

Ovirt Storage Overview

Jun 8 th, 2012

Barak Azulay

Storage overview – oVirt workshop 2011

Agenda

- Defining the problem
- Storage Domain
- Storage Pool
- Example
- Domain Classes
- Domain Types
- File Domains
- Block Domains
- SPM
- Thin Provisioning

- Roadmap
- How to contribute
- Q&A

oVirt

Defining the problem

- The requirements
 - Manage tens of thousands of virtual disk images
 - Each image potentially accessible from hundreds (thousands?) of nodes
 - Support both file based storage as well as raw block devices
- The assumptions
 - Exclusive access when used
 - Big (X GBs)
 - Centralized manager (can be HA in and by itself)

Defining the problem - guidelines

- High level, image centered API
- Cluster safe
- High performance (not in data path)
- Highly available
 - no single point of failure
 - Continues working in the absence of the manager
- Backing storage agnostic

Storage Domain

- A standalone storage entity
- Stores the images and associated metadata (but not VMs)

Only true persistent storage for VDSM

Domain Classes

- Data
 - Master
- ISO (NFS only)
- Backup (NFS only)
- Domain classes are planned for deprecation

Domain Types

- File Domains (NFS, local dir)
 - Use file system features for segmentation
- Block Domains (iSCSI, FCP, FCoE, SAS, ...)
 - Use LVM for segmentation
 - Very specialized use of LVM

File Domains

- Sparse files
- Better image manipulation capabilities
- Volumes and metadata are files
- 1:1 Mapping between domain and dir / NFS export
- NFS Different error handling logic for data path and control path

Block Domains

- Slower image manipulation
- Devices managed by device-mapper and multipath
- Domain is a VG
- Metadata is stored in a single LV and in lvm tags
- Volumes are Lvs
- Mail box
- Thin provisioning

Storage Pool

- A group of storage domains
- Supposed to simplify cross domain operations
- Being deprecated

Example

Storage overview – oVirt workshop 2011

Master Domain

oVirt

- Used to store:
 - Pool metadata
 - Backup of OVFs (treated as blobs)
 - Async tasks persistent data
- Contains the clustered lock for the pool

Storage Pool Manager (SPM)

A role assigned to one host in a data center granting it sole authority over:

- Creation, deletion and manipulation of virtual disk images, snapshots and templates
- Allocation of storage for sparse block devices (on SAN)
- Single meta data writer:
 - SPM lease mechanism (Chockler and Malkhi 2004, Light-Weight Leases for Storage-Centric Coordination)
 - Storage-centric mailbox.

This role can be migrated to any host in a data center.

Storage Pool Manager (SPM) 2

Virt

Thin Provisioning

Over-commitment is a storage function which allows oVirt to logically allocate more storage than is physically available.

- Generally, virtual machines use much less storage than what has been defined for them
- Over-commitment allows a virtual machine to operate completely unaware of the resources that are actually available
- QEMU identifies the highest offset written onto the logical volume (soon to be moved to LVM)
- VDSM monitors the highest offset marked by QEMU
- VDSM asks the SPM to extend the logical volume when needed

New features (recently added)

- SANLock
- Live snapshots
- Live storage migration (block copy)
- Direct LUN
- Support any shared file system (not just NFS ,posix)
- NFS V.4 support

Roadmap

- SDM
- Live storage migration (streaming)
- Image handling
 - Image Manager
 - Allocation policy (Space / Performance)
- Dynamic Connection Management
- NFS Hardmounts support
- Storage Array Offload (snapshots, lun provisioning, thin provisioning, etc)
- So much more

How to contribute

- Repository:
 - http://git.fedorahosted.org/git/?p=vdsm.git
- Mailing lists:
 - vdsm-devel@lists.fedorahosted.org
 - vdsm-patches@lists.fedorahosted.org
- IRC:
 - #vdsm on Freenode

Core Team:

Dan Kenigsberg, Saggi Mizrahi, Igor Lvovsky, Eduardo Warszawasky, Yotam Oron, Ayal Baron

Q&A

Storage overview – oVirt workshop 2011

THANK YOU !

http://www.ovirt.org