

Copyright(c) 2012 NTT Corp. All Rights Reserved.

How to Mitigate Latency Problems
during KVM/QEMU Live Migration

June 7th, 2012

NTT Open Source Software Center
Takuya Yoshikawa

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Table of Contents

● Brief introduction of KVM/QEMU live migration
● How to transfer guest's memory during migration

● What is needed to track guest's memory changes: GET_DIRTY_LOG

● Explanation of its latency problem
● Why memory write can take ms during migration

● What is causing the delay

● How to solve the problem
● What's already done

● Further development ideas being discussed

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Live Migration

● Transfer guest to other node without stopping it
● Can be used for load balancing, server maintenance, etc.

● Need to send guest machine state

– RAM takes a long time to send

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Precopy Live Migration

● QEMU transfers guest's memory pages as follows:
● Sends dirty pages, updated pages, iteratively

– KVM has an API called GET_DIRTY_LOG for this

– Continues this until the number of dirty pages decreases enough
● Stops the guest and sends the remaining dirty pages

– Needed to take a complete snapshot

– Must be reasonably fast to be called seamless

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's GET_DIRTY_LOG doing

● Copy a snapshot of in-kernel dirty bitmap to userspace
● Each bit represents one dirty/clean guest page

● Things need to be done at the same time:

– Clear the in-kernel dirty bitmap for the next logging: must be atomic
to let the guest work concurrently

– Write protect guest pages, by modifying sptes, to make KVM track
successive guest writes: need to take mmu_lock now

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Latency Problem

● GET_DIRTY_LOG can hold mmu_lock for a long time
● mmu_lock is widely used for KVM mmu work

– page fault handling caused by dirty logging itself is included

– VCPU threads can be forced to wait for this lock
● Held during protecting all pages

– Now being improved
● The more pages to protect, the longer the lock hold time

● How long: simple test result
● ms order of worst case latency in a guest

– Could be easily seen with 4GB of memory before

– Much improved now, but still can be seen with more than 10GB

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's Done: from my work

● Eliminate walking through entire kvm mmu pages
● Use KVM's rmap to find sptes corresponding to guest's dirty pages

● Use atomic operation in a loop to update dirty_bitmap instead of
switching it at once by updating memslot with SRCU

– SRCU update sometimes takes a long time
● Much faster unless dirty pages are not too many

– Some times faster even for tens of thousands of pages

512 sptes 512 sptes 512 sptes 512 sptes

List of kvm mmu pages:

KVM's rmap:

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Further Development Ideas: from KVM ML

● Release mmu_lock periodically
● By mixing other work than write protections in between

– Succeeded in avoiding ms worst case latency with 10GB of memory

● Lazy write protection
● GET_DIRTY_LOG only protects top level entries: O(1)

● Other protections are done at the time of page faults

– Distribute protections to VCPU threads

● Make use of EPT's A/D bits
● Latest processors only

● No write protections

– Guest will be freed from page fault overheads
● Need to sync this info with dirty bitmap for GET_DIRTY_LOG

– Some work for every guest page: not just dirty ones

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Thank You!

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9

