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New Capabilities in the Cortex-A15 

 Full compatibility with the Cortex-A9 

 Supporting the ARMv7 Architecture 
 

 Addition of Virtualization Extension (VE) 

 Run multiple OS binary instances simultaneously 

 Isolates multiple work environments and data 

 

 Supporting Large Physical Addressing Extensions (LPAE) 

 Ability to use up to 1TB of physical memory 

 

 With AMBA 4 System Coherency  (AMBA-ACE) 

 Other cached devices can be coherent with processor 

 Many core multiprocessor scalability 

 Basis of concurrent big.LITTLE Processing 

http://www.arm.com/images/Eagle_New_Look_Chip-600.jpg
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Large Physical Addressing 

Cortex-A15 introduces 40-bit physical addressing 

 Virtual memory (apps and OS) still has 32bit address space 

 

Offering up to 1 TB of physical address space 

 Traditional 32bit ARM devices limited to 4GB 

 

What does this mean for ARM based systems? 

 Reduced address-map congestion 

 More applications at the same time 

 Multiple resident virtualized operating systems 

 Common global physical address in many-core 
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Virtualization Extensions: The Basics 

 New Non-secure level of privilege to hold Hypervisor 

 Hyp mode 

 New mechanisms avoid the need Hypervisor intervention for: 

 Guest OS Interrupt masking bits 

 Guest OS page table management 

 Guest OS Device Drivers due to Hypervisor memory relocation 

 Guest OS communication with the interrupt controller (GIC) 

 New traps into Hyp mode for: 

 ID register accesses and idling (WFI/WFE) 

 Miscellaneous “difficult” System Control Register cases 

 New mechanisms to improve: 

 Guest OS Load/Store emulation by the Hypervisor 

 Emulation of trapped instructions through syndromes 
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How does ARM do Virtualization 

 Extensions to the v7-A Architecture, available on the  

Cortex™-A15 and Cortex-A7 CPUs 

 Second stage of address translation (separate page tables) 

Functionality for virtualizing interrupts inside the Interrupt Controller 

 Functionality for virtualizing all CPU features, including CP15 

 Option of a MMU within the system to help virtualize IO 
 

 Hypervisor runs in new “Hyp” exception mode / privilege 

 HVC (Hypervisor Call) instruction to enter Hyp mode 

 Uses previously unused entry (0X14 offset) in vector table for 

hypervisor traps 

 Hyp mode exception link register, SPSR, stack pointer 

 Hypervisor Control Register (HCR) marks virtualized resources 

 Hypervisor Syndrome Register (HSR) for Hyp mode entry reason  
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Virtualization: Third Privilege 

 Guest OS same kernel/user privilege structure 

 HYP mode higher privilege than OS kernel level 

 VMM controls wide range of OS accesses 

 Hardware maintains TZ security (4th privilege) 

User Mode 

(Non-privileged) 

Supervisor Mode  

(Privileged) 

Hyp Mode  

(More Privileged) 

Guest Operating System1 

App2 App1 

Guest Operating System2 

App2 App1 

Virtual Machine Monitor / Hypervisor 

1 

2 
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TrustZone Secure Monitor                                        (Highest Privilege) 
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Memory – the Classic Resource 

 

 Before virtualisation – the OS owns the memory 

 Allocates areas of memory to the different applications 

 Virtual Memory commonly used in “rich” operating systems 
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Virtual Memory in Two Stages 
Stage 1 translation owned  

by each Guest OS 

Virtual address (VA) map of  

each App on each Guest OS 
“Intermediate Physical” address 

map of each Guest OS   (IPA) 

Physical Address (PA) Map  

Stage 2 translation owned by the VMM 

Hardware has 2-stage 

memory translation 

 

Tables from Guest OS 

translate VA to IPA 

 

Second set of tables from 

VMM translate IPA to PA 

 

Allows aborts to be routed to 

appropriate software layer 
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Classic Issue: Interrupts 

 An Interrupt might need to be routed to one of: 

 Current or different GuestOS 

 Hypervisor  

 OS/RTOS running in the secure TrustZone environment 

 Basic model of the ARM virtualisation extensions: 

 Physical interrupts are taken initially in the Hypervisor  

 If the Interrupt should go to a GuestOS : 

 Hypervisor maps a “virtual” interrupt for that GuestOS 

 

 

Operating System 

App2 App1 
Guest OS 1 

App2 App1 

Guest OS 2 

App2 App1 

VMM 

System without virtualisation System with virtualisation 

Physical 

Interrupt 

Physical 

Interrupt 

Virtual 

Interrupt 
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Interrupt Virtualization 

 Virtualisation Extensions provides : 

 Registers to hold the Virtual Interrupt  

 CPSR.{I,A,F} bits in the GuestOS only appling to that OS 

 Physical Interrupts are not masked by the CPSR.{I.A.F} bits 

 GuestOS changes to I,A,F no longer need to be trapped 

 

 Mechanism to route all physical interrupts to Monitor Mode 

 Already utilized in TrustZone technology based devices 

 

 Virtual Interrupts are routed to the Non-secure IRQ/FIQ/Abort 
 

 Guest OS manipulates a virtualized interrupt controller 
 

 Actually available in the Cortex-A9 to aid paravirtualization 

support for interrupts 
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Virtual Interrupt Controller  

 New “Virtual” GIC Interface has been Architected 

 ISR of GuestOS interacts with the virtual controller 

 Pending and Active interrupt lists for each GuestOS 

 Interacts with the physical GIC in hardware 

 Creates Virtual Interrupts only when priority indicates it is necessary 

 

 GuestOS ISRs therefore  

do not need calls for: 

 Determining interrupt to  

take  [Read of the  

Interrupt Acknowledge] 

 Marking the end of an  

interrupt [Sending EOI] 

 Changing CPU Interrupt  

Priority Mask [Current Priority] 
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Virtual GIC 

 GIC now has separate sets of internal registers: 

 Physical registers and virtual registers 

 Non-virtualized system and hypervisor access the physical registers 

 Virtual machines access the virtual registers 

 Guest OS functionality does not change when accessing the vGIC 

 

 Virtual registers are remapped by hypervisor so that the Guest 

OS thinks it is accessing the physical registers 

 GIC registers and functionality are identical 

 

 Hypervisor can set IRQs as virtual in the HCR 

 Interrupts are configured to generate a Hypervisor trap 

 Hypervisor can deliver an interrupt to a CPU running a virtual process 

using “register lists” of interrupts 
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Virtual interrupt example 

 External IRQ (configured as virtual by the hypervisor) arrives at the GIC 

 GIC Distributor signals a Physical IRQ to the CPU 

 CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical 

CPU Interface 

 Hypervisor makes an entry in register list in the GIC 

 GIC Distributor signals a Virtual IRQ to the CPU 

 CPU takes an IRQ exception, and Guest OS running on the virtual machine reads 

the interrupt status from the Virtual CPU Interface 
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CPU 
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Resource Ownership 

 Software-only approaches 

 Access to resources by GuestOS intercepted by the VMM 

 VMM interprets the GuestOS‟s intent 

 Provides its own mechanism to meet that intent  

 Mechanism of interception varies 

 Paravirtualisation adds a hypercall to the source code 

 Binary translation adds a hypercall to the binary 

 Exceptions in Hardware provide an trapping of operations 

 Hypercalls can be more efficient 

 More of the intent to be expressed in a single VMM entry 

 

 Hardware assisted approaches: 

 Provide further indirection to resources 

 Accelerating trapped operations by syndrome information 
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Helping with Virtual Devices 

 ARM I/O handling uses memory mapped devices 

 Reads and Writes to the Device registers have specific side-effects 
 

 Creating “Virtual Devices” requires emulation: 

 Typically reads/writes to devices have to trap to the VMM 

 VMM interprets the operation and performs emulation 

 Perfect virtualization means all possible devices loads/stores emulated 

 Fetching and interpreting emulated load/store is performance intensive 
 

 “Syndrome” information on aborts available for some loads/stores 

 Syndrome unpacks key information about the instruction   

 Source/Destination register, Size of data transfer, Size of the 

instruction, SignExtension etc 

 If syndrome not available, then fetching of the instruction for 

emulation still required 
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Devices and Memory 

 Providing address translation for devices is important 

 Allows unmodified device drivers in the GuestOS 

 If the device can access memory, GuestOS will program it in IPA 

 

 ARM virtualisation adds option for a “System MMU” 

 Enables second stage memory translations in the system 

 

 A System MMU could also provide stage 1 translations 

 Allows devices to be programmed into guest‟s VA space  

 

 System MMU natural fit for the processor ACP port  

 ARM defining a common programming model 

 Intent is for the system MMU to be hardware managed using 

Distributed Virtual Messages found in AMBA 4 ACE   
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Potential of System MMU 
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Partitioning in a Secure ARM System 

 ARM TrustZone technology define two worlds 

 Everything must live in Normal World or Secure World 
 

 TrustZone-Enhanced processor exports World Information 

 Via NS bit (Not Secure) on system bus since AMBA 3 AXI 
 

 TrustZone-Aware devices can partition across both worlds 

 Only AMBA AXI compatible devices can be TrustZone-aware 
 

 AMBA 3 AXI Interconnect decodes TZ like an address line 
 

 AMBA AHB and APB do not contain TrustZone information 

 AHB and APB devices live in only one World 

 Groups of peripherals can be managed from bus interface 

 Inclusion of TrustZone Peripheral Controller gives more control 
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Base Secure System 

 Minimal TrustZone System required for payment solutions 

 Protects On-Chip Secure Ram area via TrustZone Memory Adaptor 

 Keyboard and screen secured dynamically to protect PIN entry 

 Master Key and Random Number Generators for daughter-keys 

permanently secures. Non-volatile counters required for state 

management & anti-rollback (fuse based not non-volatile memory due 

to process geometry limitations) 
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Extended Secure System 

 Extended TrustZone system enables complex content 

management 

 Builds on Base Secure System 

 + TrustZone ASC to protect media in RAM and off-chip decode 

 + On-chip Crypto, Media Accelerators & DMA Controller for media 

handling 
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Propagating System Security 

NS : Not Secure - treated like an address line 
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Multi-Cluster Virtualization 

 Works just like with a single cluster MPCore system 

 Guest OS (like threads) can migrate from CPU to CPU across clusters 
 

 External (virtual) GIC used to handle interrupts 

 Functions the same as internal GIC, but accessed by multiple CPUs 
 

 AMBA Coherency Extensions (ACE) 

 Manages coherency across clusters 
 

 System MMU allows other bus masters to map from IPA to PA 
 

 Hypervisor needs to be aware of different clusters and CPUs 

 But again: it is just like a single cluster system 

 Hardware requirements are the same as non-virtualized multi-cluster 

 Just make sure there‟s enough memory 
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big.LITTLE Multi-Processing 

 “Big”  processor is paired with a “little” processor 

 Processors share exact same ISA and feature set 

 High performance tasks run on the Big processor 

 Lightweight/non-time-critical tasks run on the little processor 

 Best of both worlds solution for high performance and low power 

 

 

 

 

 

 big.LITTLE Use Models 

 big.LITTLE Switch (Swapping) – one CPU cluster active at a time 

 big.LITTLE MP – both CPUs can be active, loads dynamically balanced 

Cortex-

A15 

T
a
g

s
 

SCU 

L
2
 

Cache Coherent Interconnect 

Auxiliary 

Interfaces 
T

a
g

s
 

SCU 

L
2
 

Kingfisher 



24 

P
E

R
F

O
R

M
A

N
C

E
 

SMS & Voice do 

not need a 1GHz 

processor 

Browser needs full 

performance for complex 

rendering but very little if 

the page is just being read 

You do not know what 

combination of apps the 

user will use, but the 

Smartphone must 

continue to be responsive 

System Characteristics of big.LITTLE 
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big.LITTLE Processing 

 Right sized Core for the Right Task 

 Cortex-A7 enabled by default  with sufficient  

performance for common usage scenarios 

 Cortex-A15 performance for best user experience 
 

 Software alignment allows execution to migrate between cores 

 Transparent to user, application and OS 
 

 Optimizes system workload based on application requirements 

 Extending existing power management 

 Additional benefit though OS Power Management Policy tuning 
 

 End-product delivers longer battery life and richer user 

experience at the same time 



26 

128-bit AMBA 4 

Cortex-A15  

A15 

SCU + L2 Cache 

CoreLink CCI-400 Cache Coherent Interconnect  

128-bit AMBA 4 

Cortex-A7 

A7 

SCU + L2 Cache 

A7 
A15 

System Memory 

GIC-400 
Virtual GIC 

•  Full task migration (active 

   to active) in less than  

   20K cycles 
 

•  Cache coherency managed 

   in hardware 
 

•  128-bit system transactions 
 

• Virtualization manager can   

   map OS either across or 

   between clusters 

Putting together a big.LITTLE System 
 Cortex-A15 and Cortex-A7 clusters are cache coherent 

 CCI-400 maintains cache-coherency between clusters 

 GIC-400 provides transparent virtualized Interrupt control 

 Supports all big.LITTLE usage models 
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Forms of big.LITTLE 

 big.LITTLE cluster switching 

 OS sees big cores or little cores at any one time 

 Eases deployment of software on big.LITTLE platforms 

 Minimizes OS changes by extending DVFS framework 

 Symmetric big/little clusters currently preferred 

 

 Concurrent big.LITTLE  

 OS sees all CPUs all the time; better energy and  

performance matching of compute to workload 

 Asymmetric clusters supported 

 Expected to be the preferred use model eventually 

 Requires OS improvements and changes for efficient operation 

 Co-ordination of MP scheduling, power policies, environmental 

conditions 
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L2$ 
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OS Switched 
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Virtualization and TrustZone 

 TrustZone offers a specialised type of Virtualisation 

 Only 2 „Worlds‟ – not extendable (except through paravirtualization) 

 Although VMM can also span both worlds 

 Fourth privilege level is provided by CPU‟s secure monitor mode 

 Non-symmetrical - The two „Worlds‟ are not equal 

 Secure world can access both worlds (33bit addressing) 
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HARDWARE (Memory, ARM CPU, I/O Devices) 

Guest Operating System1 
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App2 App1 (Flash) 

Virtual Machine Monitor (VMM) or 

Hypervisor 

 TrustZone coexists alongside a VMM  
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Project website 

http://www.virtical.eu  

This project in ARM is in part 

funded by ICT-Virtical, a European 

project supported under the 

Seventh Framework Programme 

(7FP) for research and 

technological development 
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Summary 

 Hardware based Virtualization Extensions were introduced in 

the soon-available Cortex-A15 

 Also found the in the recently announce Cortex-A7 

 

 Enables full binary compatible virtualization of the CPU 

 Supporting both existing and new market scenarios 

 

 Extended into the system and IO through the system MMU 

 

 Independent of the TrustZone environment 

 Providing both a secure environment, and a virtualizable non-secured 

environment 
 

 Software models available now, first silicon 2H2012 


