
Tomoki Sekiyama
Linux Technology Center

Yokohama Research Laboratory

Hitachi Ltd.

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Application Fault Tolerance

Using Continuous

Checkpoint/Restart

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Outline

1. Overview of Application Fault Tolerance and

Continuous Checkpoint/Restart

2. User-space Implementation of

 Continuous Checkpoint/Restart

3. Kernel-space tracking of Dirty pages

2

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-1. Overview of Fault Tolerance

• Availability of information systems is important

especially in

– Mission-critical systems

(e.g. Banking, stock exchange)

– Control systems

(e.g. Factory-automation, infrastructures)

• Real-time performance is also required.

– Even short delays can cause large accidents.

1

3

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-2. Redundant Configuration

• Redundant configuration is often used to improve availability

• On-memory data are lost on the server failure

• To implement non-stop failover, data coherency must

always be achieved between active/stand-by servers.

– Applications must implement data synchronization

• Difficult to eliminate bugs completely

1

Active Stand-by
Failover

4

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-3. Checkpoint/Restart Overview

• Checkpoint/Restart (C/R) is an application independent

methods to implement high availability

– Checkpoint:

• Save an application state (memory, registers, file descriptors, …)

at pre-determined points.

– Restart

• Resume an application execution using the last saved state,

on the same machine, or on another machine.

• Similar to snapshot of VM, but done at application level only (OS internal

state is not saved/resumed).

1

processes

Checkpoint

Restart

Saved application state

5

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-4. Adopting C/R to RT systems

• DMTCP: user-space implementation of C/R

– Realize C/R transparently for various applications,

including MPI-based HPC applications

– Save application processes states to a file

• For HPC purposes, usually the application is restarted after

repair of the server; saving states to a file is reasonable.

• To adopt C/R to real-time control systems,

 shorter down time is required (e.g. 1sec)

⇒ Continuous C/R is introduced

1

6

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-5. Continuous C/R

• To realize fault tolerance for real-time systems,

continuous C/R is introduced

– Application must ensure periodical state transfer of to

another stand-by server (e.g. every second)

• Stand-by server update the process image, but doesn’t restart

– When server failure is detected, the stand-by server

restart the applications

1

processes Periodically

Checkpoint

over network

processes

Restart on

active server

failure

Active Stand-by

7

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-6. Requirement of Continuous C/R

• Application down time must be as short as possible

• Reduce overhead of checkpoint processing

• It takes too much time to transfer entire memory at every

checkpoint. Transfer size must be reduced…

⇒ Incremental transfer of modified memory since last

 checkpoint

⇒ Dirty(=not synchronized) memory detection is needed

• Applications have hot spot (frequently rewritten areas) and

cold spot (rarely rewritten areas)

Cold spots can be transferred without wait until checkpoint

⇒ Background transfer of memory image is needed

1

8

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Contents

1. Overview of Application Fault Tolerance and

Checkpoint/Restart

2. User-space Implementation of

Checkpoint/Restart

3. Dirty pages tracking in Kernel-space

9

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-1. Software Stack

• Current design requires modifications to application

– Application needs to link the checkpoint API library, and specify

checkpoint

• Modification can be avoided by LD_PRELOAD and controlling the

checkpoint from external coordinator, like DMTCP.

– Some functions in glibc (mmap, munmap, brk, …) are hooked

2

10

Receiver

Linux kernel

Hook Library glibc

Checkpoint API Library

Application process

Linux kernel

Receiver

Provides APIs to

control checkpointing

Hook some library to detect

memory mapping changes

Receive checkpoint

and replay the app

Active Stand-by

TCP/IP session

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-2. Checkpointing Memory Image

• Which memory areas should be synchronized to restart?

– Anonymous pages (stack, heap, etc.)

– Need synchronization

– File-mapped pages

• Private + writable (application/libraries’ .data section, etc.)

– Need synchronization

• Private + read-only (application binary, libraries, data files, etc.)

– Don’t need if the same file is on stand-by server

– Special care is needed for mprotect(2)-ed areas after

modification (/proc/<pid>/smaps gives hints for this)

• Shared

– Only need synchronized once

2

11

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-4. Background transfer

• In addition, transferring memory image is split into

2-phases to shorten application down time

– Phase 1: Background transfer

• Started on application launch

• Transfer memory image while application is running

• Asynchronous = Inconsistent

– Memory mapping modifications (mmap, munmap, brk…) are detected

by glibc hook

2

14

application

write

transfer marked

pages in

background

(by hidden thread)

application memory

marked pages

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-4. Background transfer

• In addition, transferring memory image is split into

2-phases to shorten application down time

– Phase 2: Foreground transfer

• Stop application at the checkpoint

• Transfer consistent memory image

– Memory mapping information, registers values (obtained by setjmp),

file descriptors information are also transferred.

2

15

application

is stopped

at the

checkpoint

transfer remaining

marked pages in

foreground

application memory

marked pages

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-5. Receiver

• Transferred memory image is replayed by the receiver

– Receiver runs in reserved virtual memory address

– Not linked to any other libraries

– mmap(2) memory and recv(2) data to original address

– CoW is used to keep consistent memory image

• When active server failure is detected, restart the

application

– Reopen file descriptors

– Recover registers (using longjmp) to restart the application

2

16

receiver placed in reserved

memory space →

mmap + recv

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-6. Performance Evaluation

• Overhead of dirty page detection largely depends on the

application memory access pattern

– First write access causes de-protection

– Following accesses can be done without overhead

• Example:

• Application rewrites 100MB memory between checkpoints

• Checkpoint every 3 seconds

• SIGSEGV handler takes 10μs* for each page

• ~300ms is consumed to mark pages for each 3 seconds period

• Application down time at the checkpoint is 100ms

(foreground transfer size is about 5-10MB)

* tested on Intel Xeon 3520 processor

2

17

0 20 40 60 80 100

with Checkpoint

w/o Checkpoint

%

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Contents

1. Overview of Application Fault Tolerance and

Checkpoint/Restart

2. User-space Implementation of

Checkpoint/Restart

3. Dirty pages tracking in Kernel-space

18

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-1. Kernel-space Dirty Page Tracking

• Dirty page tracking using SIGSEGV is inefficient

• CPU set modified bits in the page table on write

– Can detect dirty pages without overhead

• Microsoft Windows has APIs to track modified pages

 (for profiling, debugging, and GC hinting)

– ResetWriteWatch() : Begin modified page tracking

– GetWriteWatch() : Get modified pages since last reset

• FreeBSD mincore systemcall

– int mincore(void *addr, size_t len, char *vec);

 returns presence / referenced / modified bits of pages into vec

– However, no way to clear modified bits

• How about Linux?

3

19

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-2. Dirty page tracking APIs

• Linux mincore(2) system call

– int mincore(void *addr, size_t length, unsigned char *vec);

• Only returns whether pages are resident in memory

(Based on present bit in page table and PageUptodate)

• We added similar interface system call to track dirty pages

– int mwrwatch(void *addr, size_t length, unsigned char *vec);

• Returns following values into vec

– WATCH_CLEAN: the page is NOT updated since last call

– WATCH_DIRTY: the page is updated since last call

 or it is the first time call

– WATCH_UNMAPPED: the page is not present

* for currently unsupported pages type:

– WATCH_FILE: the page is file-backed

• If vec == NULL, it just resets the modified bits (to begin tracking)

3

20

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-3. Implementation of mwrwatch

• In mwrwatch:

 1. Scan modified bits in page table, set vec to WATCH_CLEAN / DIRTY

 (for the first time call, set DIRTY for every page)

 2. If modified bits are set, clear them (and set dirty flag in page struct)

• If application writes to the memory, the dirty bit is set

• At the next call of mwrwatch, the modified pages are marked in vec

3

21

…

Page table

mwrwatch

vec

0

0

1

Write

to

page
Modified bits

0: clean

1: dirty

0

0

1

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-4. Implementation Details

• Current implementation doesn’t support swapped out pages nor

shared pages (by fork(2) or KSM)…

 1. Write-lock mmap_sem

 2. Check vm_area_struct which corresponds to the specified address

 range to determine if the pages type is supported or not

 3. Scan the page table entries : *

 3-1. Clear PTE entry and flush TLB to block access to the memory

 3-2. If dirty bit is set :

 clear dirty bit; call set_page_dirty(); **

 vec[i] = WATCH_DIRTY;

 Else: vec[i] = WATCH_CLEAN;

 3-3. Revert PTE entry

 4. Unlock mmap_sem

 * When transparent huge page is used, split it into 4KB pages for later tracking

 ** Set dirty flags in struct page to notice mm subsystem

3

22

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-5. Performance of mwrwatch 3

23

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

-6. Performance analysis

• 1st call: 50μs / MB ← clear PTE dirty bits + SetPageDirty

• 2nd clean call: 38μs / MB ← no operations

• 3rd dirty call: 40μs / MB ← clear PTE dirty bits

c.f. SIGSEGV: 3000μs/MB

– Example:

• Application rewrites 100MB memory between checkpoints

• Checkpoint every 3 seconds

• Almost no dirty page marking overhead while the app is running

• Application down time at the checkpoint is 100ms (~5% overhead)

– Lots of vm scans are needed even when there is no dirty pages

– If the app has many processes (large vm), it takes much time

3

24

0 20 40 60 80 100

mwrwatch

SIGSEGV

w/o Checkpoint

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Conclusion

• Continuous Checkpoint/Restart is an application independent

method of application fault tolerance

• Dirty page detection can be implemented in user-space using

mprotect
– But overhead of SIGSEGV handling is large and unpredictable…

• By adding mwrwatch system call, overhead can be eliminated

• To-do

– Upstreaming modified page tracking mechanism

 Modified page tracking is also useful for debugging,

 profiling,GC hinting, etc.
• interface may need brush-ups for such purposes

• File-backed / shared / swapped-out pages should be supported.

25

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Thank you!

Questions?

26

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

Copyrights and Trademarks Notices

• Linux is a registered trademark of Linus Torvalds.

• Microsoft and Windows are trademarks of Microsoft Corporation.

• FreeBSD is a registered trademark of The FreeBSD Foundation.

• All other trademarks and copyrights are the property of their respective

owners.

27

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.
28

