
© 2012 SAMSUNG Electronics Co.

Kamil Dębski
Linux Platform Group
Samsung Poland R&D Centre

Video4Linux2: Path to a
Standardized Video Codec API

1/38

© 2012 SAMSUNG Electronics Co.

Contents

Hardware accelerated video codecs
- Special needs and quirks

Current solutions for HW codecs

Video4Linux2 memory-to-memory devices

V4L2 Codec API

MFC 5.1 and its quirks

Using a V4L2 codec API from user space
- Decoding use case

- Encoding use case

How to get started with a video codec driver

Summary

2/38

© 2012 SAMSUNG Electronics Co.

Hardware accelerated video codecs

Hardware module integrated in the SoC or as a
separate chip

Characteristics
- Memory intensive operations

- High bandwidth required for HD content

- Highly optimised for speed

• Sometimes at the cost of complicated interface

- Preference for low power usage

3/38

© 2012 SAMSUNG Electronics Co.

Current solutions

OpenMAX based
- Usually proprietary kernel interface

- Vendors often provided closed source OpenMAX libraries

Open source OpenMAX IL libraries
- Bellagio

- LIM OpenMAX

- Vendors prefer to use own implementations

Problems
- Even if kernel code is open source the library can be closed source

- Quite complicated, different implementations

- Library, not a kernel interface

4/38

© 2012 SAMSUNG Electronics Co.

OpenMAX

OpenMAX Bellagio with support for Exynos4 using
the Video4Linux2 Codec API
- http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/components;a=s

hortlog;h=refs/heads/samsung

- http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/omxil;a=shortlog
;h=refs/heads/samsung

http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/components;a=shortlog;h=refs/heads/samsung
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/components;a=shortlog;h=refs/heads/samsung
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/omxil;a=shortlog;h=refs/heads/samsung
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/omxil;a=shortlog;h=refs/heads/samsung

5/38

© 2012 SAMSUNG Electronics Co.

Current solutions

Distributed Codec Engine by TI
- Uses the syslink/rcm shim layer interface to connect the application to

the codec

- It is a library, not a kernel interface

VA API by Intel
- Library with many backends

VDPAU by NVidia
- Library

- Proprietary driver

6/38

© 2012 SAMSUNG Electronics Co.

Video4Linux2

Provides support for TV tuners, webcams, video
capture and output devices

Support for video codecs has been added by Hans
Verkuil

In 2.6.35 support for memory-to-memory (m2m)
devices has been added
- Enabled support for video filters

• Example devices FIMC, G2D

- Made possible to add video codecs acting as filters

- Prior to the introduction of the m2m framework the Video4Linux only
supported hardware codecs where only either source or sink was
memory

After the introduction of the m2m devices the codec
API has been extended

7/38

© 2012 SAMSUNG Electronics Co.

Memory-to-memory devices

Have properties of both CAPTURE and OUTPUT

nodes

Both the source of the data and result of the

processing is memory

Simple devices can use the m2m framework

- Here simple means that one source buffer produces one result buffer (an

1:1 relationship)

For more complex devices such as the MFC video

codec the m2m framework cannot be used

Processing

in HW

Source

buffer

Result

buffer

8/38

© 2012 SAMSUNG Electronics Co.

Memory-to-memory devices

Have properties of both CAPTURE and OUTPUT

nodes

Both the source of the data and result of the

processing is memory

Simple devices can use the m2m framework

- Here simple means that one source buffer produces one result buffer (an

1:1 relationship)

Processing

in HW

Source

buffer

Result

buffer

OUTPUT

queue

CAPTURE

queue

9/38

© 2012 SAMSUNG Electronics Co.

Multiplanar API

New special pixel formats that indicate use of multiple

planes

Each buffer can contain many planes e.g. :

- Separate plane for each colour component

- Extra data associated with the buffer (e.g. face detection results, highlight

warning)

MFC was one of the inspirations that led to the

introduction of multiplanar API

- Y and CbCr components had to be placed in two different part of memory

- Additional padding constrains (NV12MT)

10/38

© 2012 SAMSUNG Electronics Co.

Video4Linux2 Codec API

Memort-to-memory support

Multiplanar API

Videobuf2 subsystem handles many details of buffer
management

The API extension
- Added support for more codecs – H.264, H.263, MPEG4

- Add new controls to modify encoding parameters

11/38

© 2012 SAMSUNG Electronics Co.

Multi Format Codec v5.1

Available in Exynos31) / Exynos42)

Capable of decoding and encoding 1080p content of
up to 30 fps

Support for H.264, H.263, MPEG4 enc/dec and
MPEG1/2, VC1, XVID decoding

Hardware quirks:
- Two AXI bus masters

- Buffer address restrictions

- Complicated colour format - NV12MT

- Clock gating – separate clocks for each memory bank IOMMU

1) aka S5PC110/S5PV210 2) aka S5PC210/S5PV310

12/38

© 2012 SAMSUNG Electronics Co.

Memory Management in MFC

Need to allocate contiguous memory areas

Necessary to define various memory banks

- MFC bank 1 – firmware, stream buffers, chroma buffers

- MFC bank 2 – luma buffers

Troublesome without IOMMU

- with IOMMU one still needs to care about memory banks

Solution CMA

- Provides regular kernel API – dma_alloc_coherent

- Mainlined in kernel 3.5

- Enables definition of memory banks

- Memory reserved for hardware module can be reused by user space

applications when module is idle

13/38

© 2012 SAMSUNG Electronics Co.

NV12MT Colour Format

YUV 4:2:0

Luma and chroma separated in two buffers

Chroma U and V components interleaved

Image divided into 64x32 tiles

Specific order of tiles in memory „Z” shaped

Basic „Z”shape

Layout example

14/38

© 2012 SAMSUNG Electronics Co.

Decoding use case

Setting up the device and parsing header

Buffer initialization

Decoding frames

Finishing decoding

Resolution change

Stream seek

15/38

© 2012 SAMSUNG Electronics Co.

Decoding – setup and parsing header

Setup
- Setup OUTPUT queue

• Set format – choose codec

• Initialize and allocate

 buffers

- Queue header

- Start streaming on OUTPUT

Parsing header is necessary to determine the properties of the
encoded video stream. These are the frame size and the number of
buffers necessary for decoding.

Open MFC

decoder video

device

Run S_FMT on OUTPUT

.pixelformat – choose codec

.plane_fmt[0].sizeimage –

encoded buffer size

Init OUTPUT queue

REQBUFS

.count – number of

buffers

QUERYBUF

MMAP

QBUF buffer with

the header of the

stream

STREAMON on

OUTPUT

16/38

© 2012 SAMSUNG Electronics Co.

Decoding – buffer initialization

Buffer initialization
- CAPTURE queue can only be

setup after the header is parsed

- Read video stream properties

• Size

• Minimum number of buffers

- Start streaming on CAPTURE
after the buffers are mmaped
and queued

G_FMT on CAPTURE to

read the resolution of the

stream

Init CAPTURE queue

REQBUFS

.count – number of

buffers

QUERYBUF

MMAP

STREAMON on

CAPTURE

DQBUF buffer with

the header

Get min number of buffers from
V4L2_CID_MIN_BUFFERS_FOR_CAPTURE

17/38

© 2012 SAMSUNG Electronics Co.

Decoding – decoding frames

Example threads

QBUF on

OUTPUT a buffer

with a new frame

from the stream

DQBUF on

OUTPUT

QBUF on

CAPTUE an empty

buffer for the

decoded image

DQBUF on

CAPTURE

Process the

dequeued buffer

18/38

© 2012 SAMSUNG Electronics Co.

Decoding – decoding frames

Decoding frames

- Queuing OUTPUT buffers with encoded stream

- Dequeuing CAPTURE buffers with decoded frames

- Timestamp data (timestamp, timecode) is copied to a CAPTURE
buffer from the corresponding OUTPUT buffer

- Frame type (I, P, B) determined by flags

- Sequence number set by the driver

- In case of a non critical error the V4L2_BUF_FLAG_ERROR flag is
set, in case of a critical error DQBUF will fail

19/38

© 2012 SAMSUNG Electronics Co.

Decoding – decoding frames

Decoding frames

- One OUTPUT buffer is not equivalent to one CAPTURE buffer

• Most of the time it is, but the are exceptions

• In case of packed PB stream format, one packed PB OUTPUT
buffer is decoded to two CAPTURE buffers

• When using slice interface – one CAPTURE buffer can be
generated from multiple OUTPUT buffers

20/38

© 2012 SAMSUNG Electronics Co.

Decoding – decoding frames

Decoding frames

- Delay before CAPTURE buffers are returned

• A number of buffers has to be processed before first
decoded buffer can be returned

- Exception – if the user application won’t write to the
decoded frame buffer and order of framesm does not
matter

 (for example when generating thumbnails)

• This is a property of the stream

21/38

© 2012 SAMSUNG Electronics Co.

Encoded pictures

 Slice #1

Slice #2

Slice #3

I P B

Slices of a picture

Picture types

22/38

© 2012 SAMSUNG Electronics Co.

Display order

Decoding/Encoding order

Delay (keeping frames for reference)

Display and decoding order

1 2 3 4 5 6 7 8 9 10 11 12 13

I B B P B B P B B P B B I

1 4 2 3 7 5 6 10 8 9 13 11 12

I P B B P B B P B B I B B

1 4 2 3 7 5 6 10 8 9 13 11 12 X

I P B B P B B P B B I B B -

1 2 3 4 5 6 7 8 9 10 11 12 13

I B B P B B P B B P B B I

23/38

© 2012 SAMSUNG Electronics Co.

Decoding – finishing decoding

Finishing decoding

- After all encoded frames have been queued on the OUTPUT queue it is

necessary to notify the driver that decoding is finished.

- To do this one has to queue an OUTPUT buffer with bytesused = 0

- This will release the buffers that were kept as reference frames so they
can be dequed from the CAPTURE queue

- After the last last frame from CAPTURE is dequeued a buffer with
bytesused = 0 will be returned

24/38

© 2012 SAMSUNG Electronics Co.

Decoding – resolution change

Resolution change
- Tricky as the resolution can be increased or decreased. The number of

necessary buffers can also change.

- Indicated when a buffer with bytesused = 0

 is dequeued from CAPTURE queue.

25/38

© 2012 SAMSUNG Electronics Co.

Decoding – resolution change

Resolution change
- Following steps to be done:

• Stop streaming on CAPTURE

• Unmap all CAPTURE buffers

• Run Reqbufs with count = 0 to free
memory

• Read new stream properties – with
G_FMT and
V4L2_CID_MIN_BUFFERS_FOR_CAPTURE

• Run Reqbufs with appropriate buffer
count

• Mmap new buffers

• Queue new buffers

• Start streaming on CAPTURE

Unmap CAPTURE

buffers

Call REQBUFS

with .count = 0 on

CAPTURE

G_FMT on CAPTURE to

read the resolution of the

stream

Init CAPTURE queue

REQBUFS

.count – number of

buffers

QUERYBUF

MMAP
STREAMON on

CAPTURE

STREAMOFF on

CAPTURE

QBUF

Get min number of buffers from
V4L2_CID_MIN_BUFFERS_FOR_CAPTURE

26/38

© 2012 SAMSUNG Electronics Co.

Decoding – stream seek

Stream seek – method 1

- Necessary to flush the buffers

- Stop streaming on OUTPUT and CAPTURE

- Queue new encoded stream buffers on OUTPUT

- Queue necessary CAPTURE buffers

- Start streaming on CAPTURE and OUTPUT

27/38

© 2012 SAMSUNG Electronics Co.

Decoding – stream seek

Stream seek – method 2

- Use timestamp / timecode to match OUTPUT and CAPTURE buffers

- Start queueing OUTPUT buffers from the new point in the stream

- Check timestamp / timecode value to match CAPTURE buffers with the
new place in the stream

- Check decoded frame type to find first I-frame

28/38

© 2012 SAMSUNG Electronics Co.

Encoding use case

Setup encoding

Setup buffers

Encoding frames

Finishing encoding

29/38

© 2012 SAMSUNG Electronics Co.

Encoding - setup

Set image size and pixel format with S_FMT on
OUTPUT

Choose codec and set size of the buffer used for
output of the encoder by calling S_FMT on CAPTURE

Adjust encoding parameters by setting appropriate
controls

30/38

© 2012 SAMSUNG Electronics Co.

Encoding – buffers setup

Run reqbufs on both CAPTURE and OUTPUT queues

Queue CAPTURE buffers

Queue OUTPUT buffer with first frame

Start streaming (VIDIOC_STREAMON)

31/38

© 2012 SAMSUNG Electronics Co.

Encoding frames

Video frames to be encoded are queued on the
OUTPUT queue

Encoded stream chunks are dequeued from the
CAPTURE queue

If no B-frames are used one buffer on OUTPUT
queue is enough

If B-frames are used then more than one buffer has
to be queued on OUTPUT queue at a time. This
because encoding order is different from display
order

32/38

© 2012 SAMSUNG Electronics Co.

Encoding - finishing

To finish encoding the application has to send a
special command - V4L2_ENC_CMD_STOP

This command is sent after the last buffer to be
encoded was queued

Afterwards all the remaining CAPTURE buffers are
released and can be dequeued

After the last CAPTURE buffer was dequeued the
application is notified using an V4L2_EVENT_EOS
event

33/38

© 2012 SAMSUNG Electronics Co.

How to get started with a video codec driver

Look at existing implementations of codecs in V4L2
- MFC versions 5.1 and 6

• drivers/media/platform/s5p-mfc

- CODA codec driver by Javier Martin

• drivers/media/platform/coda.*

Flick through other m2m drivers
- FIMC driver by Sylwester Nawrocki

• drivers/media/platform/s5p-fimc

• Not only m2m, also supports camera capture

- G2D driver - 2D Graphics Acceleration Module

• drivers/media/platform/s5p-g2d

34/38

© 2012 SAMSUNG Electronics Co.

How to get started with a video codec driver

There is good documentation of V4L2
- http://linuxtv.org/downloads/v4l-dvb-apis/

Linux-media mailing list
- http://vger.kernel.org/vger-lists.html#linux-media

#v4l IRC channel on Freenode

CMA might be useful for memory management

Start off with a simple driver, get to know the V4L2
framework and then add more functionality

http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://vger.kernel.org/vger-lists.html
http://vger.kernel.org/vger-lists.html
http://vger.kernel.org/vger-lists.html
http://vger.kernel.org/vger-lists.html
http://vger.kernel.org/vger-lists.html

35/38

© 2012 SAMSUNG Electronics Co.

Summary

Around two years from the start of work on MFC
driver untill it was merge in the mainline kernel

Many discussions on the linux-media mailing list
(Thanks!)

Multiple features added to V4L2
- Memory-to-memory framework

- Multiplanar API

- New controls and pixel formats

- Videobuf2

Contiguous Memory Allocator

Some wrinkles to iron out

36/38

© 2012 SAMSUNG Electronics Co.

Summary

Success #1 – API merged in the mainline kernel

Success #2 – more hardware video codecs using
Vide4Linux2 (CODA codec driver by Javier Martin)

Success #3 – ARM Chromebook uses V4L2 Codec API

37/38

© 2012 SAMSUNG Electronics Co.

Links

Video4Linux 2 documentation

http://linuxtv.org/downloads/v4l-dvb-apis/

MFC driver code in git.kernel.org

http://goo.gl/LbhAE

MFC decoder example code
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example

MFC encoder example code
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder

Samsung OpenMAX components in Bellagio OMX IL
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/components;a=shortlog;h=refs/heads/samsung

http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/omxil;a=shortlog;h=refs/heads/samsung

http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://linuxtv.org/downloads/v4l-dvb-apis/
http://goo.gl/LbhAE
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-example
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://git.infradead.org/users/kmpark/public-apps/tree/HEAD:/v4l2-mfc-encoder
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/components;a=shortlog;h=refs/heads/samsung
http://omxil.git.sourceforge.net/git/gitweb.cgi?p=omxil/omxil;a=shortlog;h=refs/heads/samsung

Thank you.

SW Platform Team.

