Keynote Speech: Xen ARM Virtualization

VP Sang-bum Suh, Ph.D.
sbuk.suh@samsung.com
S/W Platform Team
DMC Research Center
SAMSUNG Electronics

2 November 2011, Seoul Korea

Xen Summit Asia 2011

Contents

- SEC Overview
- DMC R&D Center Overview
- Xen ARM Virtualization

SEC Overview

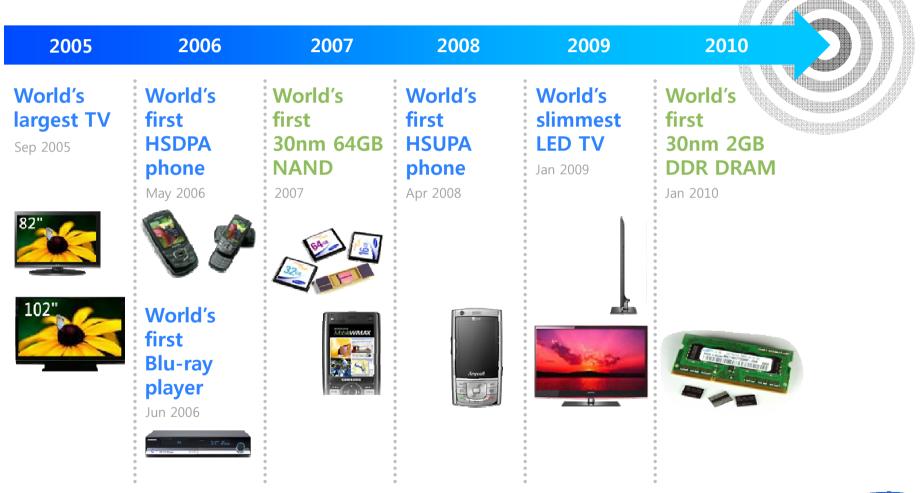
Corporate Philosophy

We will devote our people and technology to create superior products and services thereby contributing to a better global society.

History

1969 Established the company Started manufacturing B&W TV 1972 Ranked #1 in DRAM 1992 Global Top Tier Developed the cellular telephone system Became market leader in flash memory 2002 Achieved leading share of LCD panel market SAMSUNG 2004 Introduced mobile WiMAX technology (World's 1st) 2006 Ranked #1 in TV market 2007 Ranked #2 in global handset market No.1 revenue in global electronics industry 2010 (\$134B)

Business Divisions



Recent Technology Leadership

Pioneering new technologies

DMC R&D Center Overview

Core R&D Domain (1/3)

1. NG Comm. & Networking

Conduct research for NG communication systems & connectivity solutions in advance

- NG mobile comm. system
- Wired/Wireless connectivity
- NG broadcast & service technologies

2. Advanced Media Processing

Create NG multimedia devices using innovative technologies

- NG display & audio solution (UHD, 3D, Amp, Speaker)
- NG video/audio codec
- Realistic graphics
- Medical imaging

Core R&D Domain (2/3)

3. Convergence & Platform Solutions

Build a new kind of ecosystem for multi-device convergence & improve platform competitiveness

- Multi-device convergence (AllShare¹⁾, Smart Home)
- Mobile S/W platform (SLP)
- Cloud service platform

4. Intelligent/Emotional Interaction

Create customized intelligent/emotional UX

- UI identity for SEC's device
- Multimodal interaction (Flexible & Ambient interface)
- NG UX (Context awareness)

1) AllShare: Integrated Service Solution of SEC (IT/Smart CE/Non-IT Devices)

Core R&D Domain (3/3)

5. Differentiated Device Solutions

Differentiate mobile device through innovative module solution & sensor application

- Camera SoC (DSC/CAM common)
- Mobile camera module
- Sensor application
- New function module (EMR¹) pen)

6. Eco-friendly Solutions

Develop eco-friendly core technologies & create new business opportunities

- Energy management (HEMS, BEMS)
- Energy saving (printer, air conditioner)
- Life-care solution(Water/Air care, u-Health, etc.)
- Clean material

1) EMR: Electro Magnetic Resonance

Xen ARM Virtualization

Future Computing Trends

Changes in Computing

■Augmented Reality ■Gesture ■Interactive 3D UI

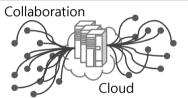
Closed **Centralized Correct Info. Stationary**

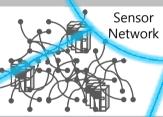
- Keyboard/Mouse
- ■Voice Call, SMS
- Centeralized/Concentrated
- ■Known Comm. Entities
- Multitouch
- ■Video Call, MMS
- ■Eye-Tracking ■Manytouch ■Realtime Web
- Distributed/Scattered
- ■Unknown/Utrusted Comm. Entities

Open

Distributed Correct+Timely Info.

Mobile





Every Node as Both of Client/Server

Embedded Single-core Multi-sore Many-core Multi-core Single-core Many-core

> ■UC Berkeley Sensornet Chip (TI MSP430 8MHz core, 10KB RAM)

[2009]

- Tiger 1GHz Single Core
- ■Dunnington 3GHz 6-core

[2012]

- ■ARM 2GHz 4-core
- ■Intel 4GHz 32-core

[2017]

- ■ARM 3GH 8-core
- ■Intel 6G 12 128-core
- ■SensorNet Chip

(128MHz core, 160KB RAM)

"Privacy"

"Realtime"

Industry Trends

- Introduction of Virtualization Technology in Embedded Devices
- Strengthening of Smartphone Features

Apple iOS Sandbox

Google
Android
Sandbox &
Permission-based
Access Control

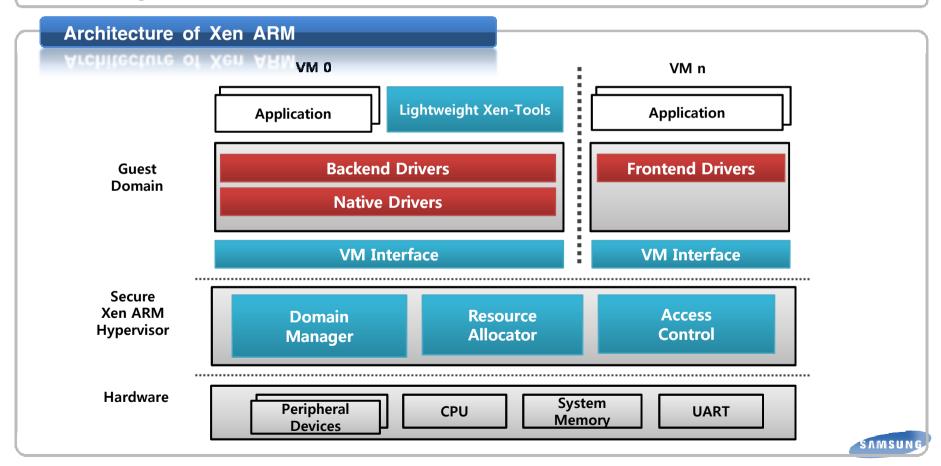
Google
Chrome Browser
Sandbox &
Renderer Process Isolation


System Security

* RTM: Root of Trust Measurement

Why CE Virtualization?

- HW Consolidation: AP(Application Processor) and BP(Baseband Processor) can share multicore ARM CPU SoC in order to run both Linux and Real-time OS efficiently.
- OS Isolation: important call services can be effectively separated from downloaded third party applications by Xen ARM combined with access control.
- 3 Rich User Experience: multiple OS domains can run concurrently on a single smartphone.



Xen ARM Virtualization

Goals

Goals

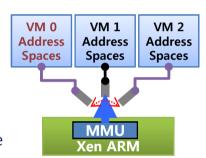
- Lightweight virtualization for secure 3G/4G mobile devices
 - High performance hypervisor based on ARM processor
 - Fine-grained access control fitted to mobile devices

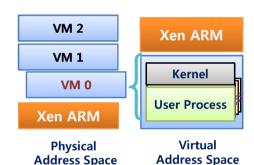
Xen ARM Virtualization

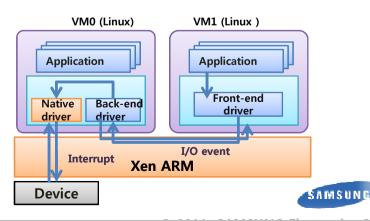
Overview

Overview

■ CPU virtualization


- Xen ARM mode: supervisor mode (most privileged level)
- Virtual kernel mode: User mode (least privileged level)
- Virtual user mode: User mode (least privileged level)

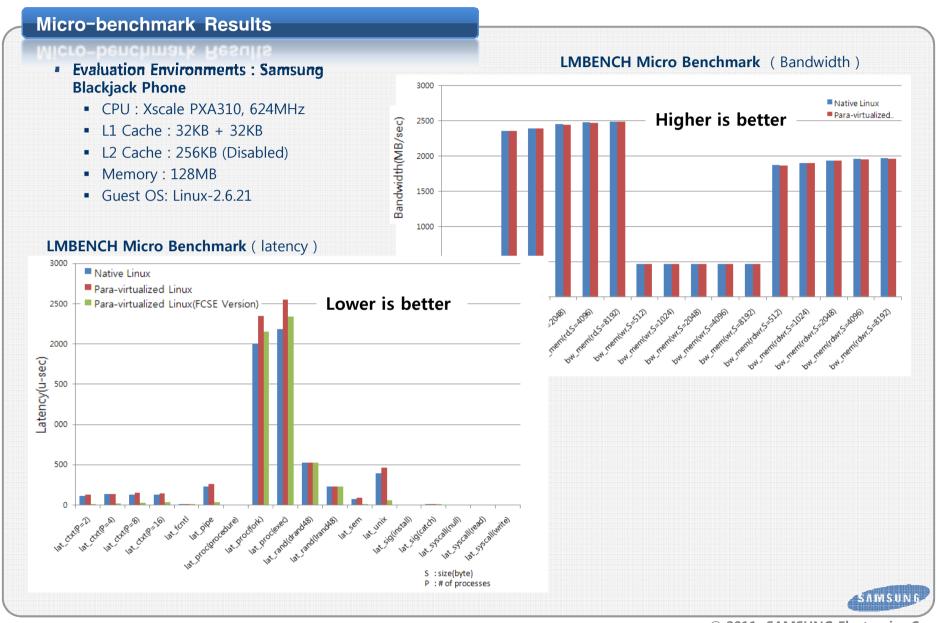

Memory virtualization


- VM's local memory should be protected from other VMs
 - Xen ARM switches VM's virtual address space using MMU
 - VM is not allowed to manipulate MMU directly

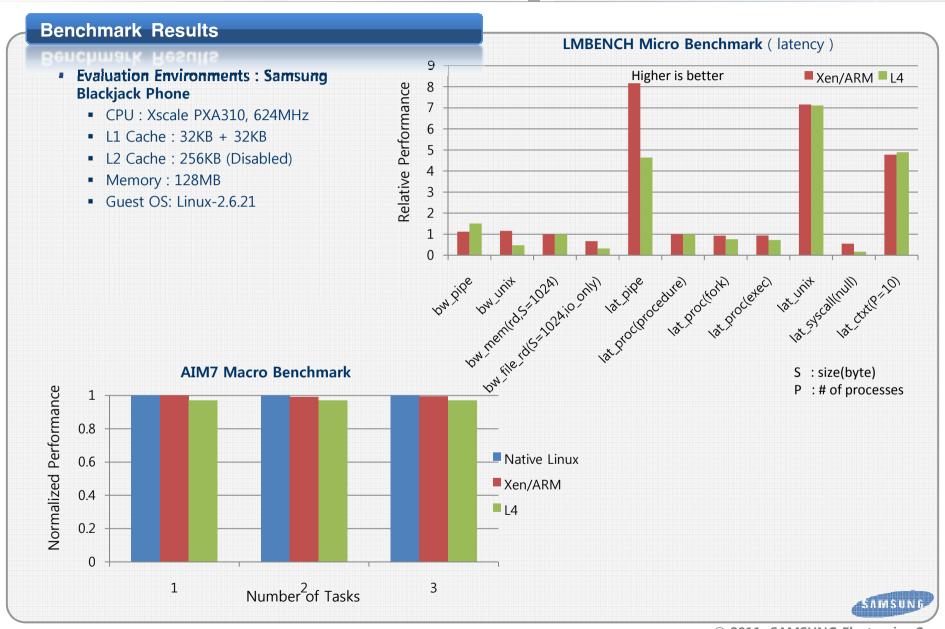
I/O virtualization

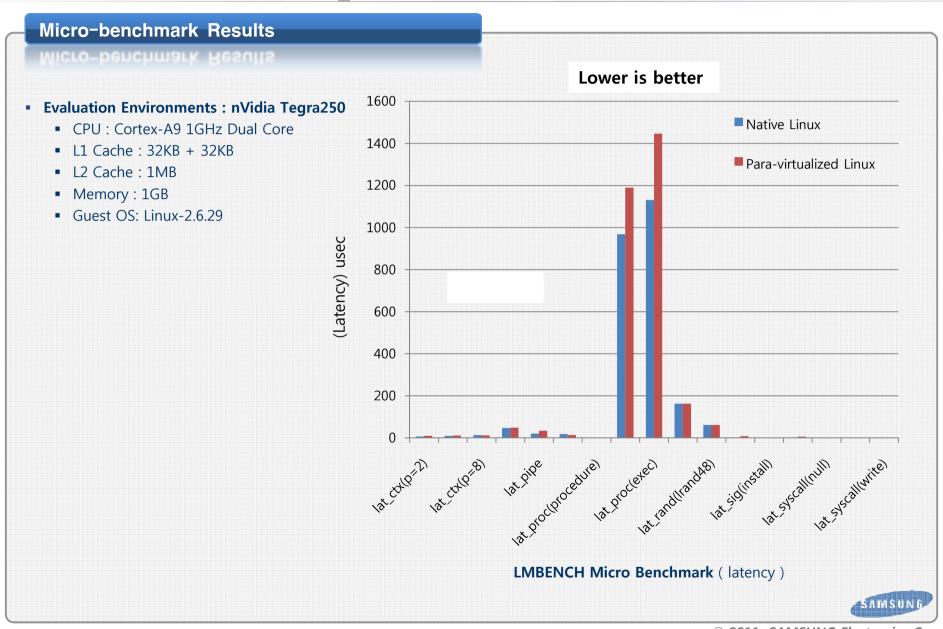
- Split driver model of Xen ARM
 - Client & Server architecture for shared I/O devices
 - Client: frontend driver
 - Server: native/backend driver

Logical mode split


Xen ARM mode →
virtual kernel mode →

virtual user mode ->


Performance Evaluation


Virtualization Overhead

Virtualization Overhead Comparison

Performance Comparison

Real-time Performance

Evaluation Environment

Category		Description
H/W (Tegra250)	CPU	Cortex-A9 / 1GHz / Dual Core
	RAM	1GB
S/W	Hypervisor	Xen ARM
	Guest OS (DOM0)	Linux-2.6.29 (Running Busy Loop Task)
	Guest OS (DOM1)	uC/OS-II (Running RT Task : Cyclictest benchmark)

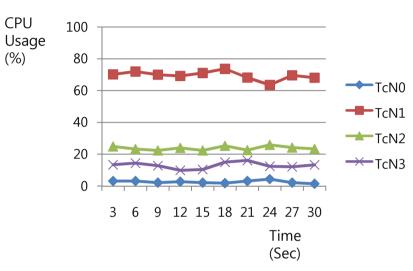
Cyclictest benchmark repeats

- 1. RT task sleeps for 10ms
- 2. Timer interrupt will occur after 10ms
- 3. Timer interrupt wakes up the RT domain(uC/OS-II)
- 4. uC/OS-II preempts Xen ARM
- 5. RT task is scheduled
- 6. RT task logs timestamp

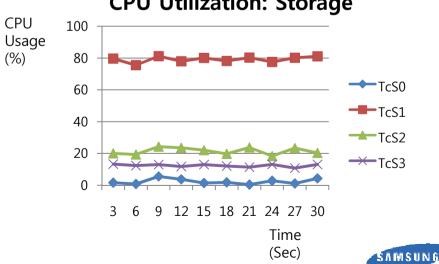
Native(uC/OS-II)		
Min Avg		Max
9995	9996.810169	10000
Xen ARM(uC/OS-II)		
Min Avg		Max
9996	9999.327119	10001

Unit: usec

Effectiveness of Access Control


net_atk: UDP packet flooding (sending out UDP packets with the size of 44,160 bytes every 1000 usecs)

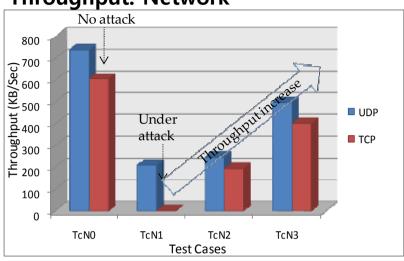
mtd_atk: overwhelming NAND READ operations (scanning every directory in the filesystem and reading file contents)


Test Cases

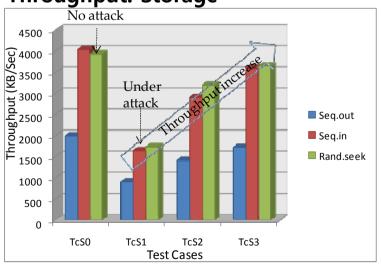
est eases			
	Network I/O Test Cases	Storage I/O Test Cases	
No Attack	TcN0	TcS0	
Under Attack (No I/O ACM)	TcN1	TcS1	
Under Attack (20% I/O ACM Policy)	TcN2	TcS2	
Under Attack (10% I/O ACM Policy)	TcN3	TcS3	

CPU Utilization: Network

CPU Utilization: Storage

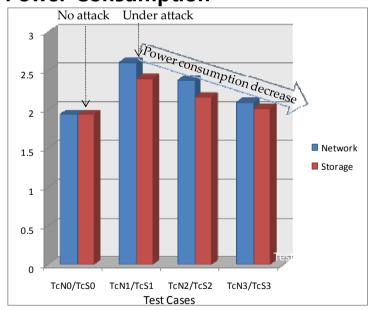

© 2011 SAMSUNG Electronics Co.

CPU

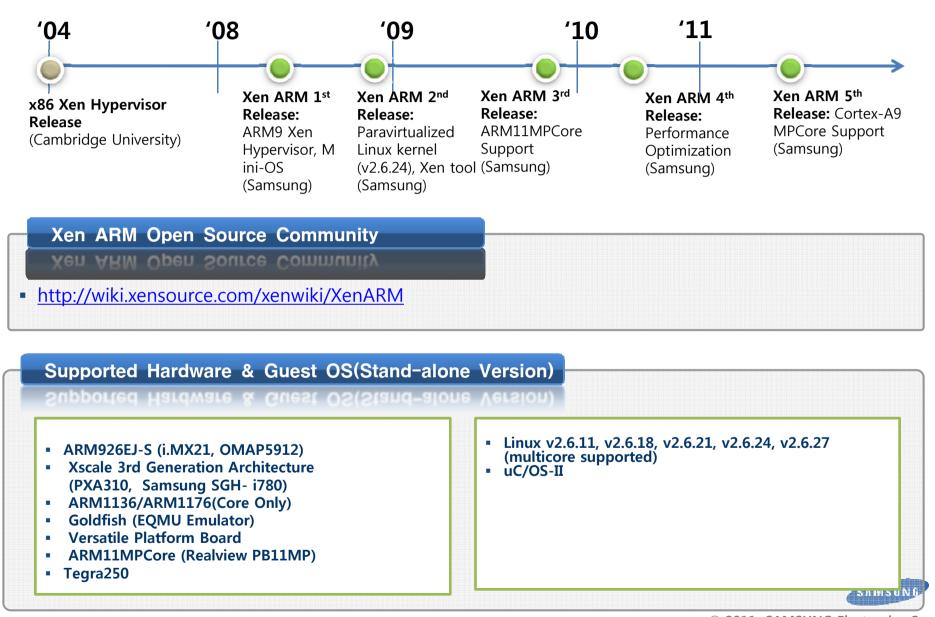

(%)

Effectiveness of Access Control

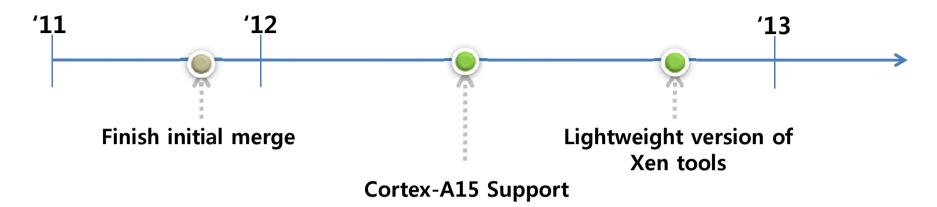
Throughput: Network



Throughput: Storage

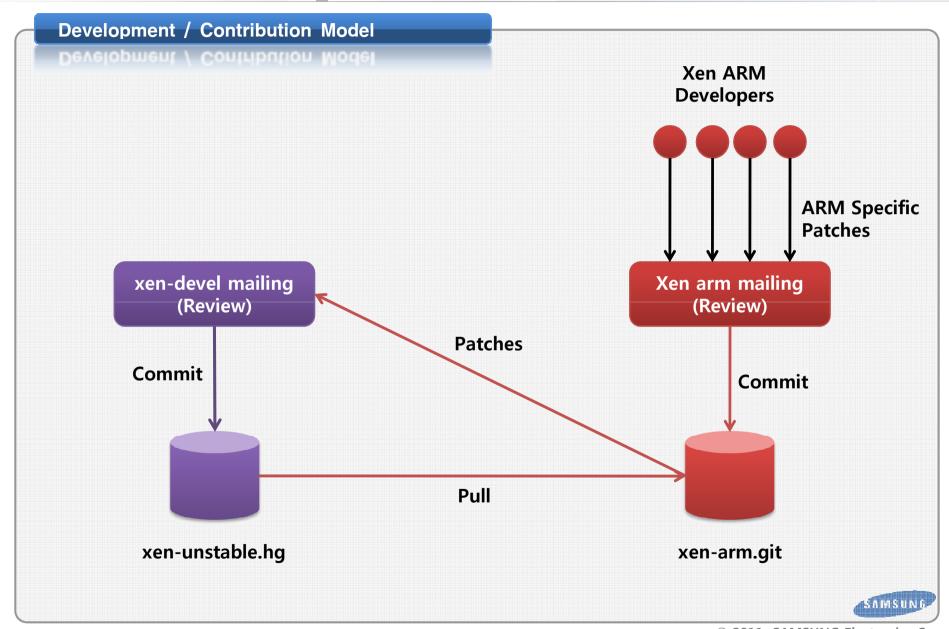

 Effectiveness of our access control: throughput increase and power consumption decrease even under malware attack

Power Consumption



History of Xen ARM

Future Roadmap of Xen ARM


Mainline Merging

mainline merging

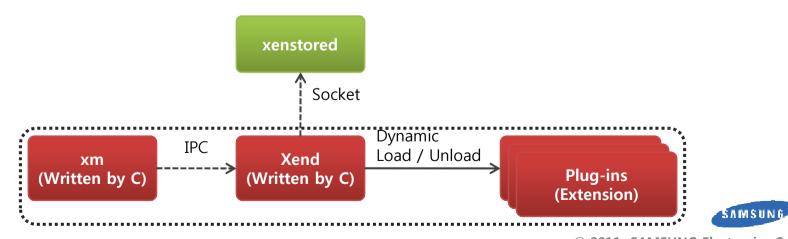
- Integration of Xen ARM with mainline (80% completed)
 - Rebased on the recent xen-unstable.hg
 - Many parts of the Xen ARM has been rewritten for the integration.
- Dynamic domheap allocation
 - Support of "pseudo-physical to machine translation" is ongoing.
- Dynamic xenheap expansion
 - Xenheap could be expanded on demand
 - Initially Xen ARM reserves 1MB(1 Section) of memory for heap

Xen ARM Development / Contribution Model

Issues

- Xen-Tools
 - Porting to ARM architecture is required
 - Currently libxc does not support ARM architecture.
- Real-time
 - Implementing Real-time Scheduler
 - How does the VMM knows which domain requires real-time scheduling?.
 - Implementing VMM Preemption
 - How to minimize interrupts and event latency within the view of VM? (for VM perspect ive)
- Access Control

Thank You!


Issue: Xen-Tools

Lightweight version of Xen-tools

- Python-based xend/xm too heavy for small devices.
- Lightweight version of xend/xm for embedded devices
 - Adopt Plug-in architecture
 - To avoid re-compilation when new virtual device introduced.

	Python-based Xm/Xend	
Memory Usage	Several tens of MB	Several hundreds of KB.
Latency	Several seconds	< 1 second

Issue: Real-time vs. Throughput

• Evaluation Environment

Category		Description
H/W (Tegra250)	CPU	Cortex-A9 / 1GHz / Dual Core
	RAM	1GB
S/W	Hypervisor	Xen ARM
	Guest OS (DOM0)	Linux-2.6.29 (Running Busy Loop Task)
	Guest OS (DOM1)	uC/OS-II (Running RT Task : Cyclictest benchmark)

CDF of Responsiveness(Periodic Timer Interrupt: 10ms) Normal Variable 100 used per cycle (native) used per cycle(uC/O8-II) 80 Mean 8tDev N 9997 0.9275 590 9999 0.8052 590 Response Overhead(3us) Percent 20 9994 9995 9996 9997 9998 9999 10000 10001 10002 Responsiveness(usec) 30 / 27

Cyclictest benchmark repeats

- 1. RT task sleeps for 10ms
- 2. Timer interrupt will occur after 10ms
- 3. Timer interrupt wakes up the RT domain(uC/OS-II)
- 4. uC/OS-II preempts Xen ARM
- 5. RT task is scheduled
- 6. RT task logs timestamp

Native(uC/OS-II)			
Min Avg		Max	
9995 9996.810169		10000	
Xen ARM(uC/OS-II)			
Min Avg		Max	
9996	9999.327119	10001	

Unit: usec

Issue: Access Control

sHype, XSM and our ACM

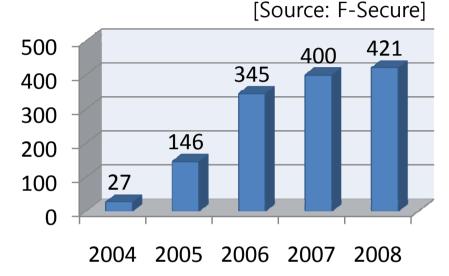
sHype, XSM and our ACM

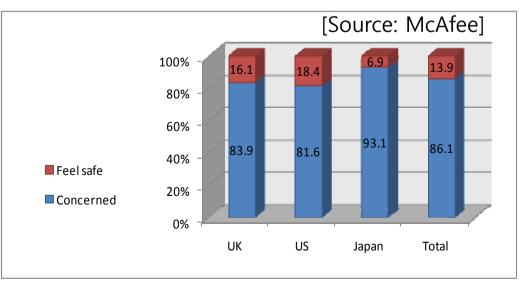
	sHype[SAI05]	XSM [COK06]	Xen ARM ACM
Access Control Policies	Flexible based on Flask(TE and Chinese Wall)	Flexible based on Flask(TE and Chinese Wall, RBAC, MLS, and MCS)	Flexible based on Flask(TE and proprietary policy)
Objects of Access Control	Virtual resources and domain management	Physical/virtual resources and domain management	Physical/virtual resources and domain management
Protection against mobile malware- based DoS attacks	N/A	N/A	Memory, battery, DMA, and event channels are controlled by ACM
Access control to objects in each guest domain	Enforced by ACM at VMM	Enforced by ACM at VMM	Enforced by ACM at each domain(for performance reason)
Etc			Xen ARM specific hooks

Comparison of ARM vs. x86 Virtualizability

Comparison

Comparison


	x86	ARM
Ring Compression (Protection mechanisms)	Segmentation and Paging	Paging and Domain Protection
Cache Architecture	PIPT	VIVT / VIPT / PIPT
I/O	I/O Instructions + memory-mapped I/O	Only memory-mapped I/O
# of privilege levels	4	2


Mobile Malware

- Number of mobile malware
 - More than 420 mobile phone viruses (2008)
 - Tens of thousands of infections worldwide

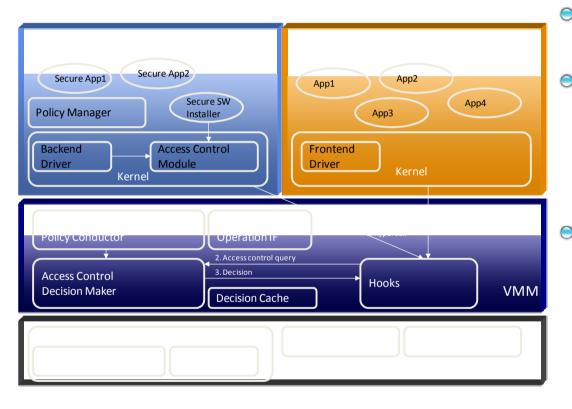
Concerns about mobile phone security – by market

Current Status of Xen ARM

Changeset

Common files which have been modified

Directory	File	Comment
xen	Rules.mk	 override TARGET_SUBARCH := \$(XEN_TARGET_ARCH) + override TARGET_SUBARCH := \$(XEN_TARGET_SUBARCH)
xen/common	page_alloc.c	Add reserve_boot_pages() function
xen/drivers	Makefile	Exclude x86 dependent device drivers when Xen is built for ARM architecture
xen/include/public	Xen.h	Add preprocessor macros to include arch-arm.h header file.
xen/include/xen	libelf.h	Add preprocessor macros to support ARM architecture.


New files

• We wrote xxx files for ARM architecture

Xen ARM Access Control

Protect unauthorized access to system resources from a compromised domain

- 37 access control enforcers in hypercalls
- Flexible architecture based on Flask
 - Currently, 5 access control models supported (TE, BLP, Biba, CW, Samsung Proprietary)
 - Access control of the resources
 - Physical resources (TE, Samsung Proprietary)
 - Memory, CPU, I/O space, IRQ
 - Virtual resources (TE, BLP, Biba)
 - Event-channel, grant table
 - Domain management (CW)
 - Domain creation/destroy

