? Pressurizer

Steam 
Generator

Reactor 
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Pumps

Reactor Core
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Once water leaves the vessel, it enters the hot leg. This pipe is very large (around three feet in diameter) and 
very thick. It carries the hot water at around 615-626 °F to the steam generators. The most common plants 
have four hot legs and four steam generators, although some have had as few as one steam generator. Each 
steam generator is a large heat exchanger with thousands of feet of tubing. In the majority of pressurized water 
reactors (PWRs), the primary water enters the bottom of the steam generator, then goes through a tube sheet 
that divides it into the many tubes. It goes through an upside down, U-shaped loop and then is recombined with 
the water from the other tubes on the opposite side of the tube sheet. From here, the water enters the cold loop 
piping into the reactor coolant pump at around 557 °F.  

Pump

Reactor

Turbine

Condenser

Generator
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Reactor coolant pumps are massive centrifugal pumps that circulate 100,000 gallons of coolant each minute. These 
pumps are electrically powered and are around 7,000-9,500 horsepower. They must generate enough head, or 
pressure increase, to overcome the resistance losses the water encounters going through the reactor vessel, loop 
piping and steam generators. These resistances total several times the pressure in the average car tire. To give you 
an idea of the amount of water these pumps move, an Olympic-sized swimming pool is around 650,000 gallons. This 
means that the pumps on a four-loop nuclear plant could fill one of these pools in a little over a minute and a half.  

Last, but not least, in the primary side is the pressurizer. This device acts to keep the pressure in the primary system 
at 2,235 psi. It does this by using heaters and sprayers in a large vessel. The vessel contains about half water and 
half steam above this water. By using heaters to boil the water, it can increase the amount of steam in the vessel, and 
therefore the pressure. If pressure gets too high, sprayers can spray cool water through the steam, condensing some 
of it. This reduces the pressure. 
 
When the water is going through the U-shaped tube, it transfers its energy into 
water on the other side of the tube. This water is non-radioactive and turns to 
steam. This steam is sent through a series of dryers that separate any entrained 
water droplets from it, preventing damage to the turbines. From here, the steam can 
go to the turbines to make electricity. An entire book could be written on the turbine, 
or balance-of-plant side, of a nuclear power plant. While this book touches on some of 
the important interactions of the nuclear and turbine sides of the plant, it will not cover 
the specifics of these. If you would like more information on turbines and generators, 
a large amount of information is available online or in your local library. 
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Let’s start with the basics – an atom…
An atom is made of three basic components: neutrons, protons and electrons. The number of protons in an atom 
determines the material, or element, of which the atom is made. In a chemically stable atom, the number of electrons 
will be the same as the number of protons.  

However, in nuclear reactions, we are not really concerned with the electrons. Our main concern is the number of 
neutrons. Unlike the proton and electron, which are electrically charged, the neutron, much like its “neutr” prefix 
would suggest, is electrically neutral. In non-radioactive materials, the number of neutrons will tend to equal the 
number of protons. As one begins to get further down the periodic table, materials start to have increasing numbers 
of neutrons versus protons.  

In addition, the formation of natural isotopes also becomes more common. An isotope is a material that has a 
different number of neutrons than the most common version of that material. In this light, Uranium 235 is an isotope 
of Uranium 238. It has three less neutrons than Uranium 238. The ratio of neutrons to protons in a nucleus has large 

implications on the stability of those atoms. When one hears of radioactive decay, this is a process where an 
unstable nucleus tries to become more stable. One of the ways in which it accomplishes this is to kick off one or 

more neutrons.  

Depending on the starting material (and thus its original ratio of neutrons to protons), this decay can 
happen very quickly or over millions of years. In the case of fissile materials like Uranium 235, 

they can be made to absorb a neutron to become a different and extremely unstable 
isotope. When Uranium 235 absorbs a neutron, it briefly (as in billionths of a 

second) becomes Uranium 236. Uranium 236 is so unstable that it breaks into two 
halves, as well as kicking out two or three neutrons and a considerable amount 
of energy.

If we were to measure the weight of a Uranium 236 atom before it fissions and 
then measure the products of that fission (the two halves and the two or three 

neutrons), we would find that the sum of the products would have less mass than the 
original atom. That difference in weight has been converted to pure energy as described 

by Einstein’s equation E=mc2. That is to say that energy equals the mass lost times the 
speed of light squared. We all know the speed of light is a very large number. 
That is, 300,000,000 meters per second squared is 30,000,000,000,000,000. 18



When you take that massive number times even a small amount of mass, the energy is very large. In fact, a single fuel 
pellet the size of one’s finger tip has the same amount of energy as 1,780 pounds of coal, 17,000 cubic feet of natural 
gas or 149 gallons of oil. It would take16 supertankers to carry enough oil to replace the energy in one reactor core.

The water used in a reactor serves not only as a coolant, but also allows the reactor to function. The act of splitting an 
atom is not caused by the neutron “shooting it in half” as many would assume. The neutron must be absorbed by the 
atom so that it may cause it to become unstable and then fission.

Imagine you were to receive an opportunity to go to practice with your favorite National Football League (NFL) 
team. Now imagine that you are standing 10 yards from your favorite NFL quarterback and he throws the ball 
at you with everything he has. It is likely that you would drop the ball almost all of the time. The ball is simply 
coming far too fast to stop easily. Now let’s pretend that a linebacker gets between you and the quarterback and 
tips the ball up into the air. The ball is now floating slowly in front of you. Your chance of catching that football just  
increased remarkably.  

This is very similar to what water does for a nuclear reactor. Water consists of two elements - two parts hydrogen 
and one part oxygen. The most common isotope of hydrogen is made of one proton and one electron. A proton’s 
mass is almost exactly the same as a neutron and electrons have nearly no mass. As can be seen, a hydrogen atom 
weighs almost exactly the same as the neutron. This makes it particularly good at slowing the neutron. When the two 
hit each other, it’s much like hitting a cue ball into another pool ball at a 45° angle. Both end up having roughly half the 
energy of the cue ball.  

The neutrons eventually go through enough of these collisions to fall into a range of energies that are powerful enough 
to allow them to be absorbed, but not so powerful as to bounce. This process is called moderation. These neutrons 
are called “thermal” neutrons and without the water present, they cannot be produced. For this reason, if a reactor 
loses coolant, the nuclear reaction actually stops. So why is it so bad when reactors lose water?  
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All radioactive materials decay. The products of uranium fission are still very large atoms and are very radioactive. 
These products decay and give off heat. In fact, at normal operation, 7.5 percent of the core’s energy, or roughly 
342,000 horsepower (HP) worth of heat, comes from this decay.  

The decay heat in a core falls off very quickly. Within a few seconds, it is already down below six percent. It eventually 
evens out to around one percent after a couple days. However, one percent of core power is still nearly 46,000 HP  
worth of heat. To put that in perspective, the two, three-story tall engines and one steam turbine powering the Titanic 
produced about 48,000 HP. That 46,000 HP worth of heat in a core small enough to fit in most dining rooms is enough 
to melt nearly any material without proper cooling. As will be discussed later, fuel melting violates one of a nuclear 
plant’s containment layers and is a serious problem.  

To control the reaction, several different techniques are used. The first method is known as a control rod. This is a rod 
that absorbs neutrons. It can be inserted to various depths into the core. When all rods are in their full down position, 
there are not enough neutrons to have a reaction, and therefore the core is at zero power. As rods begin to be pulled 
out, the reactor becomes supercritical. This means that each atom that splits triggers more than one new fission 
reaction. This trend continues until the amount of neutrons being produced and absorbed is equal. At this point, the 
reactor is critical. 

The time in which it takes to equalize is extremely fast; far faster than the time it takes to move the rods. As you can 
imagine, if control rods are partially inserted, the fuel at the bottom will react more than the fuel at the top, as the fuel 
rods won’t affect the bottom of the core as much. This is not desirable because uneven power means uneven fuel 
burnup. It’s very similar to burning a campfire with a log placed too far to the outside. The one end burns to ash while 
the other end stays wood. The way we counteract this in PWRs is to introduce boron into the cooling water. This boron 
absorbs neutrons, allowing us to control the reaction. Control rods can still be used for fast changes, but typically a 
nuclear reactor is run at constant power, so the boron control mechanism works well. As the fuel becomes less reactive 
through the fuel cycle, boron concentration is lowered to allow for a greater neutron density in the core.  
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Boiling water reactors (BWRs) also have control rods, however, they insert from the bottom. This is done for two 
reasons. The first reason is that there are a series of dryers at the top of the core. These remove any water droplets 
from the steam, before they can damage the turbine. The second reason is, that by inserting from the bottom of the 
reactor, the changes in neutron absorption are better known. At the top of the core, there is a mixture of water and 
steam. This mixture doesn’t moderate the neutrons in the same way as pure water, so depending on the height of 
boiling a control rod’s effect could be different. This height of boiling is the control mechanism BWRs use in place of 
boron injection to change core power. As was mentioned, steam is a poor moderator. By changing 
the concentration of water around the fuel, the population of thermal neutrons can be changed.  

Nuclear plants typically run at full power to maximize their cheap energy production, but occasionally things happen 
beyond the operators’ control. PWRs have one other control mechanism that differentiates them from BWRs and it is 

helpful in these situations. This control mechanism is mostly passive and allows small 
changes of power to happen without significant operator input. This is known as load 
balancing. In a PWR, the generator drives the reactor, not the other way around. We 
know this is counter-intuitive, but please play along. 

Let’s pretend that we are sitting at 1,000 MW of power and all is well. All of a 
sudden, a large factory has a trip and 50 MW worth of electrical load is lost. 
     	 The input torque required from the turbines to turn the 

generator is going to be lower, as the electrical load 
is now lower. The turbine control system 

will automatically close the steam 
inlet valves slightly, raising 
the pressure and lowering the 
flow of steam behind those 
valves. Because of this, the 
heat exchanger, or steam 
generator, will not be able to 
transfer as much heat from 
the reactor cooling system 
(RCS) into the water/steam 
that goes to the turbines.  The 
reactor coolant water leaving 
the steam generator is now 21



hotter than it would normally be, having transferred less energy. This means it’s hotter when it enters the reactor core 
as well.   

We know that any substance, including water, will become less dense as it is heated. Because the water is now less 
dense, it is unable to moderate as many neutrons, lowering the population of thermal neutrons. This lowers the 
number of fissions and, therefore, the core power. As this core power is lowered, so is heat, and therefore the entire 
system equalizes itself. 

The reactor coolant temperature is easily monitored and its expected value well known. This allows for a simple, 
automatic change in rod height, and therefore neutron population, to take place. This is done to bring down the 
coolant temperature from its elevated level. If this is not done, the core will settle at the higher temperature, which 
suits the moderation needed to make less power. If the operators know they are going to be changing power, they can 
change boron concentration ahead of time to avoid having to use the control rods. This natural feedback from the 
generators makes PWRs very predictable to control and require little operator input, minimizing human error. BWRs 
do not have this effect and require more complicated mechanisms to control output.

Nuclear reactors are unique in the fact that they contain all of their fuel for 18-24 months inside of them. Nuclear 
reactors cannot have a fission reaction during a loss-of-coolant accident, but still contain large amounts of decay heat 
with which to contend. Due to these unique concerns, nuclear power plants have layer upon layer of safety systems. 
U.S. PWR power plants have a minimum of three different emergency cooling strategies, all of which have at least one 
backup system. Many times, these backup systems accomplish the same task, yet use different equipment, different 
paths, different wiring routes and different locations within the plant. This assures that a failure mode in the equipment 
cannot be shared and that if damage to the plant incapacitates wiring or equipment for one system, the other system is 
unaffected. This system of redundant, yet different, systems is known as defense-in-depth.
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What about safety?

The Basics

All of these systems are engineered in conjunction with three different containments, which we do not desire to breach.  
The first containment is the fuel rod itself. Each fuel rod is made of a zirconium alloy and contains fuel pellets roughly 
the size of a fingertip. They are sealed and contain gas inside. The goal of the safety systems is that these rods are never 
breached, even if the coolant system has a breach. Multiple pumps within the emergency core cooling system (ECCS) 
exist to keep the fuel rods cool in the event of a breach. In Westinghouse plants, fuel rods are designed to withstand 
2,200º F. As one can imagine, melting is a serious problem and can block the cooling water nozzles from below as well 
as preventing the overhead control rods from inserting. The best defense against this is to not have a failure of the RCS 
in the first place.

The RCS normally sees 2,235 psi of pressure. However, it is designed to withstand up to 2,485 psi. In the event of an 
accident leading to overpressurization, the pressurizer has automatically activated power-operated relief valves (PORVs) 
to bring the pressure down in a controlled fashion to maintain the RCS integrity. These valves lead to spargers in a tank 
of water called the pressurizer relief tank. A sparger is a nozzle that directs steam into tank of water to condense so that 
it does not reach the atmosphere. If these valves fail to open or cannot control the reactor pressure, there are multiple, 
redundant popoff valves that are one-time open valves. These valves are purely mechanical and require zero external 
input. These systems ensure that the coolant system never exceeds the design pressure.  

In a worst-case scenario where both a fuel rod and the coolant system breach, releasing radioactive material into 
containment, the second goal is that the radioactive materials inside cannot reach the public. If the RCS were to breach, 
some of the water inside would flash to steam. The containment itself is designed to withstand up to 65 psi. This is roughly 
twice the pressure that is inside the average passenger car tire. The large volume of the Containment Building allows the 
steam to expand to a much lower pressure than it had when it was in the pipe.

A containment spray system acts much like the sprayers in the pressurizer to condense the steam in the Containment 
Building. This ensures that the 65 psi limit is not exceeded. This condensation also allows the water to return into drains 
in the floor called sumps. These sumps are part of the ECCS and lead to the various pumps that are cooling the core.
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Terrorist Attacks and Plane Impacts
 
Nuclear plants are also hardened against attack of all types. The containment vessel is four-foot thick concrete, 
reinforced with two-inch thick steel rebar. In addition, the inside of containment is lined with one-half to one-inch thick 
steel. This containment can withstand the impact of a large passenger jet as well as small missiles. Security is very 
strict, with multiple levels of protection to keep attackers from reaching critical areas of the plant. Lastly, there are 
numerous fully automatic, nondefeatable safety systems that would prevent an attacker from putting the plant into an 
accident scenario.  

Nuclear energy: Past, present and future

While nuclear energy production has long proven itself to be very safe, especially when compared to other forms of 
energy production, three historical accidents in nuclear power plants come to mind for many when considering nuclear 
power: Three Mile Island, Chernobyl and Fukushima Daiichi.

At Three Mile Island, near Harrisburg, Pa., the 1979 accident was what is commonly referred to as a meltdown. This 
is when the fuel assembly (containing the fuel rods) melts. This can happen if the temperature inside of the reactor 
core becomes hot enough to melt the zirconium cladding of the rods and thus release uranium into the coolant water. 
At Three Mile Island, this occurred when one of the PORVs on the pressurizer stuck open, but the control panel did not 
indicate this to operators. Due to conflicting signals, poorly laid-out instrumentation, insufficient training and the inability 
to prioritize alarms, operators turned off emergency cooling to the core. This uncovered part of the core and about 
half the fuel in the core melted before the water could be switched back on. However, the worst prospect feared - an 
uncontrolled release of radiation to the environment - did not occur. Despite the conditions that presented themselves, 
the release to the public was extremely minimal. The melted fuel and radiation were contained - trapped inside of the 
steel reactor vessel inside of the containment. This was the worst accident of any nuclear reactor in the U.S. and led to 
massive changes to existing plants’ design, regulations and personnel training.

At the Chernobyl nuclear power plant, located on the Belarus-Ukraine border, an accident occurred in 1986 during a  
test. The aim of this test, oddly enough, was to verify safety in a loss of offsite power accident. The goal was to see if the 
turbines had enough momentum to drive the generators long enough for the emergency diesel generators to start up and 
reach full power. Due to a buildup of neutron-absorbing poisons in the fuel rod, when the operators brought the reactor 
down to the level at which the test was to be run, it continued to shut down even after control rods had stopped being 
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inserted. The reactor power continued to plummet until it was almost at zero power. Rather than let the poisons decay 
away, the operators started pulling control rods, despite many safety alarms, eventually getting to a stable, but 
relatively low power value. Even with all of the allowable rods out of the core, the reactor would not produce any more 
power. Given the time pressure to complete the test, as well as pressure to get back to power production, the decision 
was made to violate procedures and extract rods beyond what was allowed. This brought power up to the starting 
point for the test. The test was started and offsite power was cut. As the turbine generators coasted down to a stop, 
the pumping power of the cooling pumps decreased and steam voids formed around the fuel. In an RBMK (Reactor 
Bolshoi Moschnosti Kanalynyi) reactor, graphite was used to moderate neutrons. Water was merely used as a coolant 
and actually served as one of the controls, absorbing some neutrons. In the case of Chernobyl, the forming of steam 
voids meant that less neutrons were absorbed, causing greater power, causing more steam and absorbing even less 
neutrons in a never-ending cycle. This feedback loop, coupled with almost all of the control rods being out (against 
procedures), resulted in a very large power spike. Operators hit the button to insert all control rods only to reveal a 
second design flaw. The control rod ends had been made of graphite (the moderator), to assist in startup reactivity.  
The insertion of the control rods displaced the neutron-absorbing coolant with more moderator, serving to add even 
more reactivity, spiking power to an exceptionally high level. Some estimates have placed the final core power around 
30,000 MWt. This blew the top of the reactor vessel off along with some of the core itself. Potentially, the biggest 
design flaw of the plant was that there was no Containment Building around the nuclear reactor vessel. Therefore, 
the explosion resulted in a large release of radiation into the environment, resulting in numerous deaths, thousands of 
citizens displaced and a large area around the plant to be uninhabitable. This type of design has never been used in 
the U.S. and never could be licensed, but still serves to remind the industry about the importance of redundant safety 
features, stable core design and adherence to procedures.

On March 11, 2011, a devastating 9.0 magnitude earthquake and tsunami hit northeastern Japan. The tsunami not 
only swept away everything in its path, including houses, cars and  farm buildings, it also devastated the reactors at 
Japan’s Fukushima Daiichi site. As more is learned about the Japanese events, lessons learned will be applied to 
the existing fleet of plants. The U.S. nuclear energy industry, for example, has already started an assessment of the 
events in Japan and is taking steps to ensure that U.S. reactors can respond to extreme events that may challenge 
safe operation of the facilities. It is also important to realize that the existing fleet of operating nuclear plants are already 
highly safe, and that no industry takes safety more seriously than the commercial nuclear energy industry.
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Today, new nuclear plant designs that have better safety 
systems than ever before are being designed and built 
around the world. Today’s plants are called Generation 
III+ plants and the Westinghouse AP1000® nuclear power 
plant is the only Generation III+ plant to receive design 
certification from the U.S. Nuclear Regulatory Commission.  
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Westinghouse AP1000® (tomorrow’s) nuclear power plant

The AP1000® plant uses advanced passive and active safety systems. The systems are called passive because they 
use natural forces to work, without the need for human action. These passive safety systems will work even when 
there is no ac power available. Active safety systems are used in cases where operator action is required.

Additionally, the AP1000® plant is designed to mitigate a severe accident, such as core meltdown. If such an 
unlikely event were ever to occur at an AP1000® plant, an operator could flood the reactor cavity space immediately 
surrounding the reactor vessel with water and submerge the reactor vessel. The cooling would be sufficient to prevent 
molten core debris from melting the steel vessel wall and spilling into the containment vessel.

The above illustration is an artist rendering of the AP1000® 
PWR and may not depict actual design and layout.
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Boron:  
A metalloid element with atomic number five and periodic symbol B. Boron is an effective neutron 		
absorber and is used in nuclear power production to help maintain an even fuel burn inside the reactor.

Containment Layers:
Various redundant layers of air/gas tight, radiation shielded and physically robust barriers that separate a nuclear 
reactor from the biosphere. These layers prevent any radiation or substance that might have been exposed to radiation 
from escaping the nuclear power plant and contaminating the surrounding environment.

Containment Spray:
A redundant safety system similar to the spargers in the core, built to condense any steam in the 
Containment Building.

Control Rod:
A tube in a control rod cluster that controls nuclear reactions in a power plant by absorbing neutrons. As part of the 
control rod cluster, control rods are used to follow load changes, to provide reactor trip capability and to furnish 
control for slight deviations in reactivity due to temperature. In the event of a reactor trip, the control rods fall into the 
core by gravity.  

Critical:
The condition at which a nuclear reactor is just capable of sustaining a chain reaction.

Defense-in-Depth: 
An approach to designing and operating nuclear facilities that prevents and mitigates accidents that release radiation 
or hazardous materials. The key is creating multiple independent and redundant layers of defense to compensate 
for potential human and mechanical failures so that no single layer, no matter how robust, is exclusively relied upon. 
Defense-in-depth includes the use of access controls, physical barriers, redundant and diverse key safety functions 
and emergency response measures.
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Dryers (Steam Dryers): 
A component of a BWR nuclear plant design. The steam dryer removes excess moisture from the steam before it 
passes to the turbine. The steam that remains is of a higher quality to produce more power with minimal degradation 
impact to the turbine blades. 

Electron:
An electron is an elementary particle, and it is the carrier of the negative electrostatic charge. It can be thought of as a 
building block, along with the protons and neutrons that comprise an atomic nucleus, of an atom.

Emergency Core Cooling System:
A group of reactor system components designed to remove residual heat from the reactor fuel rods in the event of an 
RCS failure. Pumps, valves, heat exchangers, tanks and piping are all part of the ECCS. 

Fission:
The splitting of atoms into smaller atoms to release energy.

Flash (Flash Boil):
The process of liquid water being heated so quickly that it immediately converts to its gaseous state, steam.

Fuel Rods/Pellets:
Long, slender, zirconium metal tubes containing pellets of fissionable material that provide fuel for nuclear reactors. 
Fuel rods are assembled into bundles called fuel assemblies, which are loaded individually into the reactor core. 

Human Error:
Human performance mistakes and oversights or a measure of the propensity for humans to make certain common 
mistakes under certain conditions. Human error must be accounted for in the design of any complex system that relies 
on contributions of human activities. 

Isotope:
One of several nuclides having the same number of protons in their nuclei, hence belonging to the same element but 
differing in the number of neutrons and therefore in mass number A, or energy content.
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Load Balancing:
The use of various techniques by electrical power stations to store excess electrical power during low-demand periods 
for release as demand rises. 

Moderation/Moderator:
A substance, usually water, that lowers the energy of the free high-energy neutrons generated by a fission reaction 
to the point where energy of the neutrons is within the range that allows them to be absorbed by the nuclei of Uranium 
235 atoms. 

Natural Feedback:
The ability to use the natural properties and tendencies of substances within a nuclear reactor to passively regulate the 
output of a nuclear power plant. 

Neutron:
An uncharged particle with a mass nearly equal to the mass of a proton. Neutrons are the particles that sustain a 
chain reaction in a nuclear reactor.

Popoff Valves:
One-time use valves that are part of the multiple and redundant safety systems that can help control reactor pressure 
in the event of an emergency, which includes the failure of primary cooling systems.

Power-Operated Relief Valves:
Automatic valves that control reactor pressure in such a way as to maintain core integrity in the event of 
an emergency.

Pressurizer Relief Tank:
A tank containing water with a nitrogen atmosphere that condenses steam discharged by the safety or relief valves to 
decrease pressure in the core.

Product:
A substance resulting from a chemical reaction.
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Proton:
A positively charged particle found in the nucleus of an atom. 

Radioactive:
An adjective used to describe a substance that emits radiation.

Radioactive Decay:
The spontaneous emission by a nucleus of photons or particles. The spontaneous transformation of one nuclide into 
another by emission of particles, absorption of an orbital electron, or by fission. It also refers to gamma-ray and 
conversion electron emission that only reduces the excitation energy of the nucleus.

Reactor Cooling System:
A system that removes energy from the reactor core of a nuclear power plant and transfers it to the steam turbine.

Rebar:
A ridged steel rod or bar arranged as part of a grid to reinforce poured concrete or asphalt.  

Spargers:
Specialized nozzles that are part of the ECCS of a Westinghouse AP1000®. In the event of an emergency, these 
nozzles direct steam out of the core and into a tank of water to condense, at once lowering the pressure within the core 
and preventing any water than might have had contact with the radioactive fuel from reaching the atmosphere. 

Sumps: 
The drains within the core and Containment Buildings designed to contain the water and condensate from any steam 
within the Containment Building.

Supercriticality: 
The condition for increasing the level of operation of a reactor. The rate of fission neutron production exceeds all 
neutron losses, and the overall neutron population increases.

Thermal Neutrons:
Slow moving, low-energy free neutrons necessary for a fission reaction.
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SOURCES:*

www.eia.doe.gov/cneaf/nuclear/page/intro.html
www.nrc.gov/reading-rm/basic-ref/glossary.html
www.world-nuclear.org
www.westinghousenuclear.com/News_Room/nuclear_terminology.shtm
www.gdrc.org/uem/nuclear-glossary.html
www.mirriam-webster.com
www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html
www.chernobyl.info/index.php?userhash=12588010&navID=10&lID=2
www.safetyfirst.nei.org
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