
Automotive Linux
LinuxCon Japan 2012

Rudi Streif



The Gordian Knot of Automotive Software Design

• Consumer Electronics Industry is setting the 
pace...
• Rapid innovation and commodization of 

functionality are driving customer expectations.
• Smart phones and other CE devices are 

increasingly being used to perform “traditional” 
tasks of automotive electronics: media playback, 
navigation, etc.

• Car buyers demand integration and 
interoperability of their latest gadgets with in-
vehicle systems.

• Market demand for individualization and 
customization.

• Conflicting with Automotive Industry reality... 
• Product life cycles 10 years or longer.
• Quality, reliability, durability and safety 

requirements.
• Little to no software component reuse.



Linux looks like the perfect solution

Proven technology used in millions of CE devices.

Support for all major CPU architectures, a large variety of 
SoCs and a long list of peripherals.

Contributions made by communications, consumer 
electronics and enterprise computing industries can be 
directly leveraged.

Free of royalties. No cost for runtime licenses.

No vendor lock-in.

Reuse of software components.

Large pool of developers and engineers.



Where does Linux fit in a car?

IVI (Headunit)
Instrument Cluster
Navigation
Telematics
After-market

Safety/Mission Critical
Dedicated Control 
Systems

?



Early adopters are leading the way

GM's Linux-based Cadillac User Experience (CUE) will debut in 2012.

The GENIVI Alliance is standardizing a Linux-based software stack for 
in-vehicle infotainment.



Is Embedded Linux ready for automotive prime 
time?

• Embedded power management
• Startup, shutdown and loss of power
• File systems, storage and persistency
• Remote system updates and upgrades
• Diagnostic logging and tracing
• Embedded system security

Seven areas to bring Embedded Linux up to speed



Embedded Power Management

• Relatively new discipline within Linux
• Android wakelocks have become a de-facto 

standard but they only address a small 
portion of the problem

• Only a coherent set of functionality tied into 
the Linux kernel provides the necessary 
granularity for power management
• CPU Frequency Control
• CPU Idle State Control
• Clock Management
• System-wide Suspend to RAM/Disk and 

Resume
• Regulator Framework
• Resource Management
• Power Instrumentation and Profiling



Startup, Shutdown and Loss-of-Power

• Initialize critical hardware components in less 
than 50 ms from cold start
• Requires tight control over when the Linux kernel 

initializes device drivers
• Audio playback in less than 1 s from cold start

• Some driver assist systems are using audio 
feedback e.g. proximity sensors

• Video display in less than 3 s from cold start
• Driver assist system using ive images from rear 

view (surround view) cameras
• Possibly overlaid with computer-generated 

graphics visualizing information from other sensors
• Wake-on-Network

• Partial or entire startup on activity on vehicle 
networks e.g. CAN, MOST

• Loss-of-Power Tolerance
• Must never result in unrecoverable state



File Systems, Storage and Persistency

• Temporary Storage
• Store temporary files using file systems on 

volatile memory (RAM disk).
• Avoid wearing flash memory over the lifetime 

of the vehicle (potentially > 10 years).
• Persistent Storage

• On wear-leveling flash file systems.
• User Data Protection

• Unlike a mobile phone a car is a multi-user 
device.

• User data must be identifiable by user and 
partitioned from each other.

• User Data Quotas
• Enforce quotas for user data to prevent 

running out of capacity.



System Updates and Upgrades

• Embedded systems impose several 
constraints on system updates
• Limited access to interfaces
• User interaction is either not possible or very 

limited and in many cases not desired
• Update package size limited by the device's 

storage and processing capabilities
• Constrained time windows for updates

• Vehicles impose additional constraints
• Not permanently connected to data networks
• QoS for delivery networks is not guaranteed

• Update mechanism must meet several 
requirements
• Delivery must be resumable
• Verification of integrity, point of origin and 

destination
• Updates must be transactional
• Updates must be incremental



Diagnostic Logging and Tracing

• The wheel reinvented over and over again
• Syslog is the UNIX standard but it has its 

limitations
• Only one of many logging facilities and not for kernel 

log, early boot and late shutdown messages
• Mostly unstructured and unstandardized log data
• Messages are not authenticated
• Timestamps have no timezone information
• No compression, limited disk space monitoring

• Every embedded developer seems to write their 
own logging facility

• “Journal” is seeking to address the issues
• For embedded systems also required are:

• Remote retrieval of log data
• Access control to ensure security and privacy 

(potentially encrypted log data)
• Deterministic performance



Caution! Malware Ahead!

• Attack Surfaces Exposed
• MP3 Malware via USB Memory 

Sticks
• OBD-II

• CarShark (UCSD/UW, 
www.autosec.org)

• Key Fob Attacks
• ETH Zuerich

• Tire-pressure Monitor (RFID)
• USC/Rutgers

• And there is more down the 
road
• Unauthorized apps
• Intentional and unintentional 

modification of system software



Automotive Network Security

• Automotive networks are not secure!
• CAN, MOST, FlexRay, LIN are not designed to use 

authentication, encryption and other security 
mechanisms.

• Most of them will probably never implement any 
security mechanisms for various reasons: cost, 
speed, processing overhead, etc.

• They are wire-bound and therefore physical access 
is required – well yes, but...

• Physical access is relatively simple!
• Vehicle service
• Aftermarket devices
• Consumer devices

• Systems operating as gateways extend connectivity 
beyond vehicle boundaries.
• VICS connects smartphones via Bluetooth.
• WiFi hot spots allow access to data and media and 

provide tethering.
• Wireless data radio for telematics.



Securing an Embedded Linux Platform

• Start with Secure Software Practices
• Hardened Platform

• Trimmed codebase
• Locked accounts and permissions

• Design for Security with a Framework for Trust
• Establish trust boundary (interfaces)
• Define root of trust for each component/interface
• Establish a digital trust assessment model
• Integrate failsafe/recovery proceducre

• Software Reviews and Assessment
• Source code reviews with qualified security practitioners
• Blackbox testing

• Sustained Integrity Monitoring through Usable Life
• Utilize proven Security Concepts

• Secure Hardware
• TPM or other hardware-bound security

• Remote Attestation
• Hash-key summary of hardware/software configuration

• Binding
• Encrypt data destined for a target device

• Sealed Storage
• Protect user data and privacy



Is the Automotive Industry ready for Linux?

• Four stages of “Open Source Maturity”
• Discovery
• Adoption
• Contribution
• Initiation

• The majority of the industry is at the Discovery 
and Adoption stages

• Eventually the industry will need to mature to 
become a “good citizen” of the open source 
community
• Contribute to the Linux kernel and other open 

source projects the industry is building on.
• Initiate new open source projects for the 

broader benefit of the community.



Learn more at the Automotive Linux Summit 2012

https://events.linuxfoundation.org/events/automotive-linux-summit

https://events.linuxfoundation.org/events/automotive-linux-summit


Thank you for your time! Questions?


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

