Automotive Linux LinuxCon Japan 2012

Rudi Streif

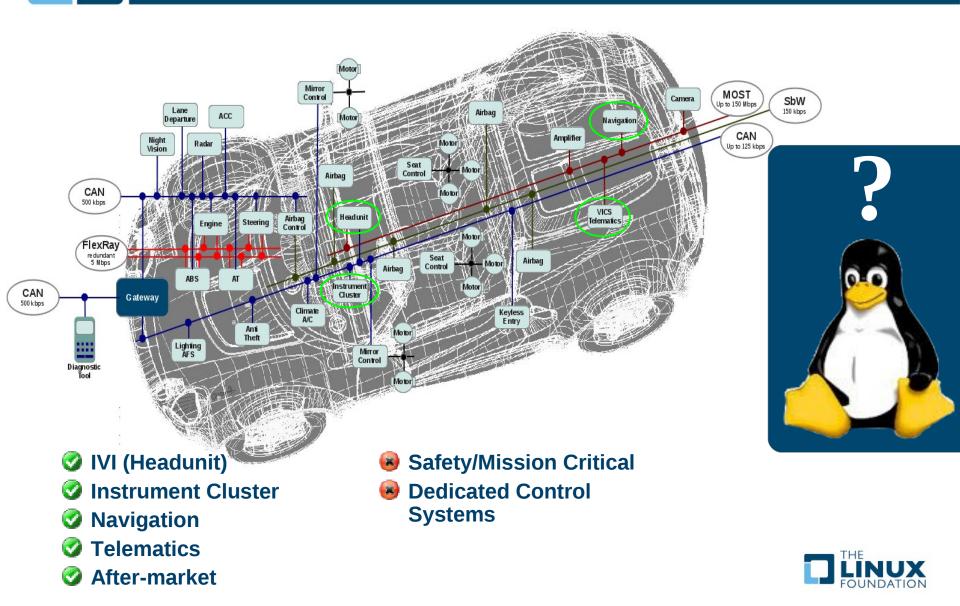
The Gordian Knot of Automotive Software Design

- Consumer Electronics Industry is setting the pace...
 - Rapid innovation and commodization of functionality are driving customer expectations.
 - Smart phones and other CE devices are increasingly being used to perform "traditional" tasks of automotive electronics: media playback, navigation, etc.
 - Car buyers demand integration and interoperability of their latest gadgets with invehicle systems.
 - Market demand for individualization and customization.
- Conflicting with Automotive Industry reality...
 - Product life cycles 10 years or longer.
 - Quality, reliability, durability and safety requirements.
 - Little to no software component reuse.

Linux looks like the perfect solution

Proven technology used in millions of CE devices.

Support for all major CPU architectures, a large variety of SoCs and a long list of peripherals.


Contributions made by communications, consumer electronics and enterprise computing industries can be directly leveraged.

- Free of royalties. No cost for runtime licenses.
- No vendor lock-in.
- **Reuse of software components.**
- Large pool of developers and engineers.

Where does Linux fit in a car?

Early adopters are leading the way

GM's Linux-based Cadillac User Experience (CUE) will debut in 2012.

The GENIVI Alliance is standardizing a Linux-based software stack for in-vehicle infotainment.

Is Embedded Linux ready for automotive prime time?

Seven areas to bring Embedded Linux up to speed

- Embedded power management
- Startup, shutdown and loss of power
- File systems, storage and persistency
- Remote system updates and upgrades
- Diagnostic logging and tracing
- Embedded system security

Embedded Power Management

- Relatively new discipline within Linux
 - Android wakelocks have become a de-facto standard but they only address a small portion of the problem
- Only a coherent set of functionality tied into the Linux kernel provides the necessary granularity for power management
 - CPU Frequency Control
 - CPU Idle State Control
 - Clock Management
 - System-wide Suspend to RAM/Disk and Resume
 - Regulator Framework
 - Resource Management
 - Power Instrumentation and Profiling

Startup, Shutdown and Loss-of-Power

- Initialize critical hardware components in less than 50 ms from cold start
 - Requires tight control over when the Linux kernel initializes device drivers
- Audio playback in less than 1 s from cold start
 - Some driver assist systems are using audio feedback e.g. proximity sensors

• Video display in less than 3 s from cold start

- Driver assist system using ive images from rear view (surround view) cameras
- Possibly overlaid with computer-generated graphics visualizing information from other sensors
- Wake-on-Network
 - Partial or entire startup on activity on vehicle networks e.g. CAN, MOST
- Loss-of-Power Tolerance
 - Must never result in unrecoverable state

File Systems, Storage and Persistency

- Temporary Storage
 - Store temporary files using file systems on volatile memory (RAM disk).
 - Avoid wearing flash memory over the lifetime of the vehicle (potentially > 10 years).
- Persistent Storage
 - On wear-leveling flash file systems.
- User Data Protection
 - Unlike a mobile phone a car is a multi-user device.
 - User data must be identifiable by user and partitioned from each other.
- User Data Quotas
 - Enforce quotas for user data to prevent running out of capacity.

System Updates and Upgrades

- Embedded systems impose several constraints on system updates
 - Limited access to interfaces
 - User interaction is either not possible or very limited and in many cases not desired
 - Update package size limited by the device's storage and processing capabilities
 - Constrained time windows for updates
- Vehicles impose additional constraints
 - Not permanently connected to data networks
 - QoS for delivery networks is not guaranteed
- Update mechanism must meet several requirements
 - Delivery must be resumable
 - Verification of integrity, point of origin and destination
 - Updates must be transactional
 - Updates must be incremental

Diagnostic Logging and Tracing

• The wheel reinvented over and over again

- Syslog is the UNIX standard but it has its limitations
 - Only one of many logging facilities and not for kernel log, early boot and late shutdown messages
 - Mostly unstructured and unstandardized log data
 - Messages are not authenticated
 - Timestamps have no timezone information
 - No compression, limited disk space monitoring
- Every embedded developer seems to write their own logging facility
- "Journal" is seeking to address the issues

• For embedded systems also required are:

- Remote retrieval of log data
- Access control to ensure security and privacy (potentially encrypted log data)
- Deterministic performance



Caution! Malware Ahead!

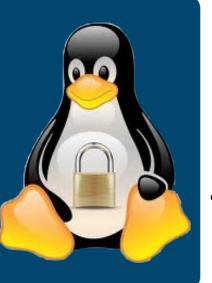
Attack Surfaces Exposed

- MP3 Malware via USB Memory Sticks
- OBD-II
 - CarShark (UCSD/UW, www.autosec.org)
- Key Fob Attacks
 - ETH Zuerich
- Tire-pressure Monitor (RFID)
 - USC/Rutgers
- And there is more down the road
 - Unauthorized apps
 - Intentional and unintentional modification of system software

Automotive Network Security

- Automotive networks are not secure!
 - CAN, MOST, FlexRay, LIN are not designed to use authentication, encryption and other security mechanisms.
 - Most of them will probably never implement any security mechanisms for various reasons: cost, speed, processing overhead, etc.
 - They are wire-bound and therefore physical access is required well yes, but...
- Physical access is relatively simple!
 - Vehicle service

USB 2.0


- Aftermarket devices
- Consumer devices
- Systems operating as gateways extend connectivity beyond vehicle boundaries.
 - VICS connects smartphones via Bluetooth.
 - WiFi hot spots allow access to data and media and provide tethering.
 - Wireless data radio for telematics.

Securing an Embedded Linux Platform

- Start with Secure Software Practices
 - Hardened Platform
 - Trimmed codebase
 - Locked accounts and permissions
 - Design for Security with a Framework for Trust
 - Establish trust boundary (interfaces)
 - Define root of trust for each component/interface
 - Establish a digital trust assessment model
 - Integrate failsafe/recovery proceducre
 - Software Reviews and Assessment
 - Source code reviews with qualified security practitioners
 - Blackbox testing
 - Sustained Integrity Monitoring through Usable Life
- Utilize proven Security Concepts
 - Secure Hardware
 - TPM or other hardware-bound security
 - Remote Attestation
 - Hash-key summary of hardware/software configuration
 - Binding
 - Encrypt data destined for a target device
 - Sealed Storage
 - Protect user data and privacy


Is the Automotive Industry ready for Linux?

- Four stages of "Open Source Maturity"
 - Discovery
 - Adoption
 - Contribution
 - Initiation
- The majority of the industry is at the Discovery and Adoption stages
- Eventually the industry will need to mature to become a "good citizen" of the open source community
 - Contribute to the Linux kernel and other open source projects the industry is building on.
 - Initiate new open source projects for the broader benefit of the community.

Learn more at the Automotive Linux Summit 2012

https://events.linuxfoundation.org/events/automotive-linux-summit

Thank you for your time! Questions?

