
Sponsored by: 

& & 

Hardware accelerated 
Virtualization in the  
ARM Cortex™ Processors 

John Goodacre 
Director, Program Management 
ARM Processor Division 

ARM Ltd.  Cambridge UK 
2nd November 2010 

 



2 

New Capabilities in the Cortex-A15 

 Full compatibility with the Cortex-A9 

 Supporting the ARMv7 Architecture 
 

 Addition of Virtualization Extension (VE) 

 Run multiple OS binary instances simultaneously 

 Isolates multiple work environments and data 

 

 Supporting Large Physical Addressing Extensions (LPAE) 

 Ability to use up to 1TB of physical memory 

 

 With AMBA 4 System Coherency  (AMBA-ACE) 

 Other cached devices can be coherent with processor 

 Many core multiprocessor scalability 

 Basis of concurrent big.LITTLE Processing 

http://www.arm.com/images/Eagle_New_Look_Chip-600.jpg


3 

Large Physical Addressing 

Cortex-A15 introduces 40-bit physical addressing 

 Virtual memory (apps and OS) still has 32bit address space 

 

Offering up to 1 TB of physical address space 

 Traditional 32bit ARM devices limited to 4GB 

 

What does this mean for ARM based systems? 

 Reduced address-map congestion 

 More applications at the same time 

 Multiple resident virtualized operating systems 

 Common global physical address in many-core 



4 

Virtualization Extensions: The Basics 

 New Non-secure level of privilege to hold Hypervisor 

 Hyp mode 

 New mechanisms avoid the need Hypervisor intervention for: 

 Guest OS Interrupt masking bits 

 Guest OS page table management 

 Guest OS Device Drivers due to Hypervisor memory relocation 

 Guest OS communication with the interrupt controller (GIC) 

 New traps into Hyp mode for: 

 ID register accesses and idling (WFI/WFE) 

 Miscellaneous “difficult” System Control Register cases 

 New mechanisms to improve: 

 Guest OS Load/Store emulation by the Hypervisor 

 Emulation of trapped instructions through syndromes 



5 

How does ARM do Virtualization 

 Extensions to the v7-A Architecture, available on the  

Cortex™-A15 and Cortex-A7 CPUs 

 Second stage of address translation (separate page tables) 

Functionality for virtualizing interrupts inside the Interrupt Controller 

 Functionality for virtualizing all CPU features, including CP15 

 Option of a MMU within the system to help virtualize IO 
 

 Hypervisor runs in new “Hyp” exception mode / privilege 

 HVC (Hypervisor Call) instruction to enter Hyp mode 

 Uses previously unused entry (0X14 offset) in vector table for 

hypervisor traps 

 Hyp mode exception link register, SPSR, stack pointer 

 Hypervisor Control Register (HCR) marks virtualized resources 

 Hypervisor Syndrome Register (HSR) for Hyp mode entry reason  



6 

Virtualization: Third Privilege 

 Guest OS same kernel/user privilege structure 

 HYP mode higher privilege than OS kernel level 

 VMM controls wide range of OS accesses 

 Hardware maintains TZ security (4th privilege) 

User Mode 

(Non-privileged) 

Supervisor Mode  

(Privileged) 

Hyp Mode  

(More Privileged) 

Guest Operating System1 

App2 App1 

Guest Operating System2 

App2 App1 

Virtual Machine Monitor / Hypervisor 

1 

2 

3 

TrustZone Secure Monitor                                        (Highest Privilege) 

Secure 

Apps 

Secure 

Operating System 

Non-secure State Secure State 

E
x
c
e
p

ti
o
n

s
 

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s
 



7 

Memory – the Classic Resource 

 

 Before virtualisation – the OS owns the memory 

 Allocates areas of memory to the different applications 

 Virtual Memory commonly used in “rich” operating systems 

 

V
ir
tu

a
l 
a
d
d
re

s
s
 m

a
p
 o

f 
 

e
a
c
h
 a

p
p
lic

a
ti
o
n
 

P
h

y
s
ic

a
l 
A

d
d
re

s
s
 M

a
p
 

Translations 

from 

translation 

table (owned 

by the OS) 



8 

Virtual Memory in Two Stages 
Stage 1 translation owned  

by each Guest OS 

Virtual address (VA) map of  

each App on each Guest OS 
“Intermediate Physical” address 

map of each Guest OS   (IPA) 

Physical Address (PA) Map  

Stage 2 translation owned by the VMM 

Hardware has 2-stage 

memory translation 

 

Tables from Guest OS 

translate VA to IPA 

 

Second set of tables from 

VMM translate IPA to PA 

 

Allows aborts to be routed to 

appropriate software layer 

 



9 

Classic Issue: Interrupts 

 An Interrupt might need to be routed to one of: 

 Current or different GuestOS 

 Hypervisor  

 OS/RTOS running in the secure TrustZone environment 

 Basic model of the ARM virtualisation extensions: 

 Physical interrupts are taken initially in the Hypervisor  

 If the Interrupt should go to a GuestOS : 

 Hypervisor maps a “virtual” interrupt for that GuestOS 

 

 

Operating System 

App2 App1 
Guest OS 1 

App2 App1 

Guest OS 2 

App2 App1 

VMM 

System without virtualisation System with virtualisation 

Physical 

Interrupt 

Physical 

Interrupt 

Virtual 

Interrupt 



10 

Interrupt Virtualization 

 Virtualisation Extensions provides : 

 Registers to hold the Virtual Interrupt  

 CPSR.{I,A,F} bits in the GuestOS only appling to that OS 

 Physical Interrupts are not masked by the CPSR.{I.A.F} bits 

 GuestOS changes to I,A,F no longer need to be trapped 

 

 Mechanism to route all physical interrupts to Monitor Mode 

 Already utilized in TrustZone technology based devices 

 

 Virtual Interrupts are routed to the Non-secure IRQ/FIQ/Abort 
 

 Guest OS manipulates a virtualized interrupt controller 
 

 Actually available in the Cortex-A9 to aid paravirtualization 

support for interrupts 



11 

Virtual Interrupt Controller  

 New “Virtual” GIC Interface has been Architected 

 ISR of GuestOS interacts with the virtual controller 

 Pending and Active interrupt lists for each GuestOS 

 Interacts with the physical GIC in hardware 

 Creates Virtual Interrupts only when priority indicates it is necessary 

 

 GuestOS ISRs therefore  

do not need calls for: 

 Determining interrupt to  

take  [Read of the  

Interrupt Acknowledge] 

 Marking the end of an  

interrupt [Sending EOI] 

 Changing CPU Interrupt  

Priority Mask [Current Priority] 



12 

Virtual GIC 

 GIC now has separate sets of internal registers: 

 Physical registers and virtual registers 

 Non-virtualized system and hypervisor access the physical registers 

 Virtual machines access the virtual registers 

 Guest OS functionality does not change when accessing the vGIC 

 

 Virtual registers are remapped by hypervisor so that the Guest 

OS thinks it is accessing the physical registers 

 GIC registers and functionality are identical 

 

 Hypervisor can set IRQs as virtual in the HCR 

 Interrupts are configured to generate a Hypervisor trap 

 Hypervisor can deliver an interrupt to a CPU running a virtual process 

using “register lists” of interrupts 



13 

Virtual interrupt example 

 External IRQ (configured as virtual by the hypervisor) arrives at the GIC 

 GIC Distributor signals a Physical IRQ to the CPU 

 CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical 

CPU Interface 

 Hypervisor makes an entry in register list in the GIC 

 GIC Distributor signals a Virtual IRQ to the CPU 

 CPU takes an IRQ exception, and Guest OS running on the virtual machine reads 

the interrupt status from the Virtual CPU Interface 

 

 

Distributor 
Physical 

CPU 

Interface 

Virtual 

CPU 

Interface 

Virtual IRQ 

Physical IRQ 

 

CPU 

External 
Interrupt 
source 

Hypervisor 

Guest OS 



14 

Resource Ownership 

 Software-only approaches 

 Access to resources by GuestOS intercepted by the VMM 

 VMM interprets the GuestOS‟s intent 

 Provides its own mechanism to meet that intent  

 Mechanism of interception varies 

 Paravirtualisation adds a hypercall to the source code 

 Binary translation adds a hypercall to the binary 

 Exceptions in Hardware provide an trapping of operations 

 Hypercalls can be more efficient 

 More of the intent to be expressed in a single VMM entry 

 

 Hardware assisted approaches: 

 Provide further indirection to resources 

 Accelerating trapped operations by syndrome information 



15 

Helping with Virtual Devices 

 ARM I/O handling uses memory mapped devices 

 Reads and Writes to the Device registers have specific side-effects 
 

 Creating “Virtual Devices” requires emulation: 

 Typically reads/writes to devices have to trap to the VMM 

 VMM interprets the operation and performs emulation 

 Perfect virtualization means all possible devices loads/stores emulated 

 Fetching and interpreting emulated load/store is performance intensive 
 

 “Syndrome” information on aborts available for some loads/stores 

 Syndrome unpacks key information about the instruction   

 Source/Destination register, Size of data transfer, Size of the 

instruction, SignExtension etc 

 If syndrome not available, then fetching of the instruction for 

emulation still required 



16 

Devices and Memory 

 Providing address translation for devices is important 

 Allows unmodified device drivers in the GuestOS 

 If the device can access memory, GuestOS will program it in IPA 

 

 ARM virtualisation adds option for a “System MMU” 

 Enables second stage memory translations in the system 

 

 A System MMU could also provide stage 1 translations 

 Allows devices to be programmed into guest‟s VA space  

 

 System MMU natural fit for the processor ACP port  

 ARM defining a common programming model 

 Intent is for the system MMU to be hardware managed using 

Distributed Virtual Messages found in AMBA 4 ACE   



17 

Potential of System MMU 



18 

Partitioning in a Secure ARM System 

 ARM TrustZone technology define two worlds 

 Everything must live in Normal World or Secure World 
 

 TrustZone-Enhanced processor exports World Information 

 Via NS bit (Not Secure) on system bus since AMBA 3 AXI 
 

 TrustZone-Aware devices can partition across both worlds 

 Only AMBA AXI compatible devices can be TrustZone-aware 
 

 AMBA 3 AXI Interconnect decodes TZ like an address line 
 

 AMBA AHB and APB do not contain TrustZone information 

 AHB and APB devices live in only one World 

 Groups of peripherals can be managed from bus interface 

 Inclusion of TrustZone Peripheral Controller gives more control 



19 

Base Secure System 

 Minimal TrustZone System required for payment solutions 

 Protects On-Chip Secure Ram area via TrustZone Memory Adaptor 

 Keyboard and screen secured dynamically to protect PIN entry 

 Master Key and Random Number Generators for daughter-keys 

permanently secures. Non-volatile counters required for state 

management & anti-rollback (fuse based not non-volatile memory due 

to process geometry limitations) 

 



20 

Extended Secure System 

 Extended TrustZone system enables complex content 

management 

 Builds on Base Secure System 

 + TrustZone ASC to protect media in RAM and off-chip decode 

 + On-chip Crypto, Media Accelerators & DMA Controller for media 

handling 

 



21 

Propagating System Security 

NS : Not Secure - treated like an address line 



22 

Multi-Cluster Virtualization 

 Works just like with a single cluster MPCore system 

 Guest OS (like threads) can migrate from CPU to CPU across clusters 
 

 External (virtual) GIC used to handle interrupts 

 Functions the same as internal GIC, but accessed by multiple CPUs 
 

 AMBA Coherency Extensions (ACE) 

 Manages coherency across clusters 
 

 System MMU allows other bus masters to map from IPA to PA 
 

 Hypervisor needs to be aware of different clusters and CPUs 

 But again: it is just like a single cluster system 

 Hardware requirements are the same as non-virtualized multi-cluster 

 Just make sure there‟s enough memory 



23 

big.LITTLE Multi-Processing 

 “Big”  processor is paired with a “little” processor 

 Processors share exact same ISA and feature set 

 High performance tasks run on the Big processor 

 Lightweight/non-time-critical tasks run on the little processor 

 Best of both worlds solution for high performance and low power 

 

 

 

 

 

 big.LITTLE Use Models 

 big.LITTLE Switch (Swapping) – one CPU cluster active at a time 

 big.LITTLE MP – both CPUs can be active, loads dynamically balanced 

Cortex-

A15 

T
a
g

s
 

SCU 

L
2
 

Cache Coherent Interconnect 

Auxiliary 

Interfaces 
T

a
g

s
 

SCU 

L
2
 

Kingfisher 



24 

P
E

R
F

O
R

M
A

N
C

E
 

SMS & Voice do 

not need a 1GHz 

processor 

Browser needs full 

performance for complex 

rendering but very little if 

the page is just being read 

You do not know what 

combination of apps the 

user will use, but the 

Smartphone must 

continue to be responsive 

System Characteristics of big.LITTLE 



25 

big.LITTLE Processing 

 Right sized Core for the Right Task 

 Cortex-A7 enabled by default  with sufficient  

performance for common usage scenarios 

 Cortex-A15 performance for best user experience 
 

 Software alignment allows execution to migrate between cores 

 Transparent to user, application and OS 
 

 Optimizes system workload based on application requirements 

 Extending existing power management 

 Additional benefit though OS Power Management Policy tuning 
 

 End-product delivers longer battery life and richer user 

experience at the same time 



26 

128-bit AMBA 4 

Cortex-A15  

A15 

SCU + L2 Cache 

CoreLink CCI-400 Cache Coherent Interconnect  

128-bit AMBA 4 

Cortex-A7 

A7 

SCU + L2 Cache 

A7 
A15 

System Memory 

GIC-400 
Virtual GIC 

•  Full task migration (active 

   to active) in less than  

   20K cycles 
 

•  Cache coherency managed 

   in hardware 
 

•  128-bit system transactions 
 

• Virtualization manager can   

   map OS either across or 

   between clusters 

Putting together a big.LITTLE System 
 Cortex-A15 and Cortex-A7 clusters are cache coherent 

 CCI-400 maintains cache-coherency between clusters 

 GIC-400 provides transparent virtualized Interrupt control 

 Supports all big.LITTLE usage models 

 



27 

Forms of big.LITTLE 

 big.LITTLE cluster switching 

 OS sees big cores or little cores at any one time 

 Eases deployment of software on big.LITTLE platforms 

 Minimizes OS changes by extending DVFS framework 

 Symmetric big/little clusters currently preferred 

 

 Concurrent big.LITTLE  

 OS sees all CPUs all the time; better energy and  

performance matching of compute to workload 

 Asymmetric clusters supported 

 Expected to be the preferred use model eventually 

 Requires OS improvements and changes for efficient operation 

 Co-ordination of MP scheduling, power policies, environmental 

conditions 

L2$ 

KF KF 
L2$ 

A15 A15 

OS Switched 

L2$ 

A15 A15 

L2$ 

KF KF 

 

 

 

 

 

OS Spans 

Clusters 



28 

Virtualization and TrustZone 

 TrustZone offers a specialised type of Virtualisation 

 Only 2 „Worlds‟ – not extendable (except through paravirtualization) 

 Although VMM can also span both worlds 

 Fourth privilege level is provided by CPU‟s secure monitor mode 

 Non-symmetrical - The two „Worlds‟ are not equal 

 Secure world can access both worlds (33bit addressing) 

Secure 

Apps 

Secure 

RTOS 

Secure 

Monitor 

Normal  

World 

Secure  

World 

HARDWARE (Memory, ARM CPU, I/O Devices) 

Guest Operating System1 

App2 App1 (EPG) 

Guest Operating System2 

App2 App1 (Flash) 

Virtual Machine Monitor (VMM) or 

Hypervisor 

 TrustZone coexists alongside a VMM  



29 

SoC 

Management 

Domain 
(ST/TEI) 

Spanning Hypervisor Framework 

TrustZone Monitor 

RTOS/uKernel 

Para-virtualization 

with platform service API‟s 
Secured hw 

timer (tick) 

SoC 

Management 

Domains 

Secured 

Services 

Domain 

Open Platform Hypervisor 

      Full Virtualization 

(KVM) 

TZ Monitor 

Exception Level 

HYP(ervisor) 

Exception Level 

Open OS 

& Drivers 

 

Open OS 

(Linux) 

 

Kernel/Supervisor 

Exception Level 

A 

P 

P 

A 

P 

P 

A 

P 

P 

A 

P 

P 

User 

Exception Level 

(Application Layer) 

ARM Non-Secure Execution Environment ARM Secure Execution Environment 

Resource API 

Virtualized TZ Call 

Virtualized TZ Call 

Resource Driver 

API 

NoC 

sMMU 

Accelerators 

(eg DSP / GPU) 

Virtualized 

Heterogeneous 

API 

Driver 

(OpenMP RT) 

Coherence 

Platform  

Resources 

Project website 

http://www.virtical.eu  

This project in ARM is in part 

funded by ICT-Virtical, a European 

project supported under the 

Seventh Framework Programme 

(7FP) for research and 

technological development 



30 

Summary 

 Hardware based Virtualization Extensions were introduced in 

the soon-available Cortex-A15 

 Also found the in the recently announce Cortex-A7 

 

 Enables full binary compatible virtualization of the CPU 

 Supporting both existing and new market scenarios 

 

 Extended into the system and IO through the system MMU 

 

 Independent of the TrustZone environment 

 Providing both a secure environment, and a virtualizable non-secured 

environment 
 

 Software models available now, first silicon 2H2012 


