
 1

Abstract
Peer-to-peer networks have gained a lot of attention

over the last couple of years, mainly due to the popularity
of the free multimedia file-sharing program Napster and a
legal battle around it. Being open by nature P2P systems
represent an ideal environment for various types of
malicious intrusions. The problem of securing hosts on
P2P network while keeping the openness of the system
has been studied extensively over last couple of years but
still remains open. Existing solutions based on reputation
management either employ centralized algorithms or rely
on peers’ cooperation on the network. We describe a fully
decentralized approach that allows computing peers’
reputation based on the traffic between a node and its
peers, independently of these peers willingness to
cooperate in calculation of their reputation.

1 INTRODUCTION

Peer-to-peer (P2P) network systems are increasingly

gaining popularity on the Internet. These networks allow
individual hosts (peers) to share and distribute various
types of information over the Internet. By their nature,
P2P networks are structured in a way that allows an open
and unsupervised communication between peers.
Therefore, these systems are vulnerable to various types
of attacks, among which are denial-of-service attacks
(DoS) and distribution of viruses.

To protect themselves from malicious intentions,
hosts should be able to identify reliable peers for
communication. Identifying these peers is a challenging
task in highly dynamic network environments like P2P
networks.

In this paper we suggest a solution to this problem
based on the notion of trust. We propose a policy for
managing traffic in peer-to-peer network based on peers’
reputation. We also describe a model for computing this
reputation using the trust score based on the peers’
interaction with each other. Unlike most existing
reputation-based models, our approach does not employ a
centralized storage and only produces reputation scores
on demand. The proposed solution is fully distributed and
does not require any cooperation from the rest of the
network.

Our model aims to help users to select the most
reliable peers whose past behavior shows willingness to
participate in a proper functioning of the P2P system and
at the same time to anticipate possible attacks from

malicious peers by limiting their access to the victim
peer’s resources.

In this paper we focus on a particular type of P2P
systems, called Gnutella, which proved to be one of the
most popular P2P systems. Furthermore, unlike other
popular P2P applications such as KaZaa, the source code
of Gnutella is freely available for experiments. It should
be noted that our approach could be adapted to other types
of P2P networks.

2 BASIC DESCRIPTION OF GNUTELLA
MODEL

Gnutella is a decentralized peer-to-peer file-sharing

model. In this model all peers perform tasks usually
associated with both clients and servers. Peers generate
queries while at the same time accept queries from other
peers, match with local shared files and respond with the
results if match is found. To propagate queries and their
results, called QueryHits, through the network each peer
that receives traffic forwards it to its neighboring peers.

There are two types of peers in Gnutella: end users
called local peers (leaf nodes) and group leaders called
Ultrapeers. Ultrapeers serve as a shield for their local
peers broadcasting traffic that come from them to the
network and accept applicable traffic from other
Ultrapeers [10].

To connect to a Gnutella network a user starts with a
computer that runs a Gnutella client. Once connected, a
new Gnutella client will send a request to a Gnutella web
server called GwebCache. The web server will reply with
a list of IP addresses of Ultrapeers. A new node will
announce its existence to those Ultrapeers. Once
announced a new node can start searching the data shared
on the network [8].

The Gnutella network protocol is built on top of the
TCP/IP protocol. After the connection is established,
peers communicate with each other by exchanging
Gnutella protocol descriptors. Figure 1 presents the
descriptors currently defined in Gnutella [10]. Ping and
Pong descriptors are used by peers to identify which hosts
are currently alive on the network. While descriptors
Query and QueryHit carry search request and reply
message through discovered active hosts.

A reputation-based trust management in peer-to-peer network systems

Natalia Stakhanova, Sergio Ferrero, Johnny Wong, Ying Cai
Department of Computer Science

Iowa State University
Ames, Iowa 50011 USA

{ ndubrov, sferrero, wong, yingcai }@iastate.edu

 2

Figure 1: Gnutella Descriptors

3 RELATED WORK

Theoretical justifications to the approaches based on

trust have been provided by Abdul-Rahman et al. [1].
Trust and willingness of peers to act honestly seem

to be natural mechanisms to prevent security breaches in
P2P systems. There have been several approaches
proposed to enhance security in P2P networks based on
trust and reputation management. Certainly the lack of
central authority in Gnutella makes it difficult to track the
reputations of all peers. Therefore, most solutions in this
area can be divided into those that add centralization to
the existing system [5] and decentralized solutions that
are based on the peers’ cooperation for reputation
computation [3, 5,7].

3.1 Centralized approaches

The approach presented by Gupta et al. [5] is an

example of centralized approaches. The proposed model
tracks positive peer’s contribution to the system using a
credit-debit mechanism. Based on its activity each peer
computes and stores its reputation locally. To ensure
secure and distributed access to the reputation scores,
Reputation Computation Agent (RCA) periodically
collects reputations from peers using a {public, private}
key pair. This approach does not provide mechanisms for
decreasing the reputation score for malicious behavior.

3.2 Decentralized approached

 The second group of the approaches is based on

the peers’ cooperation. One of such approaches is
proposed by K.Aberer and Z.Despotovic[2]. All peers
support a P-Grid-virtual binary search tree where each
node is associated with certain path and stores complaints
(reputation) about other agents. The model also does not
have any preventive mechanism from inserting arbitrary
number of false complaints.

NICE [7] is another decentralized reputation-based
approach to trust management where reputation is stored
in the form of cookies expressing peer satisfaction about
the transactions. Before initiating a transaction a peer
checks a local cookie to ensure that a targeted peer can be
trusted. However, if no cookie is available for that peer,

cooperation of other peers in acquiring that information is
necessary.

Cornelli et al. [3] also proposed an approach to share
information about peers’ reputation based on a distributed
polling algorithm. When a node receives QueryHits it
chooses a download peer with a highest reputation based
on the opinion of other peers. Although this approach
addresses many security considerations for P2P networks,
there are limitations to this approach. Based only on the
number of downloads, the approach does not consider
peers acting mostly as servers (i.e. sharing content in the
network). This approach is also highly dependent on the
other peers’ cooperation. In addition, extensive traffic
generated by polling algorithm can add significant load to
the traffic in the network, which might discourage the
adoption of the protocol.

3.3 Other approaches

The approach proposed by Daswani and Garcia-

Molina [4] is a radically different solution, which focuses
on managing traffic between peers based on load-
balancing policies rather than peers’ reputation. These
policies allow ”fair” sharing of the available resources by
all clients and therefore, help peers to cope with a
particular type of attacks on P2P networks – DoS attacks.
The simulations were run on different network topologies
under various policies to evaluate damage caused by
malicious node in the network. The results showed that
the cumulative network damage can be greatly reduced
using particular policies and network topologies.

Our proposed approach is built on the features of the
above mentioned approaches. In the next section we
introduce the details of our reputation-based model.

4 REPUTATION-BASED TRUST MANAGEMENT
MODEL

The approach we are presenting in this paper is

reputation-based. Reputations about peers are stored and
managed locally which will not create excessive traffic in
Gnutella network. It integrates easily with the original
Gnutella protocol and can be viewed as an extension to it.

As mentioned above a peer searching for
information in Gnutella environment broadcasts a Query
message and receives responses from peers having
matching resources. Among those responses a peer is
selected from which information is downloaded. The
choice about the download peer is usually based on the
quality of the offered file (file size, file name) as well as
an uploading speed of the offerer. The rest of the traffic in
Gnutella network is accepted without any consideration.

We suggest assessing the reputation of peers before
accepting any kind of traffic from them. When traffic
arrives at a peer it looks up the sender’s reputation in the
local reputation repository and makes a decision, to

 3

accept or reject traffic, based on the adopted trust
threshold value.

Since trust thresholds vary from peer to peer this
makes it difficult for the malicious node to change its
behavior in such a way so that its harmful traffic is
accepted at the target peer.

In our model we consider as a malicious peer a node
that performs the following irresponsible actions:
generating as many queries as possible and not offering
any service to others. Service in this case means
forwarding queries and offering (sharing) its own
resources on the network.

Since our approach relies on a peer’s reputation,
persistence of peer’s ID would definitely enhance the
model. Although, this does not exist in current versions
of Gnutella network it can be easily implemented. As
have been already noted by some researchers [5,3],
maintaining the same ID also allows peers to maintain
reputation scores across online sessions, which benefits
“good” peers. At the same time malicious peers would
constantly try to change their IDs in order to update the
reputation.

4.1 Reputation computation

The reputation of a peer is determined by its

contribution to the functioning of the P2P network. Based
on this we can distinguish factors indicating a peer’s
behavior contributing to a proper functioning of the
network and factors destructing it. Among these factors
are resource search, resource upload, resource download
and traffic extensiveness.

Resource search is essentially willingness of a peer
to forward traffic (Queries and QueryHits) passing
through it. Each peer that forwards the query adds its ID
to the “trailer” which is an addition to Query message.
Once a peer finds resources matching the request, it forms
a QueryHit and transfers a trailer from Query to QueryHit.
In this way the peer that originated the Query receives the
trailer with information about peers that behaved “well”
and updates its local reputation repository.

Resource upload indicates another peer’s interest in
the shared resource and therefore its willingness to
function properly on the network. A file uploaded
completely is considered a successful upload.

Resource download reflects the quality of the
downloaded information. A peer can decide through GUI
interaction that a download is unsuccessful if, for example,
the file was unreadable, contained harmful content or did
not match the query request.

The concept of traffic extensiveness helps to
evaluate the traffic load coming from all connected peers
based on the average amount of traffic received until this
point. Assuming that n peers are being connected to the
peer i at a particular moment and each of them have sent lj
bytes, average load is determined by:

 n

� lj /n
 j=1

The traffic can be considered extensive if a current
peer’s load exceeds the average amount by a user pre-
defined threshold, where a threshold is a factor of the
average amount of traffic. In other words, let LcK be a
current load from peer k and t be a threshold, then the
traffic from peer k is extensive if the following holds

 n

LcK > � lj /n * t
 j=1

We will refer to the factors mentioned above as
actions and will distinguish bad and good actions as
actions that failed and actions that succeeded, respectively.

Traffic from a particular peer can be accepted or
rejected depending on its reputation (trust score) and trust
threshold scale at a particular period of time. Trust score
is calculated based on good actions (GA) and bad actions
(BA). We define trust score as a percent of bad actions
happened during that period of time. Let trust score of
peer i be a ratio Ri and total number of considered actions
for this peer be TAi, then

Ri = BAi/ TAi
Therefore, the smaller the percent of bad actions

(trust score) the better peer’s behavior on the network and,
thus, the better peer’s reputation.

Each peer maintains a local reputation repository in
a tuple of the form (peer_id, total number of actions,
number of bad_actions). In addition to this, each peer
defines its trust thresholds x1 and x2 in the range from 0 to
100, which indicate percent of bad actions acceptable by
the peer. Trust thresholds are presented in figure 2.

Trust Threshold Meaning Description
Greater than x1 Distrust Peer is completely

untrustworthy.
Between x1 and x2 Average Peer is trustworthy.
Less than x2 Full trust Peer has a complete trust.

Figure 2: Trust thresholds

The correspondence between trust thresholds and

trust score is presented in figure 3.
Ri => x1 x1> Ri > x2 Ri =< x2

No traffic is
accepted

x1–(Ri–x2) percent of the
traffic from peer i is
accepted for a period of
time k.

All traffic is
accepted

Figure 3: The correspondence between trust thresholds and trust
score

The correspondence shows that high values of x1 and

x2 thresholds will cause majority of traffic to be accepted
despite of sender’s bad reputation while low threshold

values will limit traffic to a minimum.
Based on these policies a peer decides how many

messages to process during each time period k. For
instance, let x1=30, x2=4 then if a percent of bad actions is
13, then a peer has a trust range of “average” and amount

 4

of traffic to be processed is determined by the formula:
x1–(Ri –x2), 30-(13-4) = 21, so 21% of all its traffic is
accepted within period k.

Such correspondence between trust thresholds and
trust score allows a peer to balance its available resources
and incoming traffic according to the reputation of other
peers, i.e peers with “good” reputation will still be able to
access necessary resources freely while malicious peers
will have a restricted service. Of course, a malicious peer
can “behave well” until it gains good reputation. However,
since each peer adopts its own trust thresholds it will be
hard for a malicious peer to determine its trust scale.

If a peer is deemed malicious then no traffic is
accepted from it. A peer can gain trust back by continuing
to forward queries in the network and correctly processing
queries sent to him.

It is also important to provide a mechanism to
support initial reputation for newcomers. As the system
oriented on a successful functioning it should not assume
good intentions of the new peers. Therefore, minimum
average trust given to a newcomer will provide a start for
good peers and at the same time it should help to expose
malicious intentions from the beginning.

5 DESIGN AND IMPLEMENTATION

The architecture of our reputation-based model is

comprised of the several components that are displayed in
figure 4.

Security Manager is the front component that is
responsible for authorizing the incoming traffic. Each new
incoming request is handed to a reputation management
component to identify whether this request can be granted,
and if granted, whether there are any restrictions for it.

The reputation management block is the main
module where the current peer’s trust score is compared
with the existing trust thresholds and the decision about
the current peer’s request is made.

The reputation management component is connected

to a local reputation repository, managed by a relational
database system.

The decision on the incoming request is sent back to
a Security Manager. If the request is granted,
corresponding engines are triggered through the
Connection Engine component. The declined request is
being ignored.

Our design and implementation were based on Phex
version 0.9.5.54, a java-based Gnutella client. However,
this architecture can be applied to other P2P clients. For
implementation of the local reputation repository the
MySQL database system was used.

5.1 Experimental setup

Our evaluations were run on a small network

consisting of three PCs running the Phex P2P clients. Two
peers were configured as Ultrapeers to be able to forward
traffic in the network. One peer represented a malicious
node and therefore carried out harmful functions such as
generating extensive traffic, responding to queries with
“bad” files and not forwarding the queries.

We generated the input queries for our tests
interactively, therefore each node was given a processing
capacity of 20 queries per time period k, where k=5 sec.
Extensive traffic threshold was set to 1.7. We
experimented with the thresholds in the range from 1 to 3.
Setting thresholds value closer to 1 made system very
sensitive to even small deviations from the average
amount of traffic. While threshold value 3 gave no effect
on the trust score. Since the traffic for our experiments
was generated manually, the threshold value of 1.7 is
determined to be optimal in our experiments.

Trust thresholds were set as follows x1=20 and x2=5.
Initial reputation values for peers were set up manually.

5.2 Results

In our experiments we examined the dependence of
peer performance from its reputation in the following two
scenarios.

1. A highly trusted peer starts acting maliciously.

 This situation is possible if malicious peer
intentionally integrates into network to gain a high
reputation and archive a greater damage as a result of its
malicious actions later. The loss of reputation is
presented in figure 5.

 P2P client

 …

Se
cu

ri
ty

 M
an

ag
er

R
ep

ut
at

io
n

M
an

ag
er

Reputation
repository Internet

Connection
Engine

Figure 4: System overview

 5

0%
20%
40%
60%
80%

100%
120%

0 1 4 7 10 13 16 18 21 24 27

Number of bad actions

P1 trust score % of proccessed queries for P1

% of proccessed queries for P2

Figure 5: Decrease of full reputation when peer P1 starts
“acting” maliciously

Trust score increases rapidly as the number of

harmful actions (BA) increases. As the experiment shows
number of malicious node’s queries processed decreases
with a decrease of its reputation. The results also show
that as reputation decreases a malicious node is able to
receive some service from the victim peer until it
becomes distrusted (trust score reaches 20%, which is the
distrust threshold) although it does not prevent the rest of
the peers to be serviced. For our tests malicious peer P1
and a “good” peer P2 were producing queries within the
processing capacity of the victim host.

2. A peer with a low reputation is able to gain the

trust back if it starts behaving properly.
The reputation gain is presented in figure 6.
As opposed to reputation loss, reputation gain

happens very slowly. It takes around 27 malicious actions
dropped the reputation from full trust to distrust (see
figure 5) while almost 100 actions is needed to bring
reputation from bad to average level.

Figure 6 shows the impact of reputation on the
amount of service that peer receives. The number of
queries processed at any moment is proportional to the
reputation. A peer receives better service as its reputation
increases.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

200 209 218 227 236 245 254 263 272 281 290 299 308 317 326 335

Total number of actions

Trust score % of proccessed queries

Figure 6: Reputation gain when peer starts “acting” properly

5.3 Discussion

 In this section we present a comparative analysis

of the proposed approach with existing reputation–based
algorithms.

Figure 7 summarizes the main factors considered for
assessing peers’ reputation in four different models.

Unlike our approach Debit-Credit Reputation
Computation (DCRC) schema is a system-oriented
approach. Peers compute reputation information based on
their own activity on the network, while the RCA agent
represents a global repository of reputation values.
Therefore, the system is more focused on providing a
global view of the reputations for all peers in the network.
As opposed to this approach our schema is user oriented.
Each peer monitors the activity of the connected peers
and makes trust decisions based on their individual
thresholds. This gives users more autonomy from the rest
of the network.

The other advantage of our approach is that it
considers not only positive experience of the peer but also
negative ones such as the downloading of viruses. DCRC
schema does not distinguish successful and unsuccessful
experiences and thus can lead to a situation where
malicious peer freely uploads viruses while still

Figure 7: Comparison of different reputation-based calculation schemes

Factors taking into
consideration for reputation

computation

Debit-Credit Reputation
Computation (DCRC)[5]

NICE [7] P2P Rep [3] Our approach

Size of QueryHit x
Size of uploaded file x

Size of downloaded file x
Sharing hard-to-find content x

Bandwidth x
Time factor x x x
QueryHit x x

File Upload x x
File Download x x x

Amount of incoming traffic x
Location of reputation

computation for other peers
Reputation Computation

Agent
Local peer Local peer Local peer

Presence of centralized storage x
Presence of protocol/algorithm

for collecting reputations
 x x

 6

maintaining a good reputation.
P2P Rep (reputation) model considers both negative

and positive experiences; however it bases reputation
calculation on the number of file downloads which leaves
out peers only sharing files on the network. Since our
model monitors all activities of peers connected at the
moment, a reputation value will be computed for each of
them.

P2P Rep and NICE approaches require cooperation
of peers in reputation calculation. However, such
cooperation might not be always available, for example,
due to conspiracy of malicious peers. Therefore, our
approach employs methods that allow a peer to calculate a
reputation independently of other peers’ willingness to
cooperate.

The proposed approach does not demand high
system overhead. This becomes an important factor
considering fast development of wireless technologies and
their application in P2P networks.

6 CONCLUSION

In this paper we have described a solution to

reputation management of peers on P2P networks using a
reputation-based trust model based on the traffic between
peers. The approach is fully decentralized, requires no
peers’ cooperation and employs only on-demand
calculations.

As for future research we envision enhancement of
the model through user profiling techniques. This will
allow peers to have better knowledge about other peers’
typical behavior and therefore, consider deviations from it
as anomalies. This work is currently in progress.

7 REFERENCES

[1] A. Abdul-Rahman and S. Hailes, “A distributed trust
model”, Proceedings of the 1997 New Security Paradigms
Workshop, pp 48--60, 1997.

[2] K. Aberer and Z. Despotovic, “Managing trust in a
Peer-to-Peer Information System”, Proceedings of the
Ninth International Conference on Information and
Knowledge Management (CIKM 2001), 2001.

[3] Cornelli, Damiani, di Vimercati, Paraboschi, Samarati,
“Choosing Reputable Servents in P2P network”, Proc. of
WWW, 2002.

[4] N. Daswani and H. Garcia-Molina, “Query-Flood DoS
Attacks in Gnutella”, ACM Conference on Computer and
Communications Security, 2002.

[5] M. Gupta, P. Judge, and M. Ammar, “A Reputation
System for Peer-to-Peer Networks”, Proceedings of
NOSSDAV, 2003.

[6] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina,
“The EigenTrust Algorithm for Reputation Management
in P2P Networks”, Proceedings of the Twelfth
International WWW Conference, 2003.

[7] S. Lee, R. Sherwood, and B. Bhattacharjee,
“Cooperative Peer Groups in NICE”, Proceedings of
IEEE INFOCOM, 2003.

[8] LimeWire: Running on the Gnutella Network.
http://www.limewire.com/english/content/p2p.shtml

[9] Phex- the Gnutella P2P filesharing client.
http://phex.kouk.de/

[10] The Gnutella Protocol Specifications v0.4. Document
Revision 1.2. http://www.clip2.com

