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-1. Overview of Fault Tolerance 

• Availability of information systems is important 

especially in 

– Mission-critical systems 

(e.g. Banking, stock exchange) 

– Control systems  

(e.g. Factory-automation, infrastructures) 

 

• Real-time performance is also required. 

– Even short delays can cause large accidents. 
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-2. Redundant Configuration 

• Redundant configuration is often used to improve availability 

 

 

 

 

 

• On-memory data are lost on the server failure 

• To implement non-stop failover, data coherency must 

always be achieved between active/stand-by servers. 

– Applications must implement data synchronization 

• Difficult to eliminate bugs completely 

 

1  

Active Stand-by 
Failover 

4 



Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 

-3. Checkpoint/Restart Overview 

• Checkpoint/Restart (C/R) is an application independent 

methods to implement high availability 

 

 

 

 

– Checkpoint: 

• Save an application state (memory, registers, file descriptors, …) 

at pre-determined points. 

– Restart 

• Resume an application execution using the last saved state, 

on the same machine, or on another machine. 

• Similar to snapshot of VM, but done at application level only (OS internal 

state is not saved/resumed). 
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-4. Adopting C/R to RT systems 

• DMTCP: user-space implementation of C/R 

– Realize C/R transparently for various applications, 

including MPI-based HPC applications 

– Save application processes states to a file 

 

• For HPC purposes, usually the application is restarted after 

repair of the server; saving states to a file is reasonable. 

• To adopt C/R to real-time control systems, 

 shorter down time is required (e.g. 1sec) 

 

⇒ Continuous C/R is introduced 
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-5. Continuous C/R 

• To realize fault tolerance for real-time systems, 

continuous C/R is introduced 

– Application must ensure periodical state transfer of to 

another stand-by server (e.g. every second) 

• Stand-by server update the process image, but doesn’t restart 

– When server failure is detected, the stand-by server  

restart the applications 
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-6. Requirement of Continuous C/R 

• Application down time must be as short as possible 

• Reduce overhead of checkpoint processing 

 

• It takes too much time to transfer entire memory at every 

checkpoint. Transfer size must be reduced… 

⇒ Incremental transfer of modified memory since last  

     checkpoint 

⇒ Dirty(=not synchronized) memory detection is needed 
 

• Applications have hot spot (frequently rewritten areas) and 

cold spot (rarely rewritten areas) 

Cold spots can be transferred without wait until checkpoint 

⇒ Background transfer of memory image is needed 
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-1. Software Stack 

• Current design requires modifications to application 

– Application needs to link the checkpoint API library, and specify 

checkpoint 

• Modification can be avoided by LD_PRELOAD and controlling the 

checkpoint from external coordinator, like DMTCP. 

– Some functions in glibc (mmap, munmap, brk, …) are hooked 
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-2. Checkpointing Memory Image 

• Which memory areas should be synchronized to restart? 

– Anonymous pages (stack, heap, etc.) 

– Need synchronization 

– File-mapped pages 

• Private + writable  (application/libraries’ .data section, etc.) 

– Need synchronization 

• Private + read-only (application binary, libraries, data files, etc.) 

– Don’t need if the same file is on stand-by server 

– Special care is needed for mprotect(2)-ed areas after 

modification (/proc/<pid>/smaps gives hints for this) 

• Shared 

– Only need synchronized once 
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-4. Background transfer 

• In addition, transferring memory image is split into 

2-phases to shorten application down time 

– Phase 1: Background transfer 

• Started on application launch 

• Transfer memory image while application is running 

• Asynchronous = Inconsistent 

– Memory mapping modifications (mmap, munmap, brk…) are detected 

by glibc hook 
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-4. Background transfer 

• In addition, transferring memory image is split into 

2-phases to shorten application down time 

– Phase 2: Foreground transfer 

• Stop application at the checkpoint 

• Transfer consistent memory image 

– Memory mapping information, registers values (obtained by setjmp), 

file descriptors information are also transferred. 
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-5. Receiver 

• Transferred memory image is replayed by the receiver 

– Receiver runs in reserved virtual memory address 

– Not linked to any other libraries 

– mmap(2) memory and recv(2) data to original address 

– CoW is used to keep consistent memory image 

• When active server failure is detected, restart the 

application 

– Reopen file descriptors 

– Recover registers (using longjmp) to restart the application 
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-6. Performance Evaluation 

• Overhead of dirty page detection largely depends on the 

application memory access pattern 

– First write access causes de-protection 

– Following accesses can be done without overhead 

• Example: 

• Application rewrites 100MB memory between checkpoints 

• Checkpoint every 3 seconds 

 

 

 

• SIGSEGV handler takes 10μs* for each page  

• ~300ms is consumed to mark pages for each 3 seconds period 

• Application down time at the checkpoint is 100ms 

(foreground transfer size is about 5-10MB) 

* tested on Intel Xeon 3520 processor  

2  
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-1. Kernel-space Dirty Page Tracking 

• Dirty page tracking using SIGSEGV is inefficient 

• CPU set modified bits in the page table on write 

– Can detect dirty pages without overhead 
 

• Microsoft Windows has APIs to track modified pages 

 ( for profiling, debugging, and GC hinting ) 

– ResetWriteWatch() :  Begin modified page tracking 

– GetWriteWatch()     :  Get modified pages since last reset 
 

• FreeBSD mincore systemcall 

– int mincore(void *addr, size_t len, char *vec);  

   returns presence / referenced / modified bits of pages into vec 

– However, no way to clear modified bits 
 

• How about Linux? 
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-2. Dirty page tracking APIs 

• Linux mincore(2) system call 

– int mincore(void *addr, size_t length, unsigned char *vec); 

• Only returns whether pages are resident in memory 

(Based on present bit in page table and PageUptodate) 

 

• We added similar interface system call to track dirty pages 

– int mwrwatch(void *addr, size_t length, unsigned char *vec); 

• Returns following values into vec 

– WATCH_CLEAN:          the page is NOT updated since last call 

– WATCH_DIRTY:           the page is updated since last call 

               or it is the first time call 

– WATCH_UNMAPPED: the page is not present 

* for currently unsupported pages type: 

– WATCH_FILE:                  the page is file-backed 

• If vec == NULL, it just resets the modified bits (to begin tracking) 
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-3. Implementation of mwrwatch 

• In mwrwatch: 

  1. Scan modified bits in page table, set vec to WATCH_CLEAN / DIRTY 

      (for the first time call, set DIRTY for every page) 

  2. If modified bits are set, clear them (and set dirty flag in page struct ) 

 

• If application writes to the memory, the dirty bit is set 

• At the next call of mwrwatch, the modified pages are marked in vec 
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-4. Implementation Details 

• Current implementation doesn’t support swapped out pages nor 

shared pages (by fork(2) or KSM)… 
 

  1. Write-lock mmap_sem 

  2. Check vm_area_struct which corresponds to the specified address  

      range to determine if the pages type is supported or not 

  3. Scan the page table entries : * 

 3-1. Clear PTE entry and flush TLB to block access to the memory 

 3-2. If dirty bit is set : 

        clear dirty bit; call set_page_dirty(); ** 

        vec[i] = WATCH_DIRTY; 

                    Else:    vec[i] = WATCH_CLEAN; 

             3-3. Revert PTE entry 

  4. Unlock mmap_sem 

   *   When transparent huge page is used, split it into 4KB pages for later tracking 

   ** Set dirty flags in struct page to notice mm subsystem 
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-5. Performance of mwrwatch 3  
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-6. Performance analysis 

• 1st  call:            50μs / MB     ← clear PTE dirty bits + SetPageDirty 

• 2nd clean call:  38μs / MB      ← no operations 

• 3rd dirty call:     40μs / MB     ← clear PTE dirty bits 

c.f. SIGSEGV:    3000μs/MB 

– Example: 

• Application rewrites 100MB memory between checkpoints 

• Checkpoint every 3 seconds 

 

 

 

 

• Almost no dirty page marking overhead while the app is running 

• Application down time at the checkpoint is 100ms (~5% overhead) 

– Lots of vm scans are needed even when there is no dirty pages 

– If the app has many processes (large vm), it takes much time 
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Conclusion 

• Continuous Checkpoint/Restart is an application independent 

method of application fault tolerance 

• Dirty page detection can be implemented in user-space using 

mprotect 
– But overhead of SIGSEGV handling is large and unpredictable… 

• By adding mwrwatch system call, overhead can be eliminated 

• To-do 

– Upstreaming modified page tracking mechanism 

   Modified page tracking is also useful for debugging,  

   profiling,GC hinting, etc. 
• interface may need brush-ups for such purposes 

• File-backed / shared / swapped-out pages should be supported. 
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Thank you! 

Questions? 
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Copyrights and Trademarks Notices 

• Linux is a registered trademark of Linus Torvalds. 

• Microsoft and Windows are trademarks of Microsoft Corporation. 

• FreeBSD is a registered trademark of The FreeBSD Foundation. 

• All other trademarks and copyrights are the property of their respective 

owners. 
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