
Generic PM Domains and Platform Device Drivers

Rafael J. Wysocki

Renesas Electronics / SUSE Labs / Faculty of Physics U. Warsaw

May 28, 2012

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 1 / 39



Outline

1 Introduction

2 Generic PM Domains
Data Structures
Initialization, Adding and Removing Devices
Power Management Callback Routines

3 Cooperation with Device Drivers
Domain Device Callbacks
Adaptation of Device Drivers

4 Summary

5 Resources

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 2 / 39



Introduction

Generic PM Domains Framework

Part of the core runtime PM framework.

Designed for systems with “cluster” low-power states.

Introduced one year ago (first commit on July 1, 2011, work in
progress since then).

Supports domain hierarchies (subdomains, domains with multiple
master domains).

Supports PM QoS (recently reworked).

Support for domains containing CPU cores under development.

Support for bus types other than the platform bus type under
development.

Assumes the availability of single-device low-power states and multi-device
(cluster) low-power states.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 3 / 39



Introduction

Generic PM Domains Framework

Part of the core runtime PM framework.

Designed for systems with “cluster” low-power states.

Introduced one year ago (first commit on July 1, 2011, work in
progress since then).

Supports domain hierarchies (subdomains, domains with multiple
master domains).

Supports PM QoS (recently reworked).

Support for domains containing CPU cores under development.

Support for bus types other than the platform bus type under
development.

Assumes the availability of single-device low-power states and multi-device
(cluster) low-power states.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 3 / 39



Introduction

How It Works (High-Level View)

The goal is to allow the cluster low-power states to be utilized if possible.

.runtime_suspend(), .runtime_resume() and system
suspend/hibernation callbacks are provided to replace subsystem-level
(e.g. bus type) callbacks.

They use device callbacks (domain-wide or device-specific), if defined, to
put devices into single-device low-power states and/or to save/restore their
states.

Cluster (domain) low-power states are used if they are available and if
putting the system into them doesn’t violate PM QoS resume latency
constraints.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 4 / 39



Introduction

How It Works (High-Level View)

The goal is to allow the cluster low-power states to be utilized if possible.

.runtime_suspend(), .runtime_resume() and system
suspend/hibernation callbacks are provided to replace subsystem-level
(e.g. bus type) callbacks.

They use device callbacks (domain-wide or device-specific), if defined, to
put devices into single-device low-power states and/or to save/restore their
states.

Cluster (domain) low-power states are used if they are available and if
putting the system into them doesn’t violate PM QoS resume latency
constraints.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 4 / 39



Introduction

How It Works (High-Level View)

The goal is to allow the cluster low-power states to be utilized if possible.

.runtime_suspend(), .runtime_resume() and system
suspend/hibernation callbacks are provided to replace subsystem-level
(e.g. bus type) callbacks.

They use device callbacks (domain-wide or device-specific), if defined, to
put devices into single-device low-power states and/or to save/restore their
states.

Cluster (domain) low-power states are used if they are available and if
putting the system into them doesn’t violate PM QoS resume latency
constraints.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 4 / 39



Introduction

How It Works (High-Level View)

The goal is to allow the cluster low-power states to be utilized if possible.

.runtime_suspend(), .runtime_resume() and system
suspend/hibernation callbacks are provided to replace subsystem-level
(e.g. bus type) callbacks.

They use device callbacks (domain-wide or device-specific), if defined, to
put devices into single-device low-power states and/or to save/restore their
states.

Cluster (domain) low-power states are used if they are available and if
putting the system into them doesn’t violate PM QoS resume latency
constraints.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 4 / 39



Generic PM Domains Data Structures

Generic PM Domain Representation

include/linux/pm domain.h

struct generic_pm_domain {

char *name;

struct dev_pm_domain domain;

struct list_head master_links, slave_links;

struct list_head dev_list;

struct dev_power_governor *gov;

int (*power_off)(struct generic_pm_domain *domain);

int (*power_on)(struct generic_pm_domain *domain);

struct gpd_dev_ops dev_ops;

...

struct device_node *of_node;

};

include/linux/pm.h

struct dev_pm_domain {

struct dev_pm_ops ops;

};

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 5 / 39



Generic PM Domains Data Structures

Generic PM Domain Representation

include/linux/pm domain.h

struct generic_pm_domain {

char *name;

struct dev_pm_domain domain;

struct list_head master_links, slave_links;

struct list_head dev_list;

struct dev_power_governor *gov;

int (*power_off)(struct generic_pm_domain *domain);

int (*power_on)(struct generic_pm_domain *domain);

struct gpd_dev_ops dev_ops;

...

struct device_node *of_node;

};

include/linux/pm.h

struct dev_pm_domain {

struct dev_pm_ops ops;

};

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 5 / 39



Generic PM Domains Data Structures

Domain Device Operations

include/linux/pm domain.h

struct gpd_dev_ops {

/* Runtime PM */

int (*start)(struct device *dev);

int (*stop)(struct device *dev);

int (*save_state)(struct device *dev);

int (*restore_state)(struct device *dev);

/* System suspend and hibernation */

int (*suspend)(struct device *dev);

int (*suspend_late)(struct device *dev);

int (*resume_early)(struct device *dev);

int (*resume)(struct device *dev);

int (*freeze)(struct device *dev);

int (*freeze_late)(struct device *dev);

int (*thaw_early)(struct device *dev);

int (*thaw)(struct device *dev);

bool (*active_wakeup)(struct device *dev);

};

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 6 / 39



Generic PM Domains Data Structures

Auxiliary Data Types

Device data and callbacks (include/linux/pm.h and pm domain.h)

struct generic_pm_domain_data {

struct pm_domain_data base;

struct gpd_dev_ops ops;

struct gpd_timing_data td;

struct notifier_block nb;

struct mutex lock;

bool need_restore;

bool always_on;

};

struct pm_domain_data {

struct list_head list_node;

struct device *dev;

};

Governor functions (include/linux/pm domain.h)

struct dev_power_governor {

bool (*power_down_ok)(struct dev_pm_domain *domain);

bool (*stop_ok)(struct device *dev);

};

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 7 / 39



Generic PM Domains Data Structures

Auxiliary Data Types

Device data and callbacks (include/linux/pm.h and pm domain.h)

struct generic_pm_domain_data {

struct pm_domain_data base;

struct gpd_dev_ops ops;

struct gpd_timing_data td;

struct notifier_block nb;

struct mutex lock;

bool need_restore;

bool always_on;

};

struct pm_domain_data {

struct list_head list_node;

struct device *dev;

};

Governor functions (include/linux/pm domain.h)

struct dev_power_governor {

bool (*power_down_ok)(struct dev_pm_domain *domain);

bool (*stop_ok)(struct device *dev);

};

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 7 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Domain Initialization and Subdomain Management

void pm_genpd_init(struct generic_pm_domain *genpd,

struct dev_power_governor *gov, bool is_off);

Supposed to be called by the platform.

Populates struct generic_pm_domain objects with defaults.

Non-default values should be set after executing pm_genpd_init()

and before adding any devices to the domain.

int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 8 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Domain Initialization and Subdomain Management

void pm_genpd_init(struct generic_pm_domain *genpd,

struct dev_power_governor *gov, bool is_off);

Supposed to be called by the platform.

Populates struct generic_pm_domain objects with defaults.

Non-default values should be set after executing pm_genpd_init()

and before adding any devices to the domain.

int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 8 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Domain Initialization and Subdomain Management

void pm_genpd_init(struct generic_pm_domain *genpd,

struct dev_power_governor *gov, bool is_off);

Supposed to be called by the platform.

Populates struct generic_pm_domain objects with defaults.

Non-default values should be set after executing pm_genpd_init()

and before adding any devices to the domain.

int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,

struct generic_pm_domain *subdomain);

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 8 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Adding and Removing Devices

int __pm_genpd_of_add_device(struct device_node *genpd_node, struct device *dev,

struct gpd_timing_data *td);

int pm_genpd_add_device(struct generic_pm_domain *genpd,

struct device *dev);

int pm_genpd_remove_device(struct generic_pm_domain *genpd,

struct device *dev);

Supposed to be called by the platform (calling one of them from a
device driver is a layering violation).

It is recommended to add devices to domains before registering drivers
(so that .probe() can see that the device is in a PM domain).

The domain object should be configured entirely before the first
device is added to that domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 9 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Adding and Removing Devices

int __pm_genpd_of_add_device(struct device_node *genpd_node, struct device *dev,

struct gpd_timing_data *td);

int pm_genpd_add_device(struct generic_pm_domain *genpd,

struct device *dev);

int pm_genpd_remove_device(struct generic_pm_domain *genpd,

struct device *dev);

Supposed to be called by the platform (calling one of them from a
device driver is a layering violation).

It is recommended to add devices to domains before registering drivers
(so that .probe() can see that the device is in a PM domain).

The domain object should be configured entirely before the first
device is added to that domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 9 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Device Trees Support

int __pm_genpd_of_add_device(struct device_node *genpd_node,

struct device *dev,

struct gpd_timing_data *td);

int pm_genpd_of_add_device(struct device_node *genpd_node,

struct device *dev);

The domain to add the device to is found on the basis of its device
tree node pointer.

For this to work, the of node member of struct
generic pm domain has to be set appropriately (this does not
happen automatically).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 10 / 39



Generic PM Domains Initialization, Adding and Removing Devices

Device Trees Support

int __pm_genpd_of_add_device(struct device_node *genpd_node,

struct device *dev,

struct gpd_timing_data *td);

int pm_genpd_of_add_device(struct device_node *genpd_node,

struct device *dev);

The domain to add the device to is found on the basis of its device
tree node pointer.

For this to work, the of node member of struct
generic pm domain has to be set appropriately (this does not
happen automatically).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 10 / 39



Generic PM Domains Power Management Callback Routines

Runtime Suspend Callback Routine

int pm_genpd_runtime_suspend(struct device *dev);

1 If .stop_ok() returns true, the device is “stopped”.

.stop() callback from the dev ops member of struct
generic pm domain (domain-wide, none by default).
.stop() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

2 pm_genpd_poweroff() is called for the device’s domain.
3 If all devices in the domain are “stopped” and all its subdomains are

“off”, and .power_down_ok() returned true:
1 The states of all devices in the domain are saved (using driver

callbacks).
2 The “power off” operation is carried out for the domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 11 / 39



Generic PM Domains Power Management Callback Routines

Runtime Suspend Callback Routine

int pm_genpd_runtime_suspend(struct device *dev);

1 If .stop_ok() returns true, the device is “stopped”.

.stop() callback from the dev ops member of struct
generic pm domain (domain-wide, none by default).
.stop() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

2 pm_genpd_poweroff() is called for the device’s domain.
3 If all devices in the domain are “stopped” and all its subdomains are

“off”, and .power_down_ok() returned true:
1 The states of all devices in the domain are saved (using driver

callbacks).
2 The “power off” operation is carried out for the domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 11 / 39



Generic PM Domains Power Management Callback Routines

Saving Device States

There are two possible ways to save the state of a device before the
“power off” operation is carried out for its domain:

.save_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.save_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.save_state points to
pm_genpd_default_save_state() that executes the device-specific
callback or falls back to its driver’s .runtime_suspend().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 12 / 39



Generic PM Domains Power Management Callback Routines

Saving Device States

There are two possible ways to save the state of a device before the
“power off” operation is carried out for its domain:

.save_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.save_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.save_state points to
pm_genpd_default_save_state() that executes the device-specific
callback or falls back to its driver’s .runtime_suspend().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 12 / 39



Generic PM Domains Power Management Callback Routines

Saving Device States

There are two possible ways to save the state of a device before the
“power off” operation is carried out for its domain:

.save_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.save_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.save_state points to
pm_genpd_default_save_state() that executes the device-specific
callback or falls back to its driver’s .runtime_suspend().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 12 / 39



Generic PM Domains Power Management Callback Routines

Runtime Resume Callback Routine

int pm_genpd_runtime_resume(struct device *dev);

1 If necessary, the “power on” operation is carried out for the device’s
domain.

This has to abort all instances of pm_genpd_poweroff() running for
the same domain at that time.
It has to be run recursively for all of the “master” domains before.

2 The “start” operation is carried out for the device.

.start() callback from the dev ops member of struct
generic pm domain (domain-wide, none by default).
.start() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

3 If necessary, the device’s state is restored (using driver callback).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 13 / 39



Generic PM Domains Power Management Callback Routines

Runtime Resume Callback Routine

int pm_genpd_runtime_resume(struct device *dev);

1 If necessary, the “power on” operation is carried out for the device’s
domain.

This has to abort all instances of pm_genpd_poweroff() running for
the same domain at that time.
It has to be run recursively for all of the “master” domains before.

2 The “start” operation is carried out for the device.

.start() callback from the dev ops member of struct
generic pm domain (domain-wide, none by default).
.start() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

3 If necessary, the device’s state is restored (using driver callback).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 13 / 39



Generic PM Domains Power Management Callback Routines

Restoring Device States

There are two possible ways to restore the state of a device after the
“power on” operation has been carried out for its domain:

.restore_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.restore_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.restore_state points to
pm_genpd_default_restore_state() that executes the device-specific
callback or falls back to its driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 14 / 39



Generic PM Domains Power Management Callback Routines

Restoring Device States

There are two possible ways to restore the state of a device after the
“power on” operation has been carried out for its domain:

.restore_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.restore_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.restore_state points to
pm_genpd_default_restore_state() that executes the device-specific
callback or falls back to its driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 14 / 39



Generic PM Domains Power Management Callback Routines

Restoring Device States

There are two possible ways to restore the state of a device after the
“power on” operation has been carried out for its domain:

.restore_state() callback from the dev ops member of struct
generic pm domain (domain-wide).

.restore_state() callback from the ops member of struct
generic pm domain data attached to the given device
(device-specific).

The domain-wide callback takes precedence over the device-specific one.

By default dev_ops.restore_state points to
pm_genpd_default_restore_state() that executes the device-specific
callback or falls back to its driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 14 / 39



Generic PM Domains Power Management Callback Routines

System Suspend and Hibernation Callbacks

They are organized in analogy with the runtime PM callbacks (i.e. for each
supported suspend/resume or hibernation/restore stage there may be a
device-specific callback and a domain-wide callback, with the former
taking precedence).

Separate device callbacks are only defined for:

The “suspend”, “late suspend”, “early resume”, and “resume” phases
of system suspend.

The “freeze”, “late freeze”, “early thaw”, and “thaw” phases of
hibernation.

The suspend callbacks are also used during the last stage of hibernation
(i.e. after the image has been saved) and the remaining phases are handled
with the help of the “stop” and “start” device callbacks.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 15 / 39



Generic PM Domains Power Management Callback Routines

System Suspend and Hibernation Callbacks

They are organized in analogy with the runtime PM callbacks (i.e. for each
supported suspend/resume or hibernation/restore stage there may be a
device-specific callback and a domain-wide callback, with the former
taking precedence).

Separate device callbacks are only defined for:

The “suspend”, “late suspend”, “early resume”, and “resume” phases
of system suspend.

The “freeze”, “late freeze”, “early thaw”, and “thaw” phases of
hibernation.

The suspend callbacks are also used during the last stage of hibernation
(i.e. after the image has been saved) and the remaining phases are handled
with the help of the “stop” and “start” device callbacks.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 15 / 39



Generic PM Domains Power Management Callback Routines

System Suspend and Hibernation Callbacks

They are organized in analogy with the runtime PM callbacks (i.e. for each
supported suspend/resume or hibernation/restore stage there may be a
device-specific callback and a domain-wide callback, with the former
taking precedence).

Separate device callbacks are only defined for:

The “suspend”, “late suspend”, “early resume”, and “resume” phases
of system suspend.

The “freeze”, “late freeze”, “early thaw”, and “thaw” phases of
hibernation.

The suspend callbacks are also used during the last stage of hibernation
(i.e. after the image has been saved) and the remaining phases are handled
with the help of the “stop” and “start” device callbacks.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 15 / 39



Cooperation with Device Drivers Domain Device Callbacks

Roles of Domain Device Callbacks (Runtime PM)

.stop() Put the device into a single-device low-power state (e.g. stop
its clock). Configure remote wakeup if necessary. Save some
state data if necessary.

.start() Put the device back into the full-power state. Restore the
state data saved by .stop() if necessary.

.save state() Prepare the device for putting its domain into a cluster
(domain) low-power state (e.g. power removal). Usually,
save the device’s state.

.restore state() Prepare the device for a transition into the full-power
state after it has gone through a domain low-power state.
Usually, restore the device’s state.

Note

.save_state() is preceded by .start() and followed by .stop().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 16 / 39



Cooperation with Device Drivers Domain Device Callbacks

Roles of Domain Device Callbacks (Runtime PM)

.stop() Put the device into a single-device low-power state (e.g. stop
its clock). Configure remote wakeup if necessary. Save some
state data if necessary.

.start() Put the device back into the full-power state. Restore the
state data saved by .stop() if necessary.

.save state() Prepare the device for putting its domain into a cluster
(domain) low-power state (e.g. power removal). Usually,
save the device’s state.

.restore state() Prepare the device for a transition into the full-power
state after it has gone through a domain low-power state.
Usually, restore the device’s state.

Note

.save_state() is preceded by .start() and followed by .stop().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 16 / 39



Cooperation with Device Drivers Domain Device Callbacks

Roles of Domain Device Callbacks (Runtime PM)

.stop() Put the device into a single-device low-power state (e.g. stop
its clock). Configure remote wakeup if necessary. Save some
state data if necessary.

.start() Put the device back into the full-power state. Restore the
state data saved by .stop() if necessary.

.save state() Prepare the device for putting its domain into a cluster
(domain) low-power state (e.g. power removal). Usually,
save the device’s state.

.restore state() Prepare the device for a transition into the full-power
state after it has gone through a domain low-power state.
Usually, restore the device’s state.

Note

.save_state() is preceded by .start() and followed by .stop().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 16 / 39



Cooperation with Device Drivers Domain Device Callbacks

Roles of Domain Device Callbacks (Runtime PM)

.stop() Put the device into a single-device low-power state (e.g. stop
its clock). Configure remote wakeup if necessary. Save some
state data if necessary.

.start() Put the device back into the full-power state. Restore the
state data saved by .stop() if necessary.

.save state() Prepare the device for putting its domain into a cluster
(domain) low-power state (e.g. power removal). Usually,
save the device’s state.

.restore state() Prepare the device for a transition into the full-power
state after it has gone through a domain low-power state.
Usually, restore the device’s state.

Note

.save_state() is preceded by .start() and followed by .stop().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 16 / 39



Cooperation with Device Drivers Domain Device Callbacks

Roles of Domain Device Callbacks (Runtime PM)

.stop() Put the device into a single-device low-power state (e.g. stop
its clock). Configure remote wakeup if necessary. Save some
state data if necessary.

.start() Put the device back into the full-power state. Restore the
state data saved by .stop() if necessary.

.save state() Prepare the device for putting its domain into a cluster
(domain) low-power state (e.g. power removal). Usually,
save the device’s state.

.restore state() Prepare the device for a transition into the full-power
state after it has gone through a domain low-power state.
Usually, restore the device’s state.

Note

.save_state() is preceded by .start() and followed by .stop().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 16 / 39



Cooperation with Device Drivers Domain Device Callbacks

Default Behavior May Not Be Correct

If the device-specific callback is not present (i.e. the callback pointer in the
ops member of the struct generic pm domain data object attached to
the given device is NULL), pm_genpd_default_save_state() will
execute the device driver’s .runtime_suspend() callback.

This may not be the right thing to do if the domain provides sufficiently
complicated .stop() and .start() device callbacks.

For example, the driver’s .runtime_suspend() may do something that’s
duplicated by the domain’s .stop().

Analogous observation applies to pm_genpd_default_restore_state()

and the driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 17 / 39



Cooperation with Device Drivers Domain Device Callbacks

Default Behavior May Not Be Correct

If the device-specific callback is not present (i.e. the callback pointer in the
ops member of the struct generic pm domain data object attached to
the given device is NULL), pm_genpd_default_save_state() will
execute the device driver’s .runtime_suspend() callback.

This may not be the right thing to do if the domain provides sufficiently
complicated .stop() and .start() device callbacks.

For example, the driver’s .runtime_suspend() may do something that’s
duplicated by the domain’s .stop().

Analogous observation applies to pm_genpd_default_restore_state()

and the driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 17 / 39



Cooperation with Device Drivers Domain Device Callbacks

Default Behavior May Not Be Correct

If the device-specific callback is not present (i.e. the callback pointer in the
ops member of the struct generic pm domain data object attached to
the given device is NULL), pm_genpd_default_save_state() will
execute the device driver’s .runtime_suspend() callback.

This may not be the right thing to do if the domain provides sufficiently
complicated .stop() and .start() device callbacks.

For example, the driver’s .runtime_suspend() may do something that’s
duplicated by the domain’s .stop().

Analogous observation applies to pm_genpd_default_restore_state()

and the driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 17 / 39



Cooperation with Device Drivers Domain Device Callbacks

Default Behavior May Not Be Correct

If the device-specific callback is not present (i.e. the callback pointer in the
ops member of the struct generic pm domain data object attached to
the given device is NULL), pm_genpd_default_save_state() will
execute the device driver’s .runtime_suspend() callback.

This may not be the right thing to do if the domain provides sufficiently
complicated .stop() and .start() device callbacks.

For example, the driver’s .runtime_suspend() may do something that’s
duplicated by the domain’s .stop().

Analogous observation applies to pm_genpd_default_restore_state()

and the driver’s .runtime_resume().

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 17 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Universal Runtime Suspend and Resume Callbacks

In principle, it is possible to design the .runtime_suspend() and
.runtime_resume() callbacks of a platform device driver in such a way
that they will work with generic PM domains as well as with the platform
bus type.

Potential problems

Platform device drivers are supposed to handle device power
management entirely by themselves (the bus type does not provide
any useful functionality in that respect).

Universal callbacks may need to make assumptions about the
platform that will make the driver platform-specific.

In the end, trying to design universal (working for PM domains as well as
for the platform bus type) PM callbacks may not be worth the effort.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 18 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Universal Runtime Suspend and Resume Callbacks

In principle, it is possible to design the .runtime_suspend() and
.runtime_resume() callbacks of a platform device driver in such a way
that they will work with generic PM domains as well as with the platform
bus type.

Potential problems

Platform device drivers are supposed to handle device power
management entirely by themselves (the bus type does not provide
any useful functionality in that respect).

Universal callbacks may need to make assumptions about the
platform that will make the driver platform-specific.

In the end, trying to design universal (working for PM domains as well as
for the platform bus type) PM callbacks may not be worth the effort.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 18 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Universal Runtime Suspend and Resume Callbacks

In principle, it is possible to design the .runtime_suspend() and
.runtime_resume() callbacks of a platform device driver in such a way
that they will work with generic PM domains as well as with the platform
bus type.

Potential problems

Platform device drivers are supposed to handle device power
management entirely by themselves (the bus type does not provide
any useful functionality in that respect).

Universal callbacks may need to make assumptions about the
platform that will make the driver platform-specific.

In the end, trying to design universal (working for PM domains as well as
for the platform bus type) PM callbacks may not be worth the effort.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 18 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Universal Runtime Suspend and Resume Callbacks

In principle, it is possible to design the .runtime_suspend() and
.runtime_resume() callbacks of a platform device driver in such a way
that they will work with generic PM domains as well as with the platform
bus type.

Potential problems

Platform device drivers are supposed to handle device power
management entirely by themselves (the bus type does not provide
any useful functionality in that respect).

Universal callbacks may need to make assumptions about the
platform that will make the driver platform-specific.

In the end, trying to design universal (working for PM domains as well as
for the platform bus type) PM callbacks may not be worth the effort.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 18 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Defining Device-Specific Callbacks

The alternative is to make PM domains use special “domain” callbacks
instead of the driver’s .runtime_suspend() and .runtime_resume().

int pm_genpd_add_callbacks(struct device *dev, struct gpd_dev_ops *ops,

struct gpd_timing_data *td);

This routine populates the ops member of the struct

generic pm domain data object attached to the given device.

It returns -EINVAL if the device is not in a generic PM domain.

This allows the driver to attach its own set of domain callbacks to the
device in case it belongs to a (generic) PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 19 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Defining Device-Specific Callbacks

The alternative is to make PM domains use special “domain” callbacks
instead of the driver’s .runtime_suspend() and .runtime_resume().

int pm_genpd_add_callbacks(struct device *dev, struct gpd_dev_ops *ops,

struct gpd_timing_data *td);

This routine populates the ops member of the struct

generic pm domain data object attached to the given device.

It returns -EINVAL if the device is not in a generic PM domain.

This allows the driver to attach its own set of domain callbacks to the
device in case it belongs to a (generic) PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 19 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Defining Device-Specific Callbacks

The alternative is to make PM domains use special “domain” callbacks
instead of the driver’s .runtime_suspend() and .runtime_resume().

int pm_genpd_add_callbacks(struct device *dev, struct gpd_dev_ops *ops,

struct gpd_timing_data *td);

This routine populates the ops member of the struct

generic pm domain data object attached to the given device.

It returns -EINVAL if the device is not in a generic PM domain.

This allows the driver to attach its own set of domain callbacks to the
device in case it belongs to a (generic) PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 19 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Defining Device-Specific Callbacks

The alternative is to make PM domains use special “domain” callbacks
instead of the driver’s .runtime_suspend() and .runtime_resume().

int pm_genpd_add_callbacks(struct device *dev, struct gpd_dev_ops *ops,

struct gpd_timing_data *td);

This routine populates the ops member of the struct

generic pm domain data object attached to the given device.

It returns -EINVAL if the device is not in a generic PM domain.

This allows the driver to attach its own set of domain callbacks to the
device in case it belongs to a (generic) PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 19 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

Defining Device-Specific Callbacks

The alternative is to make PM domains use special “domain” callbacks
instead of the driver’s .runtime_suspend() and .runtime_resume().

int pm_genpd_add_callbacks(struct device *dev, struct gpd_dev_ops *ops,

struct gpd_timing_data *td);

This routine populates the ops member of the struct

generic pm domain data object attached to the given device.

It returns -EINVAL if the device is not in a generic PM domain.

This allows the driver to attach its own set of domain callbacks to the
device in case it belongs to a (generic) PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 19 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Cooperation with Device Drivers Adaptation of Device Drivers

How That Can Be Done

For example, the driver can do the following:

1 Define an object of type struct gpd_dev_ops whose members will
point to a set of routines to be used with generic PM domains.

2 Define a static object of type struct dev_pm_ops whose members
will point to a set of routines to be used with the platform bus type.

3 In its .probe() routine, call pm_genpd_add_callbacks() passing
the pointer to the struct gpd_dev_ops object as its second
argument.

4 If that returns 0 (success), set its driver.pm pointer to NULL.

5 Otherwise, set its driver.pm pointer to the address of the
struct dev_pm_ops object.

This has to cover system suspend and hibernation too.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 20 / 39



Summary

Highlights

The generic PM domains framework allows multi-device (domain)
low-power states to be used as well as single-device ones.

It replaces the subsystem-level (e.g. bus type) PM callbacks with its
own routines that take the domain low-power states into account.

Those routines use callbacks provided by the platform and by device
drivers to implement the desired functionality.

The callbacks provided by device drivers may be either the “standard”
ones designed to be used with the platform bus type, or special ones
designed specifically with PM domains in mind.

If everything is set up correctly by the platform, the driver can decide
which set of power management callbacks to use at probe time.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 21 / 39



Summary

Highlights

The generic PM domains framework allows multi-device (domain)
low-power states to be used as well as single-device ones.

It replaces the subsystem-level (e.g. bus type) PM callbacks with its
own routines that take the domain low-power states into account.

Those routines use callbacks provided by the platform and by device
drivers to implement the desired functionality.

The callbacks provided by device drivers may be either the “standard”
ones designed to be used with the platform bus type, or special ones
designed specifically with PM domains in mind.

If everything is set up correctly by the platform, the driver can decide
which set of power management callbacks to use at probe time.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 21 / 39



Summary

Highlights

The generic PM domains framework allows multi-device (domain)
low-power states to be used as well as single-device ones.

It replaces the subsystem-level (e.g. bus type) PM callbacks with its
own routines that take the domain low-power states into account.

Those routines use callbacks provided by the platform and by device
drivers to implement the desired functionality.

The callbacks provided by device drivers may be either the “standard”
ones designed to be used with the platform bus type, or special ones
designed specifically with PM domains in mind.

If everything is set up correctly by the platform, the driver can decide
which set of power management callbacks to use at probe time.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 21 / 39



Summary

Highlights

The generic PM domains framework allows multi-device (domain)
low-power states to be used as well as single-device ones.

It replaces the subsystem-level (e.g. bus type) PM callbacks with its
own routines that take the domain low-power states into account.

Those routines use callbacks provided by the platform and by device
drivers to implement the desired functionality.

The callbacks provided by device drivers may be either the “standard”
ones designed to be used with the platform bus type, or special ones
designed specifically with PM domains in mind.

If everything is set up correctly by the platform, the driver can decide
which set of power management callbacks to use at probe time.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 21 / 39



Summary

Highlights

The generic PM domains framework allows multi-device (domain)
low-power states to be used as well as single-device ones.

It replaces the subsystem-level (e.g. bus type) PM callbacks with its
own routines that take the domain low-power states into account.

Those routines use callbacks provided by the platform and by device
drivers to implement the desired functionality.

The callbacks provided by device drivers may be either the “standard”
ones designed to be used with the platform bus type, or special ones
designed specifically with PM domains in mind.

If everything is set up correctly by the platform, the driver can decide
which set of power management callbacks to use at probe time.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 21 / 39



Resources

References

R. J. Wysocki, Why We Need More Device Power Management
Callbacks (https://events.linuxfoundation.org/images/
stories/pdf/lfcs2012_wysocki.pdf).

R. J. Wysocki, Power Management Using PM Domains on SH7372
(https://events.linuxfoundation.org/events/
embedded-linux-conference-europe/wysocki).

R. J. Wysocki, Runtime PM vs System Sleep (http://www.
linuxplumbersconf.org/2011/ocw/system/presentations/27/

original/system_sleep_vs_runtime_PM.pdf).

R. J. Wysocki, Runtime Power Management Framework for I/O
Devices in the Linux Kernel (http://events.linuxfoundation.
org/slides/2010/linuxcon2010_wysocki.pdf).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 22 / 39

https://events.linuxfoundation.org/images/stories/pdf/lfcs2012_wysocki.pdf
https://events.linuxfoundation.org/images/stories/pdf/lfcs2012_wysocki.pdf
https://events.linuxfoundation.org/events/embedded-linux-conference-europe/wysocki
https://events.linuxfoundation.org/events/embedded-linux-conference-europe/wysocki
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/27/original/system_sleep_vs_runtime_PM.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/27/original/system_sleep_vs_runtime_PM.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/27/original/system_sleep_vs_runtime_PM.pdf
http://events.linuxfoundation.org/slides/2010/linuxcon2010_wysocki.pdf
http://events.linuxfoundation.org/slides/2010/linuxcon2010_wysocki.pdf


Resources

Documentation And Source Code

Documentation/power/devices.txt

Documentation/power/runtime pm.txt

include/linux/device.h

include/linux/pm.h

include/linux/pm domain.h

include/linux/pm runtime.h

include/linux/pm wakeup.h

include/linux/suspend.h

drivers/base/power/*

kernel/power/*

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 23 / 39



Example: SH7372 Design

Power Domains On SH7372

C5: base (mother) domain, CPG, KEYSC, CMT, RWDT, GPIO

A4LC: LCDC, DSI, MERAM (video)

A4MP: SPU2, FSI (audio)

D4: ARM debug

A4R: SH4AL-DSP, INTCS, DMAC, IIC, TMU, MSIOF, CMT0,
CEU, CSI (SH CPU core, I/O)

A3RI: ISP (camera capture unit)

A3RV: VPU (video encode/decode unit)

A4S: INTCA, MFI, SBSC (interrupt and SDRAM controllers)

A3SG: SGX (3D graphics)

A3SP: SCIF, MSIOF, IIC, USB, SDHI, MMCIF, HDMI (I/O)

A3SM: ARM Cortex-A8 CPU core

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 24 / 39



Example: SH7372 Design

Power Domains Hierarchy

A3SG A3SP

A3SMA4S

C5

A4R

A3RI

A3RV

A4LC

A4MP

D4

It turns out that A3RV depends on A4LC (because of MERAM) and A4LC
depends on A4R (because of the INTCS).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 25 / 39



Example: SH7372 Design

Power Domains Hierarchy

A3SG A3SP

A3SMA4S

C5

A4R

A3RI

A3RV

A4LC

A4MP

D4

It turns out that A3RV depends on A4LC (because of MERAM) and A4LC
depends on A4R (because of the INTCS).

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 25 / 39



Example: SH7372 Design

Effective Power Domains Hierarchy

A3SG A3SP

A3SMA4S

C5

A4MP

D4 A3RIA4R

A3RV

A4LC

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 26 / 39



Example: SH7372 Design

Consequences of the Design

Observations

Every device is a direct member of one power domain.

It is desirable to turn off A4LC when A3RV is off.

It is desirable to turn off A4R when A3RI and A4LC are off.

It is desirable to turn off A4S when A3SG, A3SP, A3SM are off.

Plan

We will play with a fake (software-only) device added to the A4LC
domain, because it is easy to trigger the “power off” and “power on”
transitions in it by blanking and unblanking the screen, respectively.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 27 / 39



Example: SH7372 Design

Consequences of the Design

Observations

Every device is a direct member of one power domain.

It is desirable to turn off A4LC when A3RV is off.

It is desirable to turn off A4R when A3RI and A4LC are off.

It is desirable to turn off A4S when A3SG, A3SP, A3SM are off.

Plan

We will play with a fake (software-only) device added to the A4LC
domain, because it is easy to trigger the “power off” and “power on”
transitions in it by blanking and unblanking the screen, respectively.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 27 / 39



Example: SH7372 Prerequisities

Preliminary Patch

Make the .runtime_suspend() and .runtime_resume() callbacks in
default_pm_domain for shmobile execute driver callbacks.

Index: linux/drivers/sh/pm_runtime.c

===================================================================

--- linux.orig/drivers/sh/pm_runtime.c

+++ linux/drivers/sh/pm_runtime.c

@@ -28,10 +28,35 @@ static int default_platform_runtime_idle

return pm_runtime_suspend(dev);

}

+static int default_runtime_suspend(struct device *dev)

+{

+ struct device_driver *drv = dev->driver;

+

+ if (drv && drv->pm && drv->pm->runtime_suspend) {

+ int ret = drv->pm->runtime_suspend(dev);

+ if (ret)

+ return ret;

+ }

+ return pm_clk_suspend(dev);

+}

+

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 28 / 39



Example: SH7372 Prerequisities

Preliminary Patch

Make the .runtime_suspend() and .runtime_resume() callbacks in
default_pm_domain for shmobile execute driver callbacks.

Index: linux/drivers/sh/pm_runtime.c

===================================================================

--- linux.orig/drivers/sh/pm_runtime.c

+++ linux/drivers/sh/pm_runtime.c

@@ -28,10 +28,35 @@ static int default_platform_runtime_idle

return pm_runtime_suspend(dev);

}

+static int default_runtime_suspend(struct device *dev)

+{

+ struct device_driver *drv = dev->driver;

+

+ if (drv && drv->pm && drv->pm->runtime_suspend) {

+ int ret = drv->pm->runtime_suspend(dev);

+ if (ret)

+ return ret;

+ }

+ return pm_clk_suspend(dev);

+}

+

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 28 / 39



Example: SH7372 Prerequisities

Preliminary Patch Continued

+static int default_runtime_resume(struct device *dev)

+{

+ struct device_driver *drv = dev->driver;

+ int ret;

+

+ ret = pm_clk_resume(dev);

+ if (ret)

+ return ret;

+

+ return drv && drv->pm && drv->pm->runtime_resume ?

+ drv->pm->runtime_resume(dev) : 0;

+}

+

static struct dev_pm_domain default_pm_domain = {

.ops = {

- .runtime_suspend = pm_clk_suspend,

- .runtime_resume = pm_clk_resume,

+ .runtime_suspend = default_runtime_suspend,

+ .runtime_resume = default_runtime_resume,

.runtime_idle = default_platform_runtime_idle,

USE_PLATFORM_PM_SLEEP_OPS

},

That is what the platform bus type does by default.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 29 / 39



Example: SH7372 Prerequisities

Preliminary Patch Continued

+static int default_runtime_resume(struct device *dev)

+{

+ struct device_driver *drv = dev->driver;

+ int ret;

+

+ ret = pm_clk_resume(dev);

+ if (ret)

+ return ret;

+

+ return drv && drv->pm && drv->pm->runtime_resume ?

+ drv->pm->runtime_resume(dev) : 0;

+}

+

static struct dev_pm_domain default_pm_domain = {

.ops = {

- .runtime_suspend = pm_clk_suspend,

- .runtime_resume = pm_clk_resume,

+ .runtime_suspend = default_runtime_suspend,

+ .runtime_resume = default_runtime_resume,

.runtime_idle = default_platform_runtime_idle,

USE_PLATFORM_PM_SLEEP_OPS

},

That is what the platform bus type does by default.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 29 / 39



Example: SH7372 Prerequisities

Device Object Definition

Index: linux/arch/arm/mach-shmobile/board-mackerel.c

===================================================================

--- linux.orig/arch/arm/mach-shmobile/board-mackerel.c

+++ linux/arch/arm/mach-shmobile/board-mackerel.c

@@ -1285,6 +1285,14 @@ static struct platform_device mackerel_c

},

};

+static struct platform_device fake_device = {

+ .name = "fake-device",

+ .id = 0,

+ .dev = {

+ .platform_data = "MY FAKE DEVICE",

+ },

+};

+

static struct platform_device *mackerel_devices[] __initdata = {

&nor_flash_device,

&smc911x_device,

@@ -1307,6 +1315,7 @@ static struct platform_device *mackerel_

&hdmi_device,

&hdmi_lcdc_device,

&meram_device,

+ &fake_device,

};

/* Keypad Initialization */

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 30 / 39



Example: SH7372 Prerequisities

Adding Device to PM Domain

The device can be added to the A4LC domain as follows.

Index: linux/arch/arm/mach-shmobile/board-mackerel.c

===================================================================

--- linux.orig/arch/arm/mach-shmobile/board-mackerel.c

+++ linux/arch/arm/mach-shmobile/board-mackerel.c

@@ -1592,6 +1601,7 @@ static void __init mackerel_init(void)

#endif

sh7372_add_device_to_domain(&sh7372_a3sp, &sdhi2_device);

sh7372_add_device_to_domain(&sh7372_a4r, &ceu_device);

+ sh7372_add_device_to_domain(&sh7372_a4lc, &fake_device);

hdmi_init_pm_clock();

sh7372_pm_init();

I will demostrate both the case when the device belongs to the PM
domain and the case when it does not belong to the PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 31 / 39



Example: SH7372 Prerequisities

Adding Device to PM Domain

The device can be added to the A4LC domain as follows.

Index: linux/arch/arm/mach-shmobile/board-mackerel.c

===================================================================

--- linux.orig/arch/arm/mach-shmobile/board-mackerel.c

+++ linux/arch/arm/mach-shmobile/board-mackerel.c

@@ -1592,6 +1601,7 @@ static void __init mackerel_init(void)

#endif

sh7372_add_device_to_domain(&sh7372_a3sp, &sdhi2_device);

sh7372_add_device_to_domain(&sh7372_a4r, &ceu_device);

+ sh7372_add_device_to_domain(&sh7372_a4lc, &fake_device);

hdmi_init_pm_clock();

sh7372_pm_init();

I will demostrate both the case when the device belongs to the PM
domain and the case when it does not belong to the PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 31 / 39



Example: SH7372 Prerequisities

Adding Device to PM Domain

The device can be added to the A4LC domain as follows.

Index: linux/arch/arm/mach-shmobile/board-mackerel.c

===================================================================

--- linux.orig/arch/arm/mach-shmobile/board-mackerel.c

+++ linux/arch/arm/mach-shmobile/board-mackerel.c

@@ -1592,6 +1601,7 @@ static void __init mackerel_init(void)

#endif

sh7372_add_device_to_domain(&sh7372_a3sp, &sdhi2_device);

sh7372_add_device_to_domain(&sh7372_a4r, &ceu_device);

+ sh7372_add_device_to_domain(&sh7372_a4lc, &fake_device);

hdmi_init_pm_clock();

sh7372_pm_init();

I will demostrate both the case when the device belongs to the PM
domain and the case when it does not belong to the PM domain.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 31 / 39



Example: SH7372 Device Driver

Kconfig and Makefile Modifications

Index: linux/drivers/misc/Kconfig

===================================================================

--- linux.orig/drivers/misc/Kconfig

+++ linux/drivers/misc/Kconfig

@@ -498,6 +498,13 @@ config MAX8997_MUIC

Maxim MAX8997 PMIC.

The MAX8997 MUIC is a USB port accessory detector and switch.

+config MACKEREL_FAKEDEV

+ bool "Mackerel Fake Device Support"

+ depends on MACH_MACKEREL

+ help

+ Enable this if you want to experiment with the demo fake device

+ on the Mackerel board

+

source "drivers/misc/c2port/Kconfig"

source "drivers/misc/eeprom/Kconfig"

source "drivers/misc/cb710/Kconfig"

Index: linux/drivers/misc/Makefile

===================================================================

--- linux.orig/drivers/misc/Makefile

+++ linux/drivers/misc/Makefile

@@ -49,3 +49,4 @@ obj-y += carma/

obj-$(CONFIG_USB_SWITCH_FSA9480) += fsa9480.o

obj-$(CONFIG_ALTERA_STAPL) +=altera-stapl/

obj-$(CONFIG_MAX8997_MUIC) += max8997-muic.o

+obj-$(CONFIG_MACKEREL_FAKEDEV) += fake_device.o

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 32 / 39



Example: SH7372 Device Driver

Driver Code Part I

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/platform_device.h>

#include <linux/pm_domain.h>

#include <linux/pm_runtime.h>

#include <linux/slab.h>

struct fake_device_priv {

bool enabled;

};

static int fake_device_stop(struct device *dev)

{

dev_info(dev, "%s: stopped\n", __func__);

return 0;

}

static int fake_device_start(struct device *dev)

{

dev_info(dev, "%s: started\n", __func__);

return 0;

}

static int fake_device_save_state(struct device *dev)

{

dev_info(dev, "%s: state saved\n", __func__);

return 0;

}

static int fake_device_restore_state(struct device *dev)

{

dev_info(dev, "%s: state restored\n", __func__);

return 0;

}

static int fake_device_runtime_suspend(struct device *dev)

{

int ret = fake_device_save_state(dev);

return ret ? : fake_device_stop(dev);

}

static int fake_device_runtime_resume(struct device *dev)

{

int ret = fake_device_start(dev);

return ret ? : fake_device_restore_state(dev);

}

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 33 / 39



Example: SH7372 Device Driver

Driver Code Part II

static const struct dev_pm_ops fake_device_pm_ops = {

.runtime_suspend = fake_device_runtime_suspend,

.runtime_resume = fake_device_runtime_resume,

};

static bool fake_device_enabled(struct device *dev)

{

struct platform_device *pdev = to_platform_device(dev);

struct fake_device_priv *priv = platform_get_drvdata(pdev);

return priv->enabled;

}

static void fake_device_set_status(struct device *dev, bool enabled)

{

struct platform_device *pdev = to_platform_device(dev);

struct fake_device_priv *priv = platform_get_drvdata(pdev);

if (priv->enabled == enabled)

return;

priv->enabled = enabled;

if (enabled)

pm_runtime_get_sync(dev);

else

pm_runtime_put_sync(dev);

}

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 34 / 39



Example: SH7372 Device Driver

Driver Code Part III

static const char enabled[] = "enabled";

static const char disabled[] = "disabled";

static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *buf)

{

return sprintf(buf, "%s\n", fake_device_enabled(dev) ? enabled : disabled);

}

static ssize_t status_store(struct device *dev, struct device_attribute *attr,

const char *buf, size_t n)

{

char *cp;

int len = n;

cp = memchr(buf, ’\n’, n);

if (cp)

len = cp - buf;

if (len == sizeof(enabled) - 1 && strncmp(buf, enabled, len) == 0)

fake_device_set_status(dev, true);

else if (len == sizeof(disabled) - 1 && strncmp(buf, disabled, len) == 0)

fake_device_set_status(dev, false);

else

return -EINVAL;

return n;

}

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 35 / 39



Example: SH7372 Device Driver

Driver Code Part IV

static DEVICE_ATTR(status, 0644, status_show, status_store);

static struct attribute *manip_attrs[] = {

&dev_attr_status.attr,

NULL,

};

static struct attribute_group manip_attr_group = {

.name = "manip",

.attrs = manip_attrs,

};

static int fake_device_remove(struct platform_device *pdev)

{

struct fake_device_priv *priv = platform_get_drvdata(pdev);

sysfs_remove_group(&pdev->dev.kobj, &manip_attr_group);

if (priv->enabled)

pm_runtime_put_sync(&pdev->dev);

pm_runtime_disable(&pdev->dev);

platform_set_drvdata(pdev, NULL);

kfree(priv);

return 0;

}

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 36 / 39



Example: SH7372 Device Driver

Driver Code Part V

static int __devinit fake_device_probe(struct platform_device *pdev)

{

struct sh_mobile_lcdc_info *pdata = pdev->dev.platform_data;

struct gpd_dev_ops domain_pm_ops = {

.stop = fake_device_stop,

.start = fake_device_start,

.save_state = fake_device_save_state,

.restore_state = fake_device_restore_state,

};

struct fake_device_priv *priv;

int ret;

if (!pdata) {

dev_err(&pdev->dev, "no platform data defined\n");

return -EINVAL;

}

if (strcmp("MY FAKE DEVICE", (char *)pdata))

return -ENODEV;

dev_info(&pdev->dev, "Fake device %d found\n", pdev->id);

priv = kzalloc(sizeof(*priv), GFP_KERNEL);

if (!priv)

return -ENOMEM;

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 37 / 39



Example: SH7372 Device Driver

Driver Code Part VI

platform_set_drvdata(pdev, priv);

pm_genpd_add_callbacks(&pdev->dev,

&domain_pm_ops, NULL);

pm_genpd_dev_need_restore(&pdev->dev, true);

pm_runtime_set_suspended(&pdev->dev);

pm_runtime_enable(&pdev->dev);

ret = sysfs_create_group(&pdev->dev.kobj,

&manip_attr_group);

if (ret) {

pm_runtime_disable(&pdev->dev);

platform_set_drvdata(pdev, NULL);

kfree(priv);

return ret;

}

return 0;

}

static struct platform_driver fake_device_driver = {

.driver = {

.name = "fake-device",

.owner = THIS_MODULE,

.pm = &fake_device_pm_ops,

},

.probe = fake_device_probe,

.remove = fake_device_remove,

};

module_platform_driver(fake_device_driver);

MODULE_DESCRIPTION("Mackerel Fake Device driver");

MODULE_AUTHOR("Rafael J. Wysocki <rjw@sisk.pl>");

MODULE_LICENSE("GPL v2");

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 38 / 39



Thanks!

Thank you for attention!

Special thanks to Renesas Electronics Corp. for covering my travel
expenses related to the participation in LinuxCon Japan 2012.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 39 / 39



Thanks!

Thank you for attention!

Special thanks to Renesas Electronics Corp. for covering my travel
expenses related to the participation in LinuxCon Japan 2012.

Rafael J. Wysocki (rjw@sisk.pl) PM Domains and Device Drivers May 28, 2012 39 / 39


	Introduction
	Generic PM Domains
	Data Structures
	Initialization, Adding and Removing Devices
	Power Management Callback Routines

	Cooperation with Device Drivers
	Domain Device Callbacks
	Adaptation of Device Drivers

	Summary
	Resources
	Appendix
	Example: SH7372
	Design
	Prerequisities
	Device Driver

	


