
Sponsored by:

& &

Hardware accelerated
Virtualization in the
ARM Cortex™ Processors

John Goodacre
Director, Program Management
ARM Processor Division

ARM Ltd. Cambridge UK
2nd November 2010

2

New Capabilities in the Cortex-A15

 Full compatibility with the Cortex-A9

 Supporting the ARMv7 Architecture

 Addition of Virtualization Extension (VE)

 Run multiple OS binary instances simultaneously

 Isolates multiple work environments and data

 Supporting Large Physical Addressing Extensions (LPAE)

 Ability to use up to 1TB of physical memory

 With AMBA 4 System Coherency (AMBA-ACE)

 Other cached devices can be coherent with processor

 Many core multiprocessor scalability

 Basis of concurrent big.LITTLE Processing

http://www.arm.com/images/Eagle_New_Look_Chip-600.jpg

3

Large Physical Addressing

Cortex-A15 introduces 40-bit physical addressing

 Virtual memory (apps and OS) still has 32bit address space

Offering up to 1 TB of physical address space

 Traditional 32bit ARM devices limited to 4GB

What does this mean for ARM based systems?

 Reduced address-map congestion

 More applications at the same time

 Multiple resident virtualized operating systems

 Common global physical address in many-core

4

Virtualization Extensions: The Basics

 New Non-secure level of privilege to hold Hypervisor

 Hyp mode

 New mechanisms avoid the need Hypervisor intervention for:

 Guest OS Interrupt masking bits

 Guest OS page table management

 Guest OS Device Drivers due to Hypervisor memory relocation

 Guest OS communication with the interrupt controller (GIC)

 New traps into Hyp mode for:

 ID register accesses and idling (WFI/WFE)

 Miscellaneous “difficult” System Control Register cases

 New mechanisms to improve:

 Guest OS Load/Store emulation by the Hypervisor

 Emulation of trapped instructions through syndromes

5

How does ARM do Virtualization

 Extensions to the v7-A Architecture, available on the

Cortex™-A15 and Cortex-A7 CPUs

 Second stage of address translation (separate page tables)

Functionality for virtualizing interrupts inside the Interrupt Controller

 Functionality for virtualizing all CPU features, including CP15

 Option of a MMU within the system to help virtualize IO

 Hypervisor runs in new “Hyp” exception mode / privilege

 HVC (Hypervisor Call) instruction to enter Hyp mode

 Uses previously unused entry (0X14 offset) in vector table for

hypervisor traps

 Hyp mode exception link register, SPSR, stack pointer

 Hypervisor Control Register (HCR) marks virtualized resources

 Hypervisor Syndrome Register (HSR) for Hyp mode entry reason

6

Virtualization: Third Privilege

 Guest OS same kernel/user privilege structure

 HYP mode higher privilege than OS kernel level

 VMM controls wide range of OS accesses

 Hardware maintains TZ security (4th privilege)

User Mode

(Non-privileged)

Supervisor Mode

(Privileged)

Hyp Mode

(More Privileged)

Guest Operating System1

App2 App1

Guest Operating System2

App2 App1

Virtual Machine Monitor / Hypervisor

1

2

3

TrustZone Secure Monitor (Highest Privilege)

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e
p

ti
o
n

s

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s

7

Memory – the Classic Resource

 Before virtualisation – the OS owns the memory

 Allocates areas of memory to the different applications

 Virtual Memory commonly used in “rich” operating systems

V
ir
tu

a
l
a
d
d
re

s
s
 m

a
p
 o

f

e
a
c
h
 a

p
p
lic

a
ti
o
n

P
h

y
s
ic

a
l
A

d
d
re

s
s
 M

a
p

Translations

from

translation

table (owned

by the OS)

8

Virtual Memory in Two Stages
Stage 1 translation owned

by each Guest OS

Virtual address (VA) map of

each App on each Guest OS
“Intermediate Physical” address

map of each Guest OS (IPA)

Physical Address (PA) Map

Stage 2 translation owned by the VMM

Hardware has 2-stage

memory translation

Tables from Guest OS

translate VA to IPA

Second set of tables from

VMM translate IPA to PA

Allows aborts to be routed to

appropriate software layer

9

Classic Issue: Interrupts

 An Interrupt might need to be routed to one of:

 Current or different GuestOS

 Hypervisor

 OS/RTOS running in the secure TrustZone environment

 Basic model of the ARM virtualisation extensions:

 Physical interrupts are taken initially in the Hypervisor

 If the Interrupt should go to a GuestOS :

 Hypervisor maps a “virtual” interrupt for that GuestOS

Operating System

App2 App1
Guest OS 1

App2 App1

Guest OS 2

App2 App1

VMM

System without virtualisation System with virtualisation

Physical

Interrupt

Physical

Interrupt

Virtual

Interrupt

10

Interrupt Virtualization

 Virtualisation Extensions provides :

 Registers to hold the Virtual Interrupt

 CPSR.{I,A,F} bits in the GuestOS only appling to that OS

 Physical Interrupts are not masked by the CPSR.{I.A.F} bits

 GuestOS changes to I,A,F no longer need to be trapped

 Mechanism to route all physical interrupts to Monitor Mode

 Already utilized in TrustZone technology based devices

 Virtual Interrupts are routed to the Non-secure IRQ/FIQ/Abort

 Guest OS manipulates a virtualized interrupt controller

 Actually available in the Cortex-A9 to aid paravirtualization

support for interrupts

11

Virtual Interrupt Controller

 New “Virtual” GIC Interface has been Architected

 ISR of GuestOS interacts with the virtual controller

 Pending and Active interrupt lists for each GuestOS

 Interacts with the physical GIC in hardware

 Creates Virtual Interrupts only when priority indicates it is necessary

 GuestOS ISRs therefore

do not need calls for:

 Determining interrupt to

take [Read of the

Interrupt Acknowledge]

 Marking the end of an

interrupt [Sending EOI]

 Changing CPU Interrupt

Priority Mask [Current Priority]

12

Virtual GIC

 GIC now has separate sets of internal registers:

 Physical registers and virtual registers

 Non-virtualized system and hypervisor access the physical registers

 Virtual machines access the virtual registers

 Guest OS functionality does not change when accessing the vGIC

 Virtual registers are remapped by hypervisor so that the Guest

OS thinks it is accessing the physical registers

 GIC registers and functionality are identical

 Hypervisor can set IRQs as virtual in the HCR

 Interrupts are configured to generate a Hypervisor trap

 Hypervisor can deliver an interrupt to a CPU running a virtual process

using “register lists” of interrupts

13

Virtual interrupt example

 External IRQ (configured as virtual by the hypervisor) arrives at the GIC

 GIC Distributor signals a Physical IRQ to the CPU

 CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical

CPU Interface

 Hypervisor makes an entry in register list in the GIC

 GIC Distributor signals a Virtual IRQ to the CPU

 CPU takes an IRQ exception, and Guest OS running on the virtual machine reads

the interrupt status from the Virtual CPU Interface

Distributor
Physical

CPU

Interface

Virtual

CPU

Interface

Virtual IRQ

Physical IRQ

CPU

External
Interrupt
source

Hypervisor

Guest OS

14

Resource Ownership

 Software-only approaches

 Access to resources by GuestOS intercepted by the VMM

 VMM interprets the GuestOS‟s intent

 Provides its own mechanism to meet that intent

 Mechanism of interception varies

 Paravirtualisation adds a hypercall to the source code

 Binary translation adds a hypercall to the binary

 Exceptions in Hardware provide an trapping of operations

 Hypercalls can be more efficient

 More of the intent to be expressed in a single VMM entry

 Hardware assisted approaches:

 Provide further indirection to resources

 Accelerating trapped operations by syndrome information

15

Helping with Virtual Devices

 ARM I/O handling uses memory mapped devices

 Reads and Writes to the Device registers have specific side-effects

 Creating “Virtual Devices” requires emulation:

 Typically reads/writes to devices have to trap to the VMM

 VMM interprets the operation and performs emulation

 Perfect virtualization means all possible devices loads/stores emulated

 Fetching and interpreting emulated load/store is performance intensive

 “Syndrome” information on aborts available for some loads/stores

 Syndrome unpacks key information about the instruction

 Source/Destination register, Size of data transfer, Size of the

instruction, SignExtension etc

 If syndrome not available, then fetching of the instruction for

emulation still required

16

Devices and Memory

 Providing address translation for devices is important

 Allows unmodified device drivers in the GuestOS

 If the device can access memory, GuestOS will program it in IPA

 ARM virtualisation adds option for a “System MMU”

 Enables second stage memory translations in the system

 A System MMU could also provide stage 1 translations

 Allows devices to be programmed into guest‟s VA space

 System MMU natural fit for the processor ACP port

 ARM defining a common programming model

 Intent is for the system MMU to be hardware managed using

Distributed Virtual Messages found in AMBA 4 ACE

17

Potential of System MMU

18

Partitioning in a Secure ARM System

 ARM TrustZone technology define two worlds

 Everything must live in Normal World or Secure World

 TrustZone-Enhanced processor exports World Information

 Via NS bit (Not Secure) on system bus since AMBA 3 AXI

 TrustZone-Aware devices can partition across both worlds

 Only AMBA AXI compatible devices can be TrustZone-aware

 AMBA 3 AXI Interconnect decodes TZ like an address line

 AMBA AHB and APB do not contain TrustZone information

 AHB and APB devices live in only one World

 Groups of peripherals can be managed from bus interface

 Inclusion of TrustZone Peripheral Controller gives more control

19

Base Secure System

 Minimal TrustZone System required for payment solutions

 Protects On-Chip Secure Ram area via TrustZone Memory Adaptor

 Keyboard and screen secured dynamically to protect PIN entry

 Master Key and Random Number Generators for daughter-keys

permanently secures. Non-volatile counters required for state

management & anti-rollback (fuse based not non-volatile memory due

to process geometry limitations)

20

Extended Secure System

 Extended TrustZone system enables complex content

management

 Builds on Base Secure System

 + TrustZone ASC to protect media in RAM and off-chip decode

 + On-chip Crypto, Media Accelerators & DMA Controller for media

handling

21

Propagating System Security

NS : Not Secure - treated like an address line

22

Multi-Cluster Virtualization

 Works just like with a single cluster MPCore system

 Guest OS (like threads) can migrate from CPU to CPU across clusters

 External (virtual) GIC used to handle interrupts

 Functions the same as internal GIC, but accessed by multiple CPUs

 AMBA Coherency Extensions (ACE)

 Manages coherency across clusters

 System MMU allows other bus masters to map from IPA to PA

 Hypervisor needs to be aware of different clusters and CPUs

 But again: it is just like a single cluster system

 Hardware requirements are the same as non-virtualized multi-cluster

 Just make sure there‟s enough memory

23

big.LITTLE Multi-Processing

 “Big” processor is paired with a “little” processor

 Processors share exact same ISA and feature set

 High performance tasks run on the Big processor

 Lightweight/non-time-critical tasks run on the little processor

 Best of both worlds solution for high performance and low power

 big.LITTLE Use Models

 big.LITTLE Switch (Swapping) – one CPU cluster active at a time

 big.LITTLE MP – both CPUs can be active, loads dynamically balanced

Cortex-

A15

T
a
g

s

SCU

L
2

Cache Coherent Interconnect

Auxiliary

Interfaces
T

a
g

s

SCU

L
2

Kingfisher

24

P
E

R
F

O
R

M
A

N
C

E

SMS & Voice do

not need a 1GHz

processor

Browser needs full

performance for complex

rendering but very little if

the page is just being read

You do not know what

combination of apps the

user will use, but the

Smartphone must

continue to be responsive

System Characteristics of big.LITTLE

25

big.LITTLE Processing

 Right sized Core for the Right Task

 Cortex-A7 enabled by default with sufficient

performance for common usage scenarios

 Cortex-A15 performance for best user experience

 Software alignment allows execution to migrate between cores

 Transparent to user, application and OS

 Optimizes system workload based on application requirements

 Extending existing power management

 Additional benefit though OS Power Management Policy tuning

 End-product delivers longer battery life and richer user

experience at the same time

26

128-bit AMBA 4

Cortex-A15

A15

SCU + L2 Cache

CoreLink CCI-400 Cache Coherent Interconnect

128-bit AMBA 4

Cortex-A7

A7

SCU + L2 Cache

A7
A15

System Memory

GIC-400
Virtual GIC

• Full task migration (active

 to active) in less than

 20K cycles

• Cache coherency managed

 in hardware

• 128-bit system transactions

• Virtualization manager can

 map OS either across or

 between clusters

Putting together a big.LITTLE System
 Cortex-A15 and Cortex-A7 clusters are cache coherent

 CCI-400 maintains cache-coherency between clusters

 GIC-400 provides transparent virtualized Interrupt control

 Supports all big.LITTLE usage models

27

Forms of big.LITTLE

 big.LITTLE cluster switching

 OS sees big cores or little cores at any one time

 Eases deployment of software on big.LITTLE platforms

 Minimizes OS changes by extending DVFS framework

 Symmetric big/little clusters currently preferred

 Concurrent big.LITTLE

 OS sees all CPUs all the time; better energy and

performance matching of compute to workload

 Asymmetric clusters supported

 Expected to be the preferred use model eventually

 Requires OS improvements and changes for efficient operation

 Co-ordination of MP scheduling, power policies, environmental

conditions

L2$

KF KF
L2$

A15 A15

OS Switched

L2$

A15 A15

L2$

KF KF

OS Spans

Clusters

28

Virtualization and TrustZone

 TrustZone offers a specialised type of Virtualisation

 Only 2 „Worlds‟ – not extendable (except through paravirtualization)

 Although VMM can also span both worlds

 Fourth privilege level is provided by CPU‟s secure monitor mode

 Non-symmetrical - The two „Worlds‟ are not equal

 Secure world can access both worlds (33bit addressing)

Secure

Apps

Secure

RTOS

Secure

Monitor

Normal

World

Secure

World

HARDWARE (Memory, ARM CPU, I/O Devices)

Guest Operating System1

App2 App1 (EPG)

Guest Operating System2

App2 App1 (Flash)

Virtual Machine Monitor (VMM) or

Hypervisor

 TrustZone coexists alongside a VMM

29

SoC

Management

Domain
(ST/TEI)

Spanning Hypervisor Framework

TrustZone Monitor

RTOS/uKernel

Para-virtualization

with platform service API‟s
Secured hw

timer (tick)

SoC

Management

Domains

Secured

Services

Domain

Open Platform Hypervisor

 Full Virtualization

(KVM)

TZ Monitor

Exception Level

HYP(ervisor)

Exception Level

Open OS

& Drivers

Open OS

(Linux)

Kernel/Supervisor

Exception Level

A

P

P

A

P

P

A

P

P

A

P

P

User

Exception Level

(Application Layer)

ARM Non-Secure Execution Environment ARM Secure Execution Environment

Resource API

Virtualized TZ Call

Virtualized TZ Call

Resource Driver

API

NoC

sMMU

Accelerators

(eg DSP / GPU)

Virtualized

Heterogeneous

API

Driver

(OpenMP RT)

Coherence

Platform

Resources

Project website

http://www.virtical.eu

This project in ARM is in part

funded by ICT-Virtical, a European

project supported under the

Seventh Framework Programme

(7FP) for research and

technological development

30

Summary

 Hardware based Virtualization Extensions were introduced in

the soon-available Cortex-A15

 Also found the in the recently announce Cortex-A7

 Enables full binary compatible virtualization of the CPU

 Supporting both existing and new market scenarios

 Extended into the system and IO through the system MMU

 Independent of the TrustZone environment

 Providing both a secure environment, and a virtualizable non-secured

environment

 Software models available now, first silicon 2H2012

